Phenotypic and Chemotypic Relations among Local Andrographis paniculata (Burm. f.) Wall Landrace Collection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Growth and Morphology Parameters
2.3. Moisture Content
2.4. Chemical Analyses
2.5. Total Phenolic Content
2.6. Total Flavonoid Content
2.7. Anti-Oxidant Activities
2.7.1. Free Radical Scavenging Activity
2.7.2. Radical Cation Decolorization Assay
2.8. Total Lactone
2.9. High Performance Liquid Chromatography (HPLC)
2.10. Metabolite Profiling
2.11. Statistical Analysis
3. Results and Discussion
3.1. Taxonomical and Physiological Characteristics
3.2. Chemical Properties
3.3. Chemometric Relationship
3.4. Metabolite Profiling of A. paniculata Leaf Constituents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wen, L.; Xia, N.; Chen, X.; Li, Y.; Hong, Y.; Liu, Y.; Wang, Z.; Liu, Y. Activity of antibacterial, antiviral, anti-inflammatory in compounds andrographolide salt. Eur. J. Pharmacol. 2014, 740, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Raina, A.P.; Gupta, V.; Sivaraj, N.; Dutta, M. Andrographis paniculata (Burm. f.) Wall. ex Nees (kalmegh), a traditional hepatoprotective drug from India. Genet. Resour. Crop Evol. 2013, 60, 1181–1189. [Google Scholar] [CrossRef]
- Valdiani, A.; Kadir, M.A.; Tan, S.G.; Talei, D.; Abdullah, M.P.; Nikzad, S. Nain-e Havandi Andrographis paniculata present yesterday, absent today: A plenary review on underutilized herb of Iran’s pharmaceutical plants. Mol. Biol. Rep. 2012, 39, 5409–5424. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Sheng, F.; Zhang, Z.; Ma, X.; Gao, T.; Fu, C.; Li, P. Andrographis paniculata (Burm. f.) Nees and its major constituent andrographolide as potential antiviral agents. J. Ethnopharmacol. 2021, 272, 113954. [Google Scholar] [CrossRef]
- Chandrasekaran, C.; Thiyagarajan, P.; Sundarajan, K.; Goudar, K.S.; Deepak, M.; Murali, B.; Allan, J.J.; Agarwal, A. Evaluation of the genotoxic potential and acute oral toxicity of standardized extract of Andrographis paniculata (KalmCold™). Food Chem. Toxicol. 2009, 47, 1892–1902. [Google Scholar] [CrossRef]
- Chao, W.W.; Lin, B.F. Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian). Chin. Med. 2010, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- McNeal, K.S.; Herbert, B.E. Volatile organic metabolites as indicators of soil microbial activity and community composition shifts. Soil Sci. Soc. Am. J. 2009, 73, 579–588. [Google Scholar] [CrossRef]
- Murthy, H.N.; Dalawai, D. Biotechnological production of diterpenoid lactones from cell and organ cultures of Andrographis paniculata. Appl. Microbiol. Biotechnol. 2021, 105, 7683–7694. [Google Scholar] [CrossRef]
- Park, C.H.; Park, Y.E.; Yeo, H.J.; Kim, J.K.; Park, S.U. Effects of light-emitting diodes on the accumulation of phenolic compounds and glucosinolates in Brassica juncea sprouts. Horticulturae 2020, 6, 77. [Google Scholar] [CrossRef]
- Rao, M.J.; Xu, Y.; Huang, Y.; Tang, X.; Deng, X.; Xu, Q. Ectopic expression of citrus UDP-GLUCOSYL TRANSFERASE gene enhances anthocyanin and proanthocyanidins contents and confers high light tolerance in Arabidopsis. BMC Plant Biol. 2019, 19, 603. [Google Scholar] [CrossRef]
- Shen, Q.; Li, L.; Jiang, Y.; Wang, Q. Functional characterization of ent-copalyl diphosphate synthase from Andrographis paniculata with putative involvement in andrographolides biosynthesis. Biotechnol. Lett. 2016, 38, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Suryani, C.; Dwiwahyuningsih, T.; Supriyadi, S.; Santoso, U. Derivatization of chlorophyll from pandan (Pandanus amaryllifolius Roxb.) leaves and their antioxidant activity. Period. Tche Quim. 2020, 17, 1110–1126. [Google Scholar] [CrossRef]
- Swaroop, A.K.; Lalitha, C.M.V.N.; Shanmugam, M.; Subramanian, G.; Natarajan, J.; Selvaraj, J. Plant Derived Immunomodulators; A Critical Review. Adv. Pharm. Bull. 2022, 12, 712–729. [Google Scholar] [CrossRef]
- Talei, D.; Valdiani, A.; Yusop, M.K.; Abdullah, M.P. Estimation of salt tolerance in Andrographis paniculata accessions using multiple regression model. Euphytica 2013, 189, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Sharma, T.; Kaul, S.; Kapoor, K.K.; Dhar, M.K. Anticancer potential of labdane diterpenoid lactone “andrographolide” and its derivatives: A semi-synthetic approach. Phytochem. Rev. 2017, 16, 513–526. [Google Scholar] [CrossRef]
- Xie, R.; Lin, Z.; Zhong, C.; Li, S.; Chen, B.; Wu, Y.; Huang, L.; Yao, H.; Shi, P.; Huang, J. Deciphering the potential anti-COVID-19 active ingredients in Andrographis paniculata (Burm. F.) Nees by combination of network pharmacology, molecular docking, and molecular dynamics. Rsc Adv. 2021, 11, 36511–36517. [Google Scholar] [CrossRef]
- Wanaratna, K.; Leethong, P.; Inchai, N.; Chueawiang, W.; Sriraksa, P.; Tabmee, A.; Sirinavin, S. Efficacy and safety of Andrographis paniculata extract in patients with mild COVID-19: A randomized controlled trial. MedRxiv 2021. [Google Scholar] [CrossRef]
- Prathanturarug, S.; Soonthornchareonnon, N.; Chuakul, W.; Saralamp, P. Variation in growth and diterpene lactones among field-cultivated Andrographis paniculata. J. Nat. Med. 2007, 61, 159–163. [Google Scholar] [CrossRef]
- Pholphana, N.; Panomvana, D.; Rangkadilok, N.; Suriyo, T.; Puranajoti, P.; Ungtrakul, T.; Pongpun, W.; Thaeopattha, S.; Songvut, P.; Satayavivad, J. Andrographis paniculata: Dissolution investigation and pharmacokinetic studies of four major active diterpenoids after multiple oral dose administration in healthy Thai volunteers. J. Ethnopharmacol. 2016, 194, 513–521. [Google Scholar] [CrossRef]
- Puri, A.; Saxena, R.; Saxena, R.; Saxena, K.; Srivastava, V.; Tandon, J. Immunostimulant agents from Andrographis paniculata. J. Nat. Prod. 1993, 56, 995–999. [Google Scholar] [CrossRef]
- Osathanunkul, M.; Suwannapoom, C.; Khamyong, N.; Pintakum, D.; Lamphun, S.N.; Triwitayakorn, K.; Osathanunkul, K.; Madesis, P. Hybrid analysis (barcode-high resolution melting) for authentication of Thai herbal products, Andrographis paniculata (Burm. f.) Wall. ex Nees. Pharmacogn. Mag. 2016, 12 (Suppl. S1), S71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Marshall, R.L.; Mukkur, T.K. An investigation on the antimicrobial activity of Andrographis paniculata extracts and andrographolide in vitro. Asian J. Plant Sci. 2006, 5, 527–530. [Google Scholar]
- Jha, S.; Das, J.; Sharma, A.; Hazra, B.; Goyal, M.K. Probabilistic evaluation of vegetation drought likelihood and its implications to resilience across India. Glob. Planet. Chang. 2019, 176, 23–35. [Google Scholar] [CrossRef]
- Pandey, P.; Ali, S.N.; Champati Ray, P.K. Glacier-glacial lake interactions and glacial lake development in the central Himalaya, India (1994–2017). J. Earth Sci. 2021, 32, 1563–1574. [Google Scholar] [CrossRef]
- Dong, H.J.; Zhang, Z.J.; Yu, J.; Liu, Y.; Xu, F.G. Chemical Fingerprinting of Andrographis paniculata (Burm. f.) Nees by HPLC and Hierarchical Clustering Analysis; Oxford University Press: Oxford, UK, 2009; Volume 47, pp. 931–935. [Google Scholar]
- Cha, J.-H.; Yang, W.-H.; Xia, W.; Wei, Y.; Chan, L.-C.; Lim, S.-O.; Li, C.-W.; Kim, T.; Chang, S.-S.; Lee, H.-H. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol. Cell 2018, 71, 606–620.e607. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.; Mandal, A. Variation in morphological characteristics and andrographolide content in Andrographis paniculata (Burm. f.) Nees of Central India. Iran. J. Energy Environ. 2010, 1, 165–169. [Google Scholar]
- Kumar, B.; Verma, S.K.; Singh, H. Effect of temperature on seed germination parameters in Kalmegh (Andrographis paniculata Wall. ex Nees.). Ind. Crops Prod. 2011, 34, 1241–1244. [Google Scholar] [CrossRef]
- Wongkaew, M.; Sommano, S.R.; Tangpao, T.; Rachtanapun, P.; Jantanasakulwong, K. Mango peel pectin by microwave-assisted extraction and its use as fat replacement in dried Chinese sausage. Foods 2020, 9, 450. [Google Scholar] [CrossRef] [Green Version]
- Sunanta, P.; Chung, H.H.; Kunasakdakul, K.; Ruksiriwanich, W.; Jantrawut, P.; Hongsibsong, S.; Sommano, S.R. Genomic relationship and physiochemical properties among raw materials used for Thai black garlic processing. Food Sci. Nutr. 2020, 8, 4534–4545. [Google Scholar] [CrossRef]
- Sangta, J.; Wongkaew, M.; Tangpao, T.; Withee, P.; Haituk, S.; Arjin, C.; Sringarm, K.; Hongsibsong, S.; Sutan, K.; Pusadee, T. Recovery of polyphenolic fraction from arabica coffee pulp and its antifungal applications. Plants 2021, 10, 1422. [Google Scholar] [CrossRef]
- Gajbhiye, N.; Khristi, S. Distribution pattern of andrographolide and total lactones in different parts of Kalmegh plant. Indian J. Hortic. 2010, 64, 591–593. [Google Scholar]
- Aromdee, C. Andrographolide: Progression in its modifications and applications–A patent review (2012–2014). Expert Opin. Ther. Pat. 2014, 24, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Jirakiattikul, Y.; Rithichai, P.; Prachai, R.; Itharat, A. Elicitation enhancement of bioactive compound accumulation and antioxidant activity in shoot cultures of Boesenbergia rotunda L. Agric. Nat. Resour. 2021, 55, 456–463. [Google Scholar]
- Li, F.; Cao, J.; Liu, Q.; Hu, X.; Liao, X.; Zhang, Y. Acceleration of the Maillard reaction and achievement of product quality by high pressure pretreatment during black garlic processing. Food Chem. 2020, 318, 126517. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Kar, A.; Mukherjee, P.K.; Haldar, P.K.; Sharma, N.; Katiyar, C.K. Immunoprotective potential of Ayurvedic herb Kalmegh (Andrographis paniculata) against respiratory viral infections–LC–MS/MS and network pharmacology analysis. Phytochem. Anal. 2021, 32, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Babicki, S.; Arndt, D.; Marcu, A.; Liang, Y.; Grant, J.R.; Maciejewski, A.; Wishart, D.S. Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. 2016, 44, W147–W153. [Google Scholar] [CrossRef]
- Maison, T.; Volkaert, H.; Boonprakob, U.; Paisooksantivatana, Y. Genetic Diversity of Andrographis paniculataWall. ex Nees as Revealed by Morphological Characters and Molecular Markers. Agric. Nat. Resour. 2005, 39, 388–399. [Google Scholar]
- Kumar, R.A.; Sridevi, K.; Kumar, N.V.; Nanduri, S.; Rajagopal, S. Anticancer and immunostimulatory compounds from Andrographis paniculata. J. Ethnopharmacol. 2004, 92, 291–295. [Google Scholar] [CrossRef]
- Rao, Y.K.; Vimalamma, G.; Rao, C.V.; Tzeng, Y.-M. Flavonoids and andrographolides from Andrographis paniculata. Phytochemistry 2004, 65, 2317–2321. [Google Scholar] [CrossRef]
- Xu, C.; Chou, G.X.; Wang, Z.T. A new diterpene from the leaves of Andrographis paniculata Nees. Fitoterapia 2010, 81, 610–613. [Google Scholar] [CrossRef]
- Burgos, R.; Caballero, E.; Sanchez, N.; Schroeder, R.; Wikman, G.; Hancke, J. Testicular toxicity assesment of Andrographis paniculata dried extract in rats. J. Ethnopharmacol. 1997, 58, 219–224. [Google Scholar] [CrossRef]
- Guo, L.-P.; Zhou, L.-Y.; Kang, C.-Z.; Wang, H.-Y.; Zhang, W.-J.; Wang, S.; Wang, R.-S.; Wang, X.; Han, B.-X.; Zhou, T. Strategies for medicinal plants adapting environmental stress and “simulative habitat cultivation” of Dao-di herbs. Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China J. Chin. Mater. Med. 2020, 45, 1969–1974. [Google Scholar]
- Hossain, M.; Urbi, Z.; Sule, A.; Rahman, K. Andrographis paniculata (Burm. f.) Wall. ex Nees: A review of ethnobotany, phytochemistry, and pharmacology. Sci. World J. 2014, 2014, 274905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varma, A.; Padh, H.; Shrivastava, N. Andrographolide: A new plant-derived antineoplastic entity on horizon. Evid.-Based Complement. Altern. Med. 2011, 2011, 815390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, W.-W.; Kuo, Y.-H.; Li, W.-C.; Lin, B.-F. The production of nitric oxide and prostaglandin E2 in peritoneal macrophages is inhibited by Andrographis paniculata, Angelica sinensis and Morus alba ethyl acetate fractions. J. Ethnopharmacol. 2009, 122, 68–75. [Google Scholar] [CrossRef]
- Matsuda, T.; Kuroyanagi, M.; Sugiyama, S.; Umehara, K.; Ueno, A.; Nishi, K. Cell differentiation-inducing diterpenes from Andrographis paniculata Nees. Chem. Pharm. Bull. 1994, 42, 1216–1225. [Google Scholar] [CrossRef]
- Chao, W.-W.; Kuo, Y.-H.; Lin, B.-F. Anti-inflammatory activity of new compounds from Andrographis paniculata by NF-κB transactivation inhibition. J. Agric. Food Chem. 2010, 58, 2505–2512. [Google Scholar] [CrossRef]
- Patra, A.; Mitra, A.K.; Biswas, S.; Gupta, C.D.; Chatterjee, T.K.; Basu, K.; Barua, A. Carbon-13 NMR spectra of some labdane diterpenoids. Org. Magn. Reson. 1981, 17, 301–302. [Google Scholar] [CrossRef]
- Fujita, T.; Fujitani, R.; Takeda, Y.; Takaishi, Y.; Yamada, T.; Kido, M.; Miura, I. On the diterpenoids of Andrographis paniculata: X-ray crystallographic analysis of andrographolide and structure determination of new minor diterpenoids. Chem. Pharm. Bull. 1984, 32, 2117–2125. [Google Scholar] [CrossRef] [Green Version]
- Arash, R.; Koshy, P.; Sekaran, M. Antioxidant potential and content of phenolic compounds in ethanolic extracts of selected parts of Andrographis paniculata. J. Med. Plants Res. 2010, 4, 197–202. [Google Scholar]
- Chin, Y.-W.; Balunas, M.J.; Chai, H.B.; Kinghorn, A.D. Drug discovery from natural sources. AAPS J. 2006, 8, E239–E253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghavan, R. In Vitro Activities of Andrographolide and Its Derivative on Cell Lines Thesis. Ph.D. Thesis, Department of Biotechnology, University of Calicut, Malappuram, India, 2014. [Google Scholar]
- Sharma, S.N.; Sinha, R.K.; Sharma, D.; Jha, Z. Assessment of intra-specific variability at morphological, molecular and biochemical level of Andrographis paniculata (Kalmegh). Curr. Sci. 2009, 96, 402–408. [Google Scholar]
- Zhang, R.; Chen, Z.; Zhang, L.; Yao, W.; Xu, Z.; Liao, B.; Mi, Y.; Gao, H.; Jiang, C.; Duan, L. Genomic characterization of WRKY transcription factors related to andrographolide biosynthesis in Andrographis paniculata. Front. Genet. 2021, 11, 601689. [Google Scholar] [CrossRef]
- Mishra, S.; Tiwari, S.; Kakkar, A.; Pandey, A. Chemoprofiling of Andrographis paniculata (Kalmegh) for its andrographolide content in Madhya Pradesh, India. Int. J. Pharma Bio. Sci. 2010, 1. [Google Scholar]
- Parasher, R.; Upadhyay, A.; Khan, N.A.; Dwivedi, S.K. Biochemical estimation and quantitative determination of medicinally important andrographolide in Andrographis peniculata at different growth stages. Electron. J. Environ. Agric. Food Chem. 2011, 10, 2479–2486. [Google Scholar]
- Cheung, H.; Cheung, C.; Kong, C. Determination of bioactive diterpenoids from Andrographis paniculata by micellar electrokinetic chromatography. J. Chromatogr. A 2001, 930, 171–176. [Google Scholar] [CrossRef]
- Pholphana, N.; Rangkadilok, N.; Thongnest, S.; Ruchirawat, S.; Ruchirawat, M.; Satayavivad, J. Determination and variation of three active diterpenoids in Andrographis paniculata (Burm. f.) Nees. Phytochem. Anal. Int. J. Plant Chem. Biochem. Tech. 2004, 15, 365–371. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, B.; Bajpai, V. Andrographis paniculata (Burm. f.) Nees: Traditional uses, phytochemistry, pharmacological properties and quality control/quality assurance. J. Ethnopharmacol. 2021, 275, 114054. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, A.; Bajpai, V.; Sharma, K.R.; Kumar, B. Identification and characterization of terpenoid lactones and flavonoids from ethanolic extract of Andrographis paniculata (Burm. f.) Nees using liquid chromatography/tandem mass spectrometry. Sep. Sci. Plus 2018, 1, 762–770. [Google Scholar] [CrossRef]
- Kishore, P.H.; Reddy, M.V.B.; Reddy, M.K.; Gunasekar, D.; Caux, C.; Bodo, B. Flavonoids from Andrographis lineata. Phytochemistry 2003, 63, 457–461. [Google Scholar] [CrossRef]
- Li, J.; Huang, W.; Zhang, H.; Wang, X.; Zhou, H. Synthesis of andrographolide derivatives and their TNF-α and IL-6 expression inhibitory activities. Bioorg. Med. Chem. Lett. 2007, 17, 6891–6894. [Google Scholar] [CrossRef]
- Bhaskar Reddy, M.V.; Kishore, P.H.; Rao, C.V.; Gunasekar, D.; Caux, C.; Bodo, B. New 2 ‘-Oxygenated Flavonoids from Andrographis affinis. J. Nat. Prod. 2003, 66, 295–297. [Google Scholar] [CrossRef] [PubMed]
- Dua, V.; Ojha, V.; Roy, R.; Joshi, B.; Valecha, N.; Devi, C.U.; Bhatnagar, M.; Sharma, V.; Subbarao, S. Anti-malarial activity of some xanthones isolated from the roots of Andrographis paniculata. J. Ethnopharmacol. 2004, 95, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Sareer, O.; Ahmad, S.; Umar, S. Andrographis paniculata: A critical appraisal of extraction, isolation and quantification of andrographolide and other active constituents. Nat. Prod. Res. 2014, 28, 2081–2101. [Google Scholar] [CrossRef] [PubMed]
- Singha, P.K.; Roy, S.; Dey, S. Antimicrobial activity of Andrographis paniculata. Fitoterapia 2003, 74, 692–694. [Google Scholar] [CrossRef]
- Kuroyanagi, M.; Sato, M.; Ueno, A.; Nishi, K. Flavonoids from Andrographis paniculata. Chem. Pharm. Bull. 1987, 35, 4429–4435. [Google Scholar] [CrossRef] [Green Version]
- Radhika, P.; Prasad, Y.R.; Lakshmi, K.R. Flavones from the stem of Andrographis paniculata Nees. Nat. Prod. Commun. 2010, 5, 59–60. [Google Scholar] [CrossRef] [Green Version]
- Middleton, E.; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000, 52, 673–751. [Google Scholar]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Murković, M. Phenolic Compounds. U: Encyclopedia of Food Sciences and Nutrition; Caballer, B., Fingla, P., Toldra, F., Eds.; Academic Press: Cambridge, MA, USA, 2003; Volume 2, pp. 4507–4513. [Google Scholar]
- Kumar, S.; Mishra, A.; Pandey, A.K. Antioxidant mediated protective effect of Parthenium hysterophorus against oxidative damage using in vitro models. BMC Complement. Altern. Med. 2013, 13, 120. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.K. Anti-staphylococcal activity of a pan-tropical aggressive and obnoxious weed Parthenium histerophorus: An in vitro study. Natl. Acad. Sci. Lett. 2007, 30, 383–386. [Google Scholar]
- Walker, E.H.; Pacold, M.E.; Perisic, O.; Stephens, L.; Hawkins, P.T.; Wymann, M.P.; Williams, R.L. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell 2000, 6, 909–919. [Google Scholar] [CrossRef]
- Dwivedi, M.K.; Sonter, S.; Mishra, S.; Singh, P.; Singh, P.K. Secondary metabolite profiling and characterization of diterpenes and flavones from the methanolic extract of Andrographis paniculata using HPLC-LC-MS/MS. Future J. Pharm. Sci. 2021, 7, 184. [Google Scholar] [CrossRef]
- Liu, Y.-T.; Chen, H.-W.; Lii, C.-K.; Jhuang, J.-H.; Huang, C.-S.; Li, M.-L.; Yao, H.-T. A diterpenoid, 14-deoxy-11, 12-didehydroandrographolide, in Andrographis paniculata reduces steatohepatitis and liver injury in mice fed a high-fat and high-cholesterol diet. Nutrients 2020, 12, 523. [Google Scholar] [CrossRef] [Green Version]
- Majumdar, M.; Misra, T.K.; Roy, D.N. In vitro anti-biofilm activity of 14-deoxy-11, 12-didehydroandrographolide from Andrographis paniculata against Pseudomonas aeruginosa. Braz. J. Microbiol. 2020, 51, 15–27. [Google Scholar] [CrossRef]
- Wang, G.-C.; Wang, Y.; Williams, I.D.; Sung, H.H.-Y.; Zhang, X.-Q.; Zhang, D.-M.; Jiang, R.-W.; Yao, X.-S.; Ye, W.-C. Andrographolactone, a unique diterpene from Andrographis paniculata. Tetrahedron Lett. 2009, 50, 4824–4826. [Google Scholar] [CrossRef]
- Stratil, P.; Klejdus, B.; Kubáň, V. Determination of total content of phenolic compounds and their antioxidant activity in vegetables evaluation of spectrophotometric methods. J. Agric. Food Chem. 2006, 54, 607–616. [Google Scholar] [CrossRef]
- Tummanichanont, C.; Phoungchandang, S.; Srzednicki, G. Effects of pretreatment and drying methods on drying characteristics and quality attributes of Andrographis paniculata. J. Food Process. Preserv. 2017, 41, e13310. [Google Scholar] [CrossRef]
- Saeed, N.; Khan, M.R.; Shabbir, M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement. Altern. Med. 2012, 12, 221. [Google Scholar] [CrossRef] [Green Version]
- Naheed, Z.; Cheng, Z.; Wu, C.; Wen, Y.; Ding, H. Total polyphenols, total flavonoids, allicin and antioxidant capacities in garlic scape cultivars during controlled atmosphere storage. Postharvest Biol. Technol. 2017, 131, 39–45. [Google Scholar] [CrossRef]
- Lin, F.; Wu, S.; Lee, S.; Ng, L. Antioxidant, antioedema and analgesic activities of Andrographis paniculata extracts and their active constituent andrographolide. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2009, 23, 958–964. [Google Scholar]
- Yang, T.; Xu, C.; Wang, Z.T.; Wang, C.H. Comparative pharmacokinetic studies of andrographolide and its metabolite of 14-deoxy-12-hydroxy-andrographolide in rat by ultra-performance liquid chromatography–mass spectrometry. Biomed. Chromatogr. 2013, 27, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Caballero, B.; Trugo, L.C.; Finglas, P.M. Encyclopedia of Food Sciences and Nutrition; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
Specimen Location | Plant Height (cm) | Stem Diameter (mm) | Numbers of Shoots (n) | Numbers of Leaves (n) | Numbers of Branches (n) | Internode Length (cm) | Canopy Width (cm) | Leaf Area Index | Aerial Fresh Weight Yield (g/Plant) | Dried Leaf Biomass (g/ Plant) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Young Leaf Area | Mature Leaf Area | ||||||||||
KS | 21.85 ± 3.00 a | 12.82 ±0.88 b | 11.82 ± 1.63 bc | 28.24 ± 5.02 c | 5.61 ± 0.72 b | 6.98 ± 2.31 ab | 20.73 ± 4.19 a | 14.96 ± 0.40 b | 23.88 ± 0.49 b | 21.16 ± 5.78 c | 7.97 ± 2.25 c |
UT | 14.89 ± 3.54 b | 11.81 ±0.95 c | 10.68 ± 2.77 c | 23.02 ± 4.30 d | 6.87 ± 0.65 b | 6.37 ± 2.31 b | 14.66 ± 4.40 c | 17.43 ± 0.43 a | 30.30 ± 0.61 a | 37.83 ± 5.78 a | 14.61 ± 2.25 a |
CR | 22.06 ± 3.72 a | 14.53 ±0.98 a | 13.11± 2.86 b | 31.14± 4.46 b | 9.88 ± 0.89 a | 7.52 ± 3.18 ab | 22.84 ± 7.31 a | 12.01 ± 0.43 c | 21.35 ± 0.55 c | 33.61 ± 5.78 ab | 13.01 ± 2.25 a |
CM | 22.27 ± 3.40 a | 15.06 ±3.64 a | 15.15± 3.56 a | 29.91 ± 4.44 c | 9.37 ± 0.84 a | 7.70 ± 1.72 a | 20.12 ± 3.38 a | 9.28 ±0.53 d | 16.70 ± 0.49 d | 27.75 ± 5.78 b | 11.01 ± 2.25 b |
RB | 20.91± 2.77 a | 13.92 ±0.93 b | 13.77 ± 4.17 b | 35.59± 24.34 a | 9.63 ± 0.61 a | 7.85 ± 2.09 a | 19.93 ± 2.26 b | 8.91 ±0.24 d | 24.31 ± 0.56 b | 26.6 ± 5.78 b | 10.65 ± 2.25 b |
Sample | Leaf | ||||||
Lactones (%) | Phenolic (mg/g) | Flavonoid (mg/g) | Antioxidant (%) | HPLC Lactones (mg/g) | |||
DPPH• | ABTS•+ | 14-Deoxy-11,12-didehydroandrographolide | Neo Andrographolide | ||||
KS | 9.35 ± 1.92 b | 3.22 ± 0.22 a | 2.42 ± 0.09 a | 72.48 ± 2.03 b | 76.55 ± 14.65 a | 0.01 ± 0.00 a | 0.11 ± 0.07 a |
UT | 13.41 ± 1.68 ab | 1.96 ± 0.17 b | 1.17 ± 0.09 bc | 74.77 ± 2.05 a | 73.71 ± 8.98 bc | 0.02 ± 0.00 a | 0.06 ± 0.036 b |
CR | 13.91 ± 0.03 ab | 1.69 ± 0.01 c | 1.36 ± 0.50 bc | 74.37 ± 3.39 a | 75.08 ± 11.49 b | n/d | 0.09 ± 0.04 b |
CM | 14.43 ± 0.58 ab | 2.29 ± 0.06 a | 1.57 ± 0.18 b | 72.36 ± 1.15 b | 69.86 ± 10.43 c | 0.01 ± 0.00 a | 0.04 ± 0.03 c |
RB | 13.79 ± 2.19 ab | 1.45 ± 0.02 d | 1.06 ± 0.05 d | 73.66 ± 1.53 b | 70.78 ± 10.78 c | n/d | 0.09 ± 0.02 b |
Sample | Stem | ||||||
Lactones (%) | Phenolic (mg/g) | Flavonoid (mg/g) | Antioxidant (%) | HPLC Lactones (mg/g) | |||
DPPH• | ABTS•+ | 14-Deoxy-11,12-didehydroandrographolide | Neo Andrographolide | ||||
KS | 9.63 ± 0.68 c | 4.79 ± 0.48 a | 3.40 ± 0.15 a | 74.74 ± 2.40 a | 76.16 ± 12.13 ab | 148.65 ± 1.58 c | 0.58 ± 0.17 b |
UT | 11.66 ± 0.51 ab | 1.88 ± 0.01 c | 1.50 ± 0.03 c | 73.89 ± 1.73 ab | 81.54 ± 8.24 a | 104.57 ± 2.66 d | 0.68 ± 0.01 a |
CR | 12.82 ± 0.94 ab | 3.27 ± 0.40 b | 2.31 ± 0.32 b | 72.36 ± 0.75 ab | 75.01 ± 12.12 ab | 148.51 ± 1.26 b | 0.57 ± 0.15 b |
CM | 13.15 ± 0.88 a | 3.68 ± 0.42 b | 2.88 ± 0.32 ab | 72.70 ± 1.87 ab | 69.48 ± 17.37 c | 153.98 ± 3.67 ab | 0.68 ± 0.01 a |
RB | 14.11 ± 0.27 a | 3.27 ± 0.34 b | 2.51 ± 0.12 ab | 71.45 ± 3.20c | 72.03 ± 18.39 ab | 156.98 ± 4.55 a | 0.09 ± 0.02 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onsa, N.E.; Prasad, S.K.; Chaiyaso, T.; Lumsangkul, C.; Sommano, S.R. Phenotypic and Chemotypic Relations among Local Andrographis paniculata (Burm. f.) Wall Landrace Collection. Horticulturae 2022, 8, 978. https://doi.org/10.3390/horticulturae8100978
Onsa NE, Prasad SK, Chaiyaso T, Lumsangkul C, Sommano SR. Phenotypic and Chemotypic Relations among Local Andrographis paniculata (Burm. f.) Wall Landrace Collection. Horticulturae. 2022; 8(10):978. https://doi.org/10.3390/horticulturae8100978
Chicago/Turabian StyleOnsa, Nuttacha Eva, Shashanka K. Prasad, Thanongsak Chaiyaso, Chompunut Lumsangkul, and Sarana Rose Sommano. 2022. "Phenotypic and Chemotypic Relations among Local Andrographis paniculata (Burm. f.) Wall Landrace Collection" Horticulturae 8, no. 10: 978. https://doi.org/10.3390/horticulturae8100978
APA StyleOnsa, N. E., Prasad, S. K., Chaiyaso, T., Lumsangkul, C., & Sommano, S. R. (2022). Phenotypic and Chemotypic Relations among Local Andrographis paniculata (Burm. f.) Wall Landrace Collection. Horticulturae, 8(10), 978. https://doi.org/10.3390/horticulturae8100978