The Pathogen of Top Rot Disease in Rosa roxburghii and Its Effective Control Fungicides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture Media and Fungicides
2.2. Pathogen
2.3. Field Experiment Site
2.4. Isolation and Identification of Top Rot Pathogen in R. roxburghii
2.4.1. Isolation and Purification of Top Rot Pathogen
2.4.2. Pathogenicity Determination of Strain CXCDF-3
2.4.3. Identification of Strain CXCDF-3
2.5. Biological Characteristics of Colletotrichum fructicola CXCDF-3
2.6. Toxicity Tests of Fungicides to C. fructicola CXCDF-3
2.7. Field Control Experiment of Top Rot in R. roxburghii Fruits
2.8. Statistical Analyses
3. Results
3.1. Pathogenicity of Top Rot Pathogen in R. roxburghii Fruits
3.2. Morphological and Molecular Identification of Strain CXCDF-3
3.3. Biological Characteristics of C. fructicola CXCDF-3
3.4. Toxicity of Different Fungicides to C. fructicola CXCDF-3
3.5. Field Control Efficacy of Different Fungicides against Top Rot in R. roxburghii Fruits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Lv, M.; An, J.; Fan, X.; Dong, M.; Zhang, S.; Wang, J.; Wang, Y.; Cai, Z.; Fu, Y. Botanical characteristics, phytochemistry and related biological activities of Rosa roxburghii Tratt fruit, and its potential use in functional foods: A review. Food Funct. 2021, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Zhou, R. The healthcare function and development trend of toxburgh rose. Food Res. Dev. 2016, 37, 212–214. [Google Scholar]
- Wang, D.; Lu, M.; Ludlow, R.A.; Zeng, J.; Ma, W.; An, H. Comparative ultrastructure of trichomes on various organs of Rosa roxburghii. Microsc. Res. Tech. 2021, 84, 2095–2103. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, H.; Li, Y.; Yu, Z.; Liu, X.; Huang, M. Identification and oenological properties analysis of a strain of Hanseniaspora uvarum from Rosa roxburghii. Food Ferment. Ind. 2020, 46, 97–104. [Google Scholar]
- Huang, X.; Yan, H.; Zhai, L.; Yang, Z.; Yi, Y. Characterization of the Rosa roxburghii Tratt transcriptome and analysis of MYB genes. PLoS ONE 2019, 14, e0203014. [Google Scholar] [CrossRef] [Green Version]
- Hao, M.; Zhang, F.; Liu, X.; Zhang, F.; Wang, L.; Xu, S.; Zhang, J.; Ji, H.; Xu, P. Qualitative and quantitative analysis of catechin and quercetin in flavonoids extracted from Rosa roxburghii Tratt. Trop. J. Pharm. Res. 2018, 17, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Liu, X.; Xiong, X.; Zhang, W.; Cai, X.; Qiu, P.; Hao, M.; Wang, L.; Lu, D.; Zhang, X.; et al. Flavonoids of Rosa roxburghii Tratt exhibit anti-apoptosis properties by regulating PARP-1/AIF. J. Cell. Biochem. 2017, 118, 3943–3952. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Liu, J.; Liu, L.; Zhang, E.; Li, W. Inhibition of metastasis and invasion of ovarian cancer cells by crude polysaccharides from rosa roxburghii tratt in vitro. Asian Pac. J. Cancer Prev. 2014, 15, 10351–10354. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Guo, Z.; Luo, Y.; Wu, X.; An, H. Chitosan Can Induce Rosa roxburghii Tratt. against Sphaerotheca sp. and Enhance Its Resistance, Photosynthesis, Yield, and Quality. Horticulturae 2021, 7, 289. [Google Scholar] [CrossRef]
- Fan, W.; Pan, X.; Chen, H.; Yang, H.; Gong, F.; Guan, J.; Wang, M.; Mu, R. Effects of oxalic acid on the nutrient of calcareous cultivated soil and leaf, fruit yield and quality of Rosa roxburghii Tratt. J. Fruit Sci. 2021, 38, 1113–1122. [Google Scholar] [CrossRef]
- Li, J.; Li, R.; Zhang, C.; Guo, Z.; Wu, X.; An, H. Co-application of allicin and chitosan increases resistance of Rosa roxburghii against powdery mildew and enhances its yield and quality. Antibiotics 2021, 10, 1449. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Liu, X.D.; Huang, W.Y.; Wu, X.M. Occurrence and Control Technology of Powdery Mildew in Rose roxburgh Tratt. China Fruits 2021, 1, 6–10. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Q.; Li, J.; Su, Y.; Wu, X. Chitosan as an Adjuvant to Enhance the Control Efficacy of Low-Dosage Pyraclostrobin against Powdery Mildew of Rosa roxburghii and Improve Its Photosynthesis, Yield, and Quality. Biomolecules 2022, 12, 1304. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Miao, Y.; Liu, Y.; Zhang, L.; Mahendra, S. Identification of novel 1,4-dioxane degraders and related genes from activated sludge by taxonomic and functional gene sequence analysis. J. Hazard. Mater. 2021, 412, 125157. [Google Scholar] [CrossRef] [PubMed]
- Bazhenova, A.E.; Rudenko, O.S.; Pesterev, M.A.; Shcherbakova, N.A.; Misteneva, S.Y. Identification of the yeast strain cystobasidium slooffiae isolated from the cake test sample. Food Syst. 2021, 4, 111–116. [Google Scholar] [CrossRef]
- Yan, K.; Wang, J.L.; Zhou, Y.; Fu, D.P.; Huang, R.M. Efficacy of Five Fungicides in Rosa roxburghii Tratt against Sphaerotheca sp. Agrochemicals 2018, 57, 609–610. [Google Scholar]
- Xiang, J.; He, B. Toxicity Determination of Several Bio-fungicides to Powdery Mildew in Laboratory. Sci. Technol. Modern Agric. 2013, 19, 147. [Google Scholar]
- Wang, Q.; Zhang, C.; Long, Y.; Wu, X.; Su, Y.; Lei, Y.; Ai, Q. Bioactivity and control efficacy of the novel antibiotic tetramycin against various kiwifruit diseases. Antibiotics 2021, 10, 289. [Google Scholar] [CrossRef]
- Bellemain, E.; Carlsen, T.; Brochmann, C. ITS as an environmental DNA barcode for fungi: An insilico approach reveals potential PCR biases. BMC Microbiol. 2010, 10, 189. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Hyde, K.D.; Taylor, P.; Weir, B.S.; Liu, Z.Y. A polyphasic approach for studying Colletotrichum. Fungal Divers. 2009, 39, 183–204. [Google Scholar] [CrossRef]
- Cao, X.; Xu, X.; Che, H.; West, J.; Luo, D. Characteristics and distribution of Colletotrichum species in coffee plantations in hainan, china. Plant Pathol. 2019, 6, 68. [Google Scholar] [CrossRef]
- Jouji, M.; Takao, T.; Toyozo, S. Grouping of Colletotrichum species in japan based on rDNA sequences. J. Gen. Plant Pathol. 2002, 68, 307–320. [Google Scholar] [CrossRef]
- Liu, B.; Pavel, J.; Hausbeck, M.K.; Feng, C.; Correll, J.C. Phylogenetic analysis, vegetative compatibility, virulence, and fungal filtrates of leaf curl pathogen Colletotrichum fioriniae from celery. Phytopathology 2020, 4, 111. [Google Scholar] [CrossRef]
- Alaniz, S.; Rodríguez, L.I.H.; Mondino, P. Colletotrichum fructicola, is the dominant and one of the most aggressive species causing bitter rot of apple in Uruguay. Trop. Plant Pathol. 2015, 40, 265–274. [Google Scholar] [CrossRef]
- Zhao, F.; Shen, L.; Min, F.; Hong, N.; Wang, G. Studies on the biological characteristics and pathogenicity for the monospora strains from ascospores of Colletotrichum fructicola infecting pear. Acta Phytopathol. Sin. 2019, 9, 1–10. [Google Scholar] [CrossRef]
- Li, H.; Zhou, G.; Liu, J.; Xu, J. Population genetic analyses of the fungal pathogen Colletotrichum fructicola on tea-oil trees in China. PLoS ONE 2016, 11, e015684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Echeverrigaray, S.; Delamare, A.P.L.; Fontanella, G.; Favaron, F.; Stella, L.; Scariot, F.J. Colletotrichum species associated to ripe rot disease of grapes in the “Serra Gaucha” region of Southern Brazil. BIO Web Conf. 2019, 12, 01008. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Shi, M.; Zhao, R.; Zhai, F. Identification and biological characteristics of Colletotrichum gloeosporioides on garlic bolt. Chin. Agric. Sci. Bull. 2011, 27, 160–164. [Google Scholar]
- Song, L.; Zhang, L.; Cao, Q.; Duan, K. Biological characteristics and pathogenicity of strawberry Colletotrichum fructicola. Acta Agric. Shanghai 2019, 35, 88–96. [Google Scholar] [CrossRef]
- Leadbeater, A. Recent developments and challenges in chemical disease control. Plant Protect. Sci. 2015, 51, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Hirooka, T.; Ishii, H. Chemical control of plant diseases. J. Gen. Plant Pathol. 2013, 79, 390–401. [Google Scholar] [CrossRef]
- Fustinoni, S.; Mercadante, R.; Polledri, E.; Rubino, F.M.; Mandic-Rajcevic, S.; Vianello, G.; Colosio, C.; Moretto, A. Biological monitoring of exposure to tebuconazole in winegrowers. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 643–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fustinoni, S.; Mercadante, R.; Polledri, E.; Rubino, F.M.; Mandic-Rajcevic, S.; Vianello, G.; Rodrigues, E.T.; Lopes, I.; Pardal, M.N. Occurrence, fate and effects of azoxystrobin in aquatic ecosystems: A review. Environ. Int. 2013, 53, 18–28. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Y.; Wang, J.; Chen, X.; Wei, K.; Wang, M.; Shang, S. Activities of azoxystrobin and difenoconazole against Alternaria alternata and their control efficacy. Crop Prot. 2016, 90, 54–58. [Google Scholar] [CrossRef]
Parameters | Content | Parameters | Content |
---|---|---|---|
Organic matter | 13.21 g kg−1 | Exchangeable calcium | 18.43 cmol kg−1 |
Total nitrogen | 1.38 g kg−1 | Exchangeable magnesium | 305.52 mg kg−1 |
Total phosphorus | 1.73 g kg−1 | Available zinc | 0.71 mg kg−1 |
Total potassium | 1.17 g kg−1 | Available iron | 6.46 mg kg−1 |
Available nitrogen | 58.86 mg kg−1 | Available manganese | 15.45 mg kg−1 |
Available phosphorus | 4.33 mg kg−1 | Available boron | 0.15 mg kg−1 |
Available potassium | 26.79 mg kg−1 | pH | 6.0~6.6 |
Gene | Product Name | Primer | Direction | Primer Sequence (5′~3′) |
---|---|---|---|---|
ITS | Internal transcribed spacer | ITS1 | F | TCCGTAGGTGAACCTGCGG |
ITS4 | R | TCCTCCGCTTATTGATATGC | ||
ACT | Partial actin | ACT512 | F | ATGTGCAAGGCCGGTTTCGC |
ACT783 | R | TACGAGTCCTTCTGGCCCAT | ||
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase | GDF1 | F | GCCGTCAACGACCCCTTCATTGA |
GDR1 | R | GGGTGGAGTCGTACTTGAGCATGT | ||
TUB | β-tubulin | Bt2a | F | GGTAACCAAATCGGTGCTGCTTTC |
Bt2b | R | ACCCTCAGTGTAGTGACCCTTGGC | ||
CHS | Chitin synthetase | CHS-79 | F | TGGGGCAAGGATGCTTGGTTGAAG |
CHS-345 | R | TGGAAGAACCATCTGTGAGAGTTG | ||
CAL | Calmodulin | CL1 | F | GAATTCAAGGAGGCCTTCTC |
CL2A | R | TTTTTGCATCATGAGTTGGAC |
Treatments | Dilution Folds | ||
---|---|---|---|
Low | Middle | High | |
10% Difenoconazole WG | 7000 | 6000 | 5000 |
40% Cyprodinil SC | 700 | 550 | 400 |
10% Prothioconazole SC | 1500 | 1250 | 1000 |
50% Carbendazim WP | 1000 | 750 | 500 |
80% Tebuconazole WG | 8000 | 7000 | 6000 |
25% Prochloraz EC | 1000 | 750 | 500 |
250 g/L Azoxystrobin SC | 1200 | 1000 | 800 |
80% Mancozeb WP | 600 | 500 | 400 |
70% Thiophanate-methyl WP | 1200 | 1000 | 800 |
Control | Water |
Fungicides | Regression Equation | Determination Coefficient (R2) | EC50 (mg L−1) | 95% Confidence Interval |
---|---|---|---|---|
25% Myclobutanil EC | y = 2.7585 + 1.2408 x | 64.05 | 0.9952 | 31.9089~128.5679 |
10% Difenoconazole WG | y = 5.7618 + 1.3076 x | 0.26 | 0.9916 | 0.1660~0.4117 |
40% Cyprodinil SC | y = 4.1563 + 0.9501 x | 7.73 | 0.9263 | 3.1399~19.0116 |
40% Chlorothalonil SC | y = 2.9960 + 1.2920 x | 35.56 | 0.9839 | 21.2911~59.4030 |
10% Prothioconazole SC | y = 4.4775 + 1.5765 x | 2.15 | 0.9630 | 1.3337~3.4499 |
50% Carbendazim WP | y = 4.1826 + 0.9489 x | 7.27 | 0.8830 | 3.6214~14.5880 |
80% Tebuconazole WG | y = 5.1641 + 0.8595 x | 0.64 | 0.9633 | 0.2933~1.4154 |
25% Prochloraz EC | y = 4.7552 + 0.3553 x | 4.89 | 0.9818 | 0.7815~30.5566 |
50% Iprodione WP | y = 3.9716 + 0.6940 x | 30.33 | 0.9860 | 11.8179~77.8582 |
80% Mancozeb WP | y = 3.8685 + 0.9657 x | 14.85 | 0.9290 | 6.2342~35.3590 |
250 g/L Azoxystrobin SC | y = 5.0081 + 1.4274 x | 0.99 | 0.9696 | 0.4098~2.3779 |
240 g/L Thifluzamide SC | y = 3.1309 + 0.9501 x | 92.71 | 0.9263 | 37.6789~228.1386 |
30% Picoxystrobin SC | y = 3.3857 + 1.1870 x | 22.91 | 0.9984 | 13.3654~39.2538 |
70% Thiophanate-methyl WP | y = 4.0618 + 1.4073 x | 4.64 | 0.9609 | 2.9230~7.3701 |
50% Imazalil EC | y = 3.7207 + 0.9698 x | 20.85 | 0.9737 | 9.1829~47.3524 |
50% Thiram WP | y = 3.0343 + 1.3420 x | 29.16 | 0.9409 | 18.5368~45.8628 |
Treatments | Dilution Folds | Diseased Fruit Rate before Spraying (%) | 3 d after Spraying | 7 d after Spraying | 14 d after Spraying | 21 d after Spraying | 28 d after Spraying | 45 d after Spraying (Preharvest Interval) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diseased Fruit Rate (%) | Control Efficacy (%) | Diseased Fruit Rate (%) | Control Efficacy (%) | Diseased Fruit Rate (%) | Control Efficacy (%) | Diseased Fruit Rate (%) | Control Efficacy (%) | Diseased Fruit Rate (%) | Control Efficacy (%) | Diseased Fruit Rate (%) | Control Efficacy (%) | |||
10% Difenoconazole WG | 7000 | 0.50 | 0.50 | 50.00 c | 1.17 | 36.25 e | 1.50 | 66.67 de | 2.17 | 76.37 bcd | 3.00 | 80.65 bcd | 3.50 | 79.62 cde |
6000 | 0.67 | 0.83 | 16.67 e | 1.17 | 36.25 e | 1.67 | 62.96 ef | 2.33 | 74.55 cde | 3.17 | 79.57 cde | 3.17 | 81.56 bcd | |
5000 | 0.33 | 0.33 | 66.67 b | 0.67 | 63.57 b | 0.83 | 81.48 a | 1.67 | 81.82 a | 2.33 | 84.95 a | 2.67 | 84.47 ab | |
40% Cyprodinil SC | 700 | 0.50 | 0.50 | 50.00 c | 1.00 | 45.36 d | 1.83 | 59.26 g | 3.50 | 61.83 j | 4.67 | 69.89 ijk | 5.17 | 69.91 klm |
550 | 0.33 | 0.50 | 50.00 c | 1.00 | 45.36 d | 1.33 | 70.37 cd | 4.00 | 56.38 k | 4.83 | 68.82 jk | 5.50 | 67.00 mn | |
400 | 0.17 | 0.33 | 66.67 b | 0.50 | 72.68 a | 1.50 | 66.67 e | 2.67 | 70.92 efg | 4.00 | 74.19 gh | 4.17 | 75.73 fghi | |
10% Prothioconazole SC | 1500 | 0.50 | 0.50 | 50.00 c | 0.83 | 54.46 c | 1.50 | 66.67 de | 3.50 | 61.83 j | 5.67 | 63.44 l | 5.83 | 66.03 no |
1250 | 0.50 | 0.50 | 50.00 c | 0.67 | 63.57 b | 1.17 | 74.07 cd | 3.33 | 63.65 ij | 4.67 | 69.89 ijk | 5.17 | 69.91 klm | |
1000 | 0.00 | 0.17 | 83.33 a | 0.50 | 72.68 a | 1.33 | 70.37 cd | 2.67 | 70.92 efg | 5.67 | 63.44 l | 5.83 | 66.03 no | |
50% Carbendazim WP | 1000 | 0.33 | 0.50 | 50.00 c | 0.83 | 54.46 c | 1.83 | 59.26 g | 2.83 | 69.1f gh | 4.83 | 68.82 jk | 5.67 | 67.00 mn |
750 | 0.67 | 0.67 | 33.33 d | 1.00 | 45.36 d | 1.67 | 62.96 ef | 3.17 | 65.47 hij | 4.67 | 69.89 ijk | 5.17 | 69.91 klm | |
500 | 0.50 | 0.67 | 33.33 d | 1.17 | 36.25 e | 1.33 | 70.37 cd | 2.50 | 72.74 def | 4.00 | 74.19 gh | 4.50 | 73.79 hij | |
80% Tebuconazole WG | 8000 | 0.50 | 0.67 | 33.33 d | 1.00 | 45.36 d | 1.17 | 74.07 c | 2.00 | 78.19 bc | 3.33 | 78.49 def | 3.67 | 78.64 def |
7000 | 0.17 | 0.33 | 66.67 b | 0.67 | 63.57 b | 1.00 | 77.78 b | 1.83 | 80.01 ab | 3.67 | 76.34 efg | 3.83 | 77.67 efg | |
6000 | 0.83 | 0.83 | 16.67 e | 1.33 | 27.14 f | 1.33 | 70.37 cd | 2.17 | 76.37 bcd | 2.33 | 84.95 a | 2.50 | 85.44 a | |
25% Prochloraz EC | 1000 | 0.33 | 0.50 | 50.00 c | 1.00 | 45.36 d | 1.67 | 62.96 ef | 4.17 | 54.56 k | 6.00 | 61.29 l | 6.33 | 63.11 o |
750 | 0.33 | 0.33 | 66.67 b | 0.67 | 63.57 b | 2.17 | 51.85 i | 3.50 | 61.83 j | 5.00 | 67.74 k | 5.33 | 68.94l mn | |
500 | 0.17 | 0.33 | 66.67 b | 0.50 | 72.68 a | 1.33 | 70.37 cd | 2.67 | 70.92 efg | 4.83 | 68.82 jk | 5.33 | 68.94l mn | |
250 g/L Azoxystrobin SC | 1200 | 0.33 | 0.50 | 50.00 c | 1.00 | 45.36 d | 1.17 | 74.07 c | 2.00 | 78.19 bc | 3.83 | 75.27 fgh | 4.00 | 76.70 efgh |
1000 | 0.50 | 0.50 | 50.00 c | 0.83 | 54.46 c | 0.83 | 81.48 a | 2.17 | 76.37 bcd | 2.50 | 83.87 ab | 2.83 | 83.5 ab | |
800 | 0.33 | 0.33 | 66.67 b | 1.00 | 45.36 d | 1.00 | 77.78 b | 2.50 | 72.74 def | 2.67 | 82.80 abc | 3.00 | 82.53 abc | |
80% Mancozeb WP | 600 | 0.67 | 0.67 | 33.33 d | 1.33 | 27.14 f | 2.00 | 55.56 h | 3.33 | 63.65 ij | 4.83 | 68.82 jk | 5.33 | 68.94l mn |
500 | 1.00 | 1.00 | 0.00 f | 1.50 | 18.03 g | 2.17 | 51.85 i | 3.17 | 65.47 hij | 4.33 | 72.04 hij | 5.00 | 70.88 jkl | |
400 | 0.83 | 0.83 | 16.67 e | 1.33 | 27.14 f | 1.83 | 59.26 g | 2.83 | 69.1 fgh | 4.67 | 69.89 ijk | 5.17 | 69.91 klm | |
70% Thiophanate-methyl WP | 1200 | 0.83 | 0.83 | 16.67 e | 1.00 | 45.36 d | 1.50 | 66.67 de | 2.83 | 69.1 fgh | 4.00 | 74.19 gh | 4.50 | 73.79 hij |
1000 | 0.67 | 0.67 | 33.33 d | 1.17 | 36.25 e | 1.50 | 66.67 de | 3.00 | 67.28 ghi | 4.33 | 72.04 hij | 4.67 | 72.82 ijk | |
800 | 0.33 | 0.33 | 66.67 b | 0.67 | 63.57 b | 1.17 | 74.07 c | 2.67 | 70.92 efg | 4.17 | 73.12 ghi | 4.33 | 74.76 ghi | |
CK | - | 0.67 | 1.00 | - | 1.83 | - | 4.50 | - | 9.17 | - | 15.50 | - | 17.17 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Luo, Y.; Lu, M.; Wu, X.; An, H. The Pathogen of Top Rot Disease in Rosa roxburghii and Its Effective Control Fungicides. Horticulturae 2022, 8, 1036. https://doi.org/10.3390/horticulturae8111036
Li J, Luo Y, Lu M, Wu X, An H. The Pathogen of Top Rot Disease in Rosa roxburghii and Its Effective Control Fungicides. Horticulturae. 2022; 8(11):1036. https://doi.org/10.3390/horticulturae8111036
Chicago/Turabian StyleLi, Jiaohong, Yue Luo, Min Lu, Xiaomao Wu, and Huaming An. 2022. "The Pathogen of Top Rot Disease in Rosa roxburghii and Its Effective Control Fungicides" Horticulturae 8, no. 11: 1036. https://doi.org/10.3390/horticulturae8111036
APA StyleLi, J., Luo, Y., Lu, M., Wu, X., & An, H. (2022). The Pathogen of Top Rot Disease in Rosa roxburghii and Its Effective Control Fungicides. Horticulturae, 8(11), 1036. https://doi.org/10.3390/horticulturae8111036