Effects of Molybdenum Fertilizer Combined with Bacillus subtilis Strain on the Growth of Chinese Cabbage and the Content of Nitrate in Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of B. subtilis Strain11
2.1.1. Physiological Identification of Strains
2.1.2. Systematic Taxonomic Identification of Strains
2.2. Experimental Design of the Growth and Development of Chinese Cabbage
2.2.1. Effects of Strain11 on the Growth of Chinese Cabbage
2.2.2. Effects of Mo Fertilizer on the Growth of Chinese Cabbage and Soil Nitrate
2.2.3. Synergetic Effect of Mo Fertilizer with B. subtilis Strain11 on the Growth of Chinese Cabbage and Soil Nitrate Content
2.3. Sample Analyses
2.4. Data Analysis
3. Results
3.1. Characterization of B. subtilis Strain11
3.2. Effects of Different Treatments on the Growth and Development of Chinese Cabbage
3.2.1. Effects of B. subtilis Strain11 on the Growth and Development of Chinese Cabbage
3.2.2. Effect of Mo Fertilizer Addition on the Growth Index of Chinese Cabbage
3.2.3. Synergetic Effect of Mo Fertilizer and B. subtilis Strain on the Growth of Chinese Cabbage
3.3. Effects of Different Treatments on Soil Properties
3.3.1. Effect of Mo Fertilizer on Soil Properties
3.3.2. Effects of Mo Fertilizer with B. subtilis Strain on Soil Properties
4. Discussion
4.1. Bacterial Isolation and Identification and Its Effect on Chinese Cabbage
4.2. Effects of Mo Fertilizer Application on the Growth of Chinese Cabbage and Soil Nitrate Content
4.3. Effects of Mo Fertilizer Combined with Bacterial Liquid on Chinese Cabbage Growth and Soil Nitrate Content
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bai, X.; Jiang, Y.; Miao, H.; Xue, S.; Zhou, J. Intensive vegetable production results in high nitrate accumulation in deep soil profiles in China. Environ. Pollut. 2021, 287, 117598. [Google Scholar] [CrossRef]
- Tao, C.; Li, R.; Xiong, W.; Shen, Z.; Kowalchuk, G.A. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome 2020, 8, 137. [Google Scholar] [CrossRef] [PubMed]
- Bharucha, U.; Patel, K.; Trivedi, U.B. Optimization of Indole Acetic Acid Production by Pseudomonas putida UB1 and its effect as plant growth-promoting rhizobacteria on mustard (Brassica nigra). Agric. Res. 2013, 2, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Buensanteai, N.; Yuen, G.Y.; Prathuangwong, S. The biocontrol bacterium Bacillus amyloliquefaciens KPS46 produces auxin, surfactin and extracellular proteins for enhanced growth of soybean plant. J. Agric. Sci. Technol. 2008, 41, 101–116. [Google Scholar]
- Rachel, B.J.; Stefan, R.; Gayathri, I.; John, L.; Dana, P.; Emily, R.; Sowmyalakshmi, S.; Donald, L.S. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1473. [Google Scholar]
- Bhattacharyya, P.N.; Jha, D.K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol. 2012, 28, 1327–1350. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Gu, L.; Bao, L.; Zhang, S.; Zhuang, X. Application of biofertilizer containing Bacillus subtilis reduced the nitrogen loss in agricultural soil. Soil Biol. Biochem. 2020, 148, 107911. [Google Scholar] [CrossRef]
- Tao, S.; Wu, Z.; Wei, M.; Liu, X.; He, Y.; Ye, B.C. Bacillus subtilis SL-13 biochar formulation promotes pepper plant growth and soil improvement. Can. J. Microbiol. 2019, 65, 333–342. [Google Scholar] [CrossRef]
- Kaiser, B.N.; Gridley, K.L.; Brady, J.N.; Phillips, T.; Tyerman, S.D. The role of molybdenum in agricultural plant production. Ann. Bot. 2005, 96, 745–754. [Google Scholar] [CrossRef]
- Jean, M.E.; Phalyvong, K.; Forest-Drolet, J.; Bellenger, J.P. Molybdenum and phosphorus limitation of a symbiotic nitrogen fixation in forests of Eastern Canada: Influence of vegetative cover and seasonal variability. Soil Biol. Biochem. 2013, 67, 140–146. [Google Scholar] [CrossRef]
- Kovacs, B.; Puskas-Preszner, A.; Huzsvai, L.; Levai, L.; Bodi, E. Effect of molybdenum treatment on molybdenum concentration and nitrate reduction in maize seedlings. Plant Physiol. Biochem. 2015, 96, 38–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Chen, Y.J.; Wen, D.; Zhao, P.H.; Li, F.; Li, L.; Du, R.Y.; Shi, H.Z.; Deng, T.H.; Du, Y.Q. Biochar-based molybdenum slow-release fertilizer enhances nitrogen assimilation in Chinese flowering cabbage (Brassica parachinensis). Chemosphere 2022, 303, 134663. [Google Scholar] [CrossRef] [PubMed]
- Ting, S.; Yue, P.; Wang, Z.Y.; Wang, P.L.; Gen, D.X. The effects of molybdenum and boron on the rhizosphere microorganisms and soil enzyme activities of soybean. Acta Physiol. Plant. 2013, 35, 763–770. [Google Scholar]
- Min, Y.; Xiao, H.C. Influences of molybdenum on nitrate reductase, glutamine synthetase and nitrogen accumulation and utilization in Mo-efficient and Mo-inefficient winter wheat cultivars. Agric. Sci. China 2010, 9, 355–361. [Google Scholar]
- Woo, J.S.; Stella, A.; Qiong, W.; Dieter, M.T.; Ryan, P.C.; Ye, D.; Jorge, L.M.R.; Samuel, G.K.A.; James, W.J.; Jizhong, Z.; et al. Tropical agricultural land management influences on soil microbial communities through its effect on soil organic carbon. Soil Biol. Biochem. 2013, 65, 33–38. [Google Scholar]
- Stanton, D.E.; Batterman, S.A.; Fischer, J.; Hedin, L.O. Rapid nitrogen fixation by canopy microbiome in tropical forest determined by both phosphorus and molybdenum. Ecology 2019, 100, e02795. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Hu, C.; Sun, X.; Zhao, X.; Tan, Q. Research on the nitrogen transformation in rhizosphere of winter wheat (Triticum aestivum) under molybdenum addition. Environ. Sci. Pollut. Res. 2018, 26, 2363–2374. [Google Scholar] [CrossRef]
- Dong, X.; Cai, M. Common Bacterial System Identification Manual, 1st ed.; China Science Publishing & Media Ltd. (CSPM): Beijing, China, 2001; pp. 349–398. [Google Scholar]
- Chen, S.X. Analysis of the Biosynthesis Conditions and Characteristics of Siderophores from Pseudomonas sp. SPF-1. Master Degree Thesis, Wuhan University, Wuhan, China, 2005. [Google Scholar]
- Khalifa, A.; Aldayel, M. Isolation and characterisation of the agarolytic bacterium Pseudoalteromonas ruthenica. Open Life Sci. 2019, 14, 588–594. [Google Scholar] [CrossRef]
- Bao, S. Agricultural Chemical Analysis of Soil; China Agriculture Press: Beijing, China, 2000; pp. 25–114. [Google Scholar]
- Xu, W.; Yang, Q.; Yang, F.; Xie, X.; Goodwin, P.H.; Deng, X.; Tian, B.; Yang, L. Evaluation and genome analysis of Bacillus subtilis YB-04 as a potential biocontrol agent against Fusarium wilt and growth promotion agent of Cucumber. Front. Microbiol. 2022, 13, 885430. [Google Scholar] [CrossRef]
- Zhou, D.M.; Wang, K.P.; Liu, H.X.; Gu, C.; Guo, J.H. Field evaluation of different application methods of the mixture of Bacillus cereus strain AR156 and Bacillus subtilis strain SM21 on pepper growth and disease resistance. Biocontrol Sci. Technol. 2014, 24, 1451–1468. [Google Scholar] [CrossRef]
- Sood, G.; Kaushal, R.; Sharma, M. Alleviation of drought stress in maize (Zea mays L.) by using endogenous endophyte Bacillus subtilis in North West Himalayas. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2020, 70, 361–370. [Google Scholar] [CrossRef]
- Xu, W.; Yang, Q.; Xie, X.; Goodwin, P.H.; Deng, X.; Zhang, J.; Sun, R.; Wang, Q.; Xia, M.; Wu, C.; et al. Genomic and phenotypic insights into the potential of Bacillus subtilis YB-15 isolated from rhizosphere to biocontrol against crown rot and promote growth of wheat. Biology 2022, 11, 778. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, S.; Modin, O.; Roshanzamir, F.; Neissi, A.; Mijakovic, I. Co-culturing Bacillus subtilis and wastewater microbial community in a bio- electrochemical system enhances denitrification and butyrate formation. Chem. Eng. J. 2020, 397, 125437. [Google Scholar] [CrossRef]
- Kim, Y.K.; Hong, S.J.; Shim, C.K.; Kim, M.J.; Choi, E.J.; Lee, M.H.; Park, J.H.; Han, E.J.; An, N.H.; Jee, H.J. Functional analysis of Bacillus subtilis isolates and biological control of red pepper powdery mildew using Bacillus subtilis R2-1. Chem. Eur. J. 2012, 20, 9930–9939. [Google Scholar]
- Drescher, G.L.; Silva, L.S.D.; Sarfaraz, Q.; Roberts, T.L.; Nicoloso, F.T.; Raíssa, S.; Anderson, C.R.M. Available nitrogen in paddy soils depth: Influence on rice root morphology and plant nutrition. J. Soil Sci. Plant Nutr. 2020, 20, 1029–1041. [Google Scholar] [CrossRef]
- Imran, M.; Hu, C.; Hussain, S.; Rana, M.S.; Sun, X. Mo-induced effects on photosynthetic efficacy of winter wheat (Triticum aestivum L.) under different nitrogen sources are associated with nitrogen assimilation. Plant Physiol. Biochem. 2019, 141, 154–163. [Google Scholar] [CrossRef]
- Warner, R.L.; Kleinhofs, A. Genetics and molecular biology of nitrate metabolism in high plants. Physiol. Plant. 1992, 85, 245–252. [Google Scholar] [CrossRef]
- Ma, X. Effect of Molybdenum and Methylotrophic bacillus Agent on Yield and Quality of Muskmelon. Master Degree Thesis, Northwest A&F University, Xi’an, China, 2021. [Google Scholar]
Basic Chemical Properties | pH | 5.28 |
EC (mS/cm) | 2.20 | |
Water-soluble salt ion (mg/kg) | NO3− | 2349.89 |
K+ | 445.64 | |
Na+ | 809.21 | |
Ca2+ | 2732.16 | |
Mg2+ | 2325.88 | |
SO42− | 1889.93 | |
HCO3− | 19.08 | |
Cl− | 77.99 | |
Available trace elements (mg/kg) | Fe | 14.18 |
Mn | 31.37 | |
Cu | 1.42 | |
Zn | 5.35 | |
P | 0.29 | |
Mo | 0.20 |
Treatment | 20 Days | 30 Days | 40 Days | 50 Days |
---|---|---|---|---|
T1 | 0.08 ± 0.04 f | 1.10 ± 0.43 b | 2.20 ± 0.28 a | 3.48 ± 0.39 c |
T2 | 0.10 ± 0.02 e | 1.53 ± 0.15 ab | 2.25 ± 0.21 a | 3.65 ± 0.52 bc |
T3 | 0.27 ± 0.15 d | 1.75 ± 0.49 ab | 2.45 ± 0.35 a | 3.68 ± 0.76 bc |
T4 | 0.57 ± 0.25 a | 1.55 ± 0.21 ab | 2.45 ± 0.07 a | 4.90 ± 0.53 a |
T5 | 0.50 ± 0.36 b | 2.30 ± 0.57 a | 2.70 ± 0.14 a | 4.38 ± 0.59 ab |
T6 | 0.43 ± 0.31 c | 1.45 ± 0.35 ab | 2.47 ± 0.72 a | 3.97 ± 0.84 bc |
Treatment | 30 Days | 40 Days | 50 Days |
---|---|---|---|
T1 | 4.75 ± 1.23 b | 5.94 ± 0.89 b | 6.60 ± 1.03 c |
T2 | 4.83 ± 0.88 b | 6.08 ± 0.69 ab | 7.35 ± 0.62 bc |
T3 | 4.91 ± 0.66 b | 6.21 ± 1.04 ab | 7.43 ± 0.99 bc |
T4 | 4.92 ± 0.64 b | 6.76 ± 1.17 ab | 7.67 ± 1.30 b |
T5 | 5.83 ± 0.82 a | 6.92 ± 0.61 a | 8.64 ± 1.11 a |
T6 | 4.55 ± 1.05 b | 6.85 ± 0.61 a | 7.74 ± 1.07 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Zhang, S.; Hu, J.; Chen, S.; Wang, J. Effects of Molybdenum Fertilizer Combined with Bacillus subtilis Strain on the Growth of Chinese Cabbage and the Content of Nitrate in Soil. Horticulturae 2022, 8, 970. https://doi.org/10.3390/horticulturae8100970
Ma Y, Zhang S, Hu J, Chen S, Wang J. Effects of Molybdenum Fertilizer Combined with Bacillus subtilis Strain on the Growth of Chinese Cabbage and the Content of Nitrate in Soil. Horticulturae. 2022; 8(10):970. https://doi.org/10.3390/horticulturae8100970
Chicago/Turabian StyleMa, Yao, Siwen Zhang, Jiawei Hu, Shiyong Chen, and Juanjuan Wang. 2022. "Effects of Molybdenum Fertilizer Combined with Bacillus subtilis Strain on the Growth of Chinese Cabbage and the Content of Nitrate in Soil" Horticulturae 8, no. 10: 970. https://doi.org/10.3390/horticulturae8100970
APA StyleMa, Y., Zhang, S., Hu, J., Chen, S., & Wang, J. (2022). Effects of Molybdenum Fertilizer Combined with Bacillus subtilis Strain on the Growth of Chinese Cabbage and the Content of Nitrate in Soil. Horticulturae, 8(10), 970. https://doi.org/10.3390/horticulturae8100970