Application of Tea-Specific Fertilizer Combined with Organic Fertilizer Improves Aroma of Green Tea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sensory Evaluation
2.3. Analysis of Main Components
2.4. Analysis of Tea Volatile Compounds
2.5. Statistical Analysis
3. Results
3.1. Sensory Quality Analysis
3.2. Main Flavor Quality Components
3.3. Effect of Fertilization Treatments on the Volatile Compounds of Green Tea
3.3.1. Effect of Fertilization Treatments on Volatile Components
3.3.2. Effect of Fertilization Treatments on Categories of Volatile Compounds
3.4. PCA of Key Quality Components in Tea Samples under Different Fertilization Treatments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, W.; Lin, M.; Zhou, H.; Wu, H.; Li, Z.; Lin, W. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS ONE 2019, 14, e0217018. [Google Scholar] [CrossRef]
- de Godoy, R.C.B.; Deliza, R.; Gheno, L.B.; Licodiedoff, S.; Frizon, C.N.T.; Ribani, R.H.; dos Santos, G.G. Consumer perceptions, attitudes and acceptance of new and traditional mate tea products. Food Res. Int. 2013, 53, 801–807. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Qu, F.; Wang, P.; Zhao, L.; Wang, Z.; Han, Y.; Zhang, X. Characterization analysis of flavor compounds in green teas at different drying temperature. LWT 2022, 161, 113394. [Google Scholar] [CrossRef]
- Ho, C.-T.; Zheng, X.; Li, S. Tea aroma formation. Food Sci. Hum. Wellness 2015, 4, 9–27. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.F.; Wu, Z.D.; You, Z.M.; Yi, X.Y.; Ni, K.; Guo, S.W.; Ruan, J.Y. Effects of organic substitution for synthetic N fertilizer on soil bacterial diversity and community composition: A 10-year field trial in a tea plantation. Agric. Ecosyst. Environ. 2018, 268, 124–132. [Google Scholar] [CrossRef]
- Gu, S.S.; Hu, Q.L.; Cheng, Y.Q.; Bai, L.Y.; Liu, Z.H.; Xiao, W.J.; Gong, Z.H.; Wu, Y.N.; Feng, K.; Deng, Y.; et al. Application of organic fertilizer improves microbial community diversity and alters microbial network structure in tea (Camellia sinensis) plantation soils. Soil Till. Res. 2019, 195, 104356. [Google Scholar] [CrossRef]
- Lal, R. Soil degradation as a reason for inadequate human nutrition. Food Secur. 2009, 1, 45–57. [Google Scholar] [CrossRef]
- Li, Y.C.; Li, Z.; Li, Z.W.; Jiang, Y.H.; Weng, B.Q.; Lin, W.X. Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by high-throughput pyrosequencing approach. J. Appl. Microbiol. 2016, 121, 787–799. [Google Scholar] [CrossRef]
- Cavagnaro, T.R. Impacts of compost application on the formation and functioning of arbuscular mycorrhizas. Soil Boil. Biochem. 2014, 78, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.C.; Song, Y.; Ma, T.F.; Raza, W.; Li, J.; Howland, J.G.; Huang, Q.W.; Shen, Q.R. Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Appl. Soil Ecol. 2017, 112, 42–50. [Google Scholar] [CrossRef]
- Sun, L.; Fan, K.; Wang, L.; Ma, D.; Wang, Y.; Kong, X.; Li, H.; Ren, Y.; Ding, Z. Correlation among Metabolic Changes in Tea Plant Camellia sinensis (L.) Shoots, Green Tea Quality and the Application of Cow Manure to Tea Plantation Soils. Molecules 2021, 26, 6180. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.Y.; Ma, L.F.; Yi, X.Y.; Shi, Y.Z.; Ni, K.; Liu, M.Y.; Zhang, Q.F. Integrated nutrient management in tea plantation to reduce chemical fertilizer and increase nutrient use efficiency. J. Tea Sci. 2020, 40, 85–95. [Google Scholar] [CrossRef]
- Yi, X.Y.; Ma, L.F.; Shi, Y.Z.; Ruan, J.Y. Study on the effect of special tea fertilizer on reducing weight and increasing income. Chin. Tea 2017, 39, 2. [Google Scholar]
- Liu, P.P.; Zheng, P.C.; Gong, Z.M.; Feng, L.; Gao, S.W.; Wang, X.P.; Teng, J.; Zheng, L.; Liu, Z.H. Comparing characteristic aroma components of bead-shaped green teas from different regions using headspace solid-phase microextraction and gas chromatography–mass spectrometry/olfactometry combined with chemometrics. Eur. Food Res. Technol. 2020, 246, 1703–1714. [Google Scholar] [CrossRef]
- Fei, T.Y.; Fei, J.; Huang, F.; Xie, T.P.; Xu, J.F.; Zhou, Y.; Yang, P. The anti-aging and anti-oxidation effects of tea water extract in Caenorhabditis elegans. Exp. Gerontol. 2017, 97, 89–96. [Google Scholar] [CrossRef]
- Horanni, R.; Engelhardt, U.H. Determination of amino acids in white, green, black, oolong, pu-erh teas and tea products. J. Food Compos. Anal. 2013, 31, 94–100. [Google Scholar] [CrossRef]
- Kanwar, J. Recent advances on tea polyphenols. Front. Biosci. 2012, 4, 111. [Google Scholar] [CrossRef]
- Peluso, I.; Serafini, M. Antioxidants from black and green tea: From dietary modulation of oxidative stress to pharmacological mechanisms. Br. J. Pharmacol. 2017, 174, 1195–1208. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.Q.; Mo, H.Z.; Yan, M.C.; Zhu, Y. Analysis of characteristic aroma of fungal fermented Fuzhuan brick-tea by gas chromatography/mass spectrophotometry. J. Sci. Food. Agric. 2007, 87, 1502–1504. [Google Scholar] [CrossRef]
- Baba, R.; Amano, Y.; Wada, Y.; Kumazawa, K. Characterization of the Potent Odorants Contributing to the Characteristic Aroma of Matcha by Gas Chromatography–Olfactometry Techniques. J. Agric. Food Chem. 2017, 65, 2984–2989. [Google Scholar] [CrossRef]
- Long, L.; Song, S.; Cao, X. Discriminant analysis and similarity evaluation of gas chromatography mass spectrometry fingerprints of aroma components in green tea grading. Chin. J. Chroma. 2019, 37, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.W.D.; Zhang, L.; Zhao, J.H. Aromatic components analysis of green tea in LaoMountain by HS-SPME and GC-MS. Food Mach. 2012, 25, 96–101. [Google Scholar]
- Yan, P.; Shen, C.; Fan, L.C.; Li, X.; Zhang, L.P.; Zhang, L.; Han, W.Y. Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil. Agric. Ecosyst. Environ. 2018, 254, 20–25. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolan, N.S.; Hedley, M.J.; White, R.E. Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. In Plant-Soil Interactions at Low pH, Proceedings of the Second International Symposium on Plant-Soil Interactions at Low pH, Beckley West Virginia, WV, USA, 24–29 June 1990; Wright, R.J., Baligar, V.C., Murrmann, R.P., Eds.; Springer: Dordrecht, The Netherlands, 1991; pp. 169–179. [Google Scholar]
- Zhang, Q.C.; Shamsi, I.H.; Xu, D.T.; Wang, G.H.; Lin, X.Y.; Jilani, G.; Hussain, N.; Chaudhry, A.N. Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure. Appl. Soil Ecol. 2012, 57, 1–8. [Google Scholar] [CrossRef]
- Chang, K.H.; Wu, R.Y.; Chuang, K.C.; Hsieh, T.F.; Chung, R.S. Effects of chemical and organic fertilizers on the growth, flower quality and nutrient uptake of Anthurium andreanum, cultivated for cut flower production. Sci. Hortic. 2010, 125, 434–441. [Google Scholar] [CrossRef]
- Sun, Q.; Yan, X.; Li, X.; Wang, G.; Xiang, S.; Chen, X.; Yin, C.; Mao, Z. Effects of a Mixture of Bacterial Manure and Biochar on Soil Environment and Physiological Characteristics of Malus hupehensis Seedlings. J. Chin. Agric. Sci. Bull. 2017, 33, 52–59. [Google Scholar]
- Xu, H.Q.; Xiao, R.L.; Xiang, Z.X.; Huang, Y.; Luo, W.; Qin, Z. Effects of Different Ecological Management on the Soil Microbial Biomass and Microbial Population of Tea Plantation in Hilly Red Soil Biomass and Microbial Population of Tea Plantation in Hilly Red Soil Region. J. Soil Sci. 2010, 2010, 1355–1359. [Google Scholar]
- Lin, B.; Luo, G.H.; Xu, Q.X.; Wang, Q.S.; Guan, X.F. Effects of biogas residue on yield and quality of tea. Fujian J. Agric. Sci. 2010, 25, 90–95. [Google Scholar]
- Zhang, Q.; Wei, C.X. Effects of Different Organic Fertilizers on Chief Qualities of Tea. Guizhou Agric. Sci. 2012, 40, 65–67. [Google Scholar]
- Xie, S.; Feng, H.; Yang, F.; Zhao, Z.; Hu, X.; Wei, C.; Liang, T.; Li, H.; Geng, Y. Does dual reduction in chemical fertilizer and pesticides improve nutrient loss and tea yield and quality? A pilot study in a green tea garden in Shaoxing, Zhejiang Province, China. Environ. Sci. Pollut. Res. Int. 2019, 26, 2464–2476. [Google Scholar] [CrossRef]
- Ji, L.; Ni, K.; Ma, L.; Chen, Z.; Zhao, Y.; Ruan, J.; Guo, S. Effect of different fertilizer regimes on the fungal community of acidic tea-garden soil. Acta Ecol. Sin. 2018, 38, 8158–8166. [Google Scholar]
- Liu, M.Y.; Burgos, A.; Ma, L.; Zhang, Q.; Tang, D.; Ruan, J. Lipidomics analysis unravels the effect of nitrogen fertilization on lipid metabolism in tea plant (Camellia sinensis L.). BMC Plant Biol. 2017, 17, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Chambers, D.H.; Chambers, E.; Adhikari, K.; Yoon, Y. Volatile aroma compounds in various brewed green teas. Molecules 2013, 18, 10024–10041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, J.L.; Zhai, X.T.; Guo, D.Y.; Du, W.K.; Gao, T.; Zhou, J.; Schwab, W.G.; Song, C.K. Characterization of Key Odorants in Xinyang Maojian Green Tea and Their Changes During the Manufacturing Process. J. Agric. Food Chem. 2022, 70, 279–288. [Google Scholar] [CrossRef]
- Baba, R.; Kumazawa, K. Characterization of the Potent Odorants Contributing to the Characteristic Aroma of Chinese Green Tea Infusions by Aroma Extract Dilution Analysis. J. Agric. Food Chem. 2014, 62, 8308–8313. [Google Scholar] [CrossRef]
- Cheng, Y.Q.; Huynh-Ba, T.; Blank, I.; Robert, F. Temporal Changes in Aroma Release of Longjing Tea Infusion: Interaction of Volatile and Nonvolatile Tea Components and Formation of 2-Butyl-2-octenal upon Aging. J. Agric. Food Chem. 2008, 56, 2160–2169. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, Y.; Liu, B.; Chen, Z.; Zheng, J.; Guan, M.; Shi, H.; Wang, Y.; Yang, W. Changes in the volatiles, chemical components, and antioxidant activities of Chinese jasmine tea during the scenting processes. Int. J. Food Prop. 2016, 20, 681–693. [Google Scholar] [CrossRef] [Green Version]
- He, C.J.; Guo, X.M.; Yang, Y.M.; Xie, Y.F.; Ju, F.Y.; Guo, W.B. Characterization of the aromatic profile in “zijuan” and “pu-erh” green teas by headspace solid-phase microextraction coupled with GC-O and GC-MS. Anal. Methods 2016, 8, 4727–4735. [Google Scholar] [CrossRef]
- Takei, Y.; Ishikawa, Y.; Hirao, N.; Fuchinoue, H.; Yamanishi, T. The Influence of the Amount of Supplied Fertilizer and Vinyl-House Cultivation on the Tea Aroma. Agric. Chem. 1978, 52, 505–512. [Google Scholar]
- Zheng, X.Q.; Li, Q.S.; Xiang, L.P.; Liang, Y.R. Recent Advances in Volatiles of Teas. Molecules 2016, 21, 338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.M.; Zhang, N.; Zhao, M.Y.; Jing, T.T.; Jin, J.Y.; Wu, B.; Wan, X.C.; Schwab, W.G.; Song, C.K. Carotenoid Cleavage Dioxygenase 4 Catalyzes the Formation of Carotenoid-Derived Volatile β-Ionone during Tea (Camellia sinensis) Withering. J. Agric. Food Chem. 2020, 68, 1684–1690. [Google Scholar] [CrossRef] [PubMed]
- Kanani, D.M.; Nikhade, B.P.; Balakrishnan, P.; Singh, G.; Pangarkar, V.G. Recovery of Valuable Tea Aroma Components by Pervaporation. Ind. Eng. Chem. Res. 2003, 42, 6924–6932. [Google Scholar] [CrossRef]
- Gulati, A.; Ravindranath, S.D. Seasonal Variations in Quality of Kangra Tea (Camellia sinensis (L.) O Kuntze) in Himachal Pradesh. J. Sci. Food Agric. 1996, 71, 231–236. [Google Scholar] [CrossRef]
- Yuan, Q.; Hernández, M.; Dumont, M.G.; Rui, J.; Fernández Scavino, A.; Conrad, R. Soil bacterial community mediates the effect of plant material on methanogenic decomposition of soil organic matter. Soil Biol. Biochem. 2018, 116, 99–109. [Google Scholar] [CrossRef]
- Sun, L. Exploration of Factors to Enhance Aromatic Quality in Green Tea; Murdoch University: Perth, Australia, 2022. [Google Scholar]
Fertilization Model | N, P2O5, K2O | Fertilizer Combination |
---|---|---|
CK | - | unfertilized |
M1 | 366-109-129 kg/ha | Tea-specific fertilizer 900 kg/ha + colza cake 1500 kg/ha + urea 300 kg/ha |
M2 | 320-131-129 kg/ha | Tea-specific fertilizer 750 kg/ha + livestock waste compost 3000 kg/ha + urea 300 kg/ha |
M3 | 324-84-126 kg/ha | Tea-specific fertilizer 1050 kg/ha + urea 300 kg/ha |
Fertilization Treatment | Appearance (25%) | Infusion Color (10%) | Aroma (25%) | Taste (30%) | Infused Leaf (10%) | Total Score | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Comment | Score | Comment | Score | Comment | Score | Comment | Score | Comment | Score | ||
CK | tight, bent, fairly tippy, dull green | 83 | light yellow | 82 | pure and normal | 83 | relatively fresh and brisk | 85 | soft | 83 | 83.50 |
M1 | fine, tight, bent, slightly tippy, green bloom | 88 | clear green, bright | 87 | high aroma | 90 | heavy, mellow, and brisk | 89 | soft and even | 89 | 88.80 |
M2 | fine, tight, bent, slightly tippy, green bloom | 88 | green, bright | 85 | high aroma | 89 | sweet and brisk | 88 | soft and bright | 88 | 87.95 |
M3 | fine, tight, bent, fairly tippy, green bloom | 85 | clear green, bright | 87 | clean and pure | 88 | sweet and brisk | 88 | soft and bright | 88 | 87.15 |
Mode | Water Extract | Free Amino Acid | Caffeine | Tea Polyphenols | Total Catechins |
---|---|---|---|---|---|
CK | 49.90 ±0.66 b | 3.10 ± 0.20 d | 3.02 ± 0.20 b | 17.38 ± 0.19 c | 12.57 ± 0.28 c |
M1 | 52.92 ±0.08 a | 3.97 ± 0.14 ab | 3.35 ± 0.04 a | 18.70 ± 0.19 ab | 13.89 ± 0.18 b |
M2 | 49.93 ±0.32 b | 3.66 ± 0.09 c | 3.35 ± 0.10 a | 18.27 ± 0.52 b | 13.81 ± 0.49 b |
M3 | 53.52 ±0.06 a | 3.83 ± 0.09 bc | 3.36 ± 0.06 a | 19.46 ± 0.50 a | 15.17 ± 0.38 a |
No. | Aroma Component | CK | M1 | M2 | M3 |
---|---|---|---|---|---|
1 | D-Limonene | 7.22 ± 0.54 d | 30.97 ± 1.32 a | 24.52 ± 1.21 b | 12.21 ± 0.66 c |
2 | cis-Jasmone | 2.18 ± 0.05 d | 21.10 ± 2.43 a | 17.09 ± 2.12 b | 6.88 ± 0.22 c |
3 | Nonanal | 3.82 ± 0.32 c | 13.04 ± 1.22 a | 12.01 ± 1.10 a | 6.76 ± 0.33 b |
4 | Linalool | 3.37 ± 0.12 c | 11.62 ± 1.03 a | 10.76 ± 1.13 a | 6.55 ± 0.43 b |
5 | cis-3-Hexenyl hexanoate | 2.26 ± 0.23 d | 8.47 ± 0.97 a | 6.59 ± 0.74 b | 4.01 ± 0.56 c |
6 | δ-Cadinene | 3.67 ± 0.36 c | 7.39 ± 1.32 a | 7.78 ± 1.21 a | 5.39 ± 0.91 b |
7 | Indole | 0.79 ± 0.01 c | 6.91 ± 0.98 a | 7.06 ± 0.74 a | 1.29 ± 0.03 b |
8 | cis-3-Hexenyl benzoate | 1.78 ± 0.04 c | 6.70 ± 1.11 a | 6.54 ± 0.62 a | 2.97 ± 0.05 b |
9 | Eremophilene | 1.40 ± 0.10 c | 6.15 ± 1.21 a | 6.34 ± 0.97 a | 2.21 ± 0.83 b |
10 | cis-Geraniol | 1.89 ± 0.19 c | 5.51 ± 0.35 a | 5.76 ± 0.56 a | 4.83 ± 0.74 b |
11 | Methyl salicylate | 1.47 ± 0.06 c | 4.63 ± 0.53 a | 4.75 ± 0.56 a | 3.31 ± 0.34 b |
12 | Nerolidol | 2.36 ± 0.43 c | 4.55 ± 0.71 a | 4.55 ± 0.66 a | 3.85 ± 0.58 b |
13 | 2,4-Di-tert-butylphenol | 0.96 ± 0.01 d | 4.31 ± 0.34 a | 3.64 ± 0.19 b | 1.31 ± 0.04 c |
14 | 5,9-Undecadien-2-one, 6,10-dimethyl- | 0.89 ± 0.04 b | 3.25 ± 0.31 a | 3.06 ± 0.23 a | 0.76 ± 0.01 b |
15 | Butanoic acid, 3-hexenyl ester, (Z)- | 0.54 ± 0.01 ed | 3.20 ± 0.23 a | 1.79 ± 0.13 b | 1.06 ± 0.05 c |
16 | Decanal | 0.65 ± 0.01 c | 2.79 ± 0.11 a | 2.19 ± 0.98 b | 0.66 ± 0.03 c |
17 | α-Calacorene | 0.53 ± 0.01 b | 2.76 ± 0.12 a | 2.55 ± 0.11 a | 0.66 ± 0.02 b |
18 | Caffeine | 0.03 ± 0.002 d | 2.45 ± 0.14 a | 1.29 ± 0.09 b | 1.32 ± 0.11 c |
19 | cis-3-Hexenyl cis-3-hexenoate | 0.46 ± 0.02 c | 2.30 ± 0.27 a | 2.14 ± 0.12 a | 1.00 ± 0.06 b |
20 | β-Ionone | 0.56 ± 0.04 d | 2.22 ± 0.26 b | 2.49 ± 0.21 a | 0.95 ± 0.05 c |
21 | α-Cubebene | 0.64 ± 0.03 d | 2.15 ± 0.15 a | 2.22 ± 0.21 a | 1.06 ± 0.07 c |
22 | Heptanal | 0.49 ± 0.02 d | 2.00 ± 0.19 a | 1.69 ± 0.13 b | 0.99 ± 0.03 c |
23 | Naphthalene, 1,2,3,4,4a,7-hexahydro-1,6-dimethyl-4-(1-methylethyl)- | 0.61 ± 0.03 c | 1.92 ± 0.16 a | 2.03 ± 0.18 a | 0.90 ± 0.04 b |
24 | β-Pinene | - | 1.60 ± 0.13 a | 1.55 ± 0.17 a | 1.19 ± 0.11 b |
25 | Dodecanal | 0.21 ± 0.02 c | 1.26 ± 0.13 a | 0.89 ± 0.04 b | 0.20 ± 0.03 c |
26 | Phenylethyl Alcohol | 0.37 ± 0.02 c | 1.21 ± 0.21 a | 1.05 ± 0.13 b | 0.96 ± 0.07 b |
27 | Epoxylinalol | 0.42 ± 0.01 d | 1.20 ± 0.11 b | 1.53 ± 0.13 a | 0.79 ± 0.06 c |
28 | 2,6-Di-tert-butylbenzoquinone | 0.21 ± 0.01 c | 1.08 ± 0.08 a | 0.80 ± 0.05 b | 0.25 ± 0.01 c |
29 | β-Cyclocitral | 0.26 ± 0.01 c | 0.84 ± 0.06 a | 0.90 ± 0.07 a | 0.36 ± 0.04 b |
30 | cis-3-Hexenyl isovalerate | 0.09 ± 0.002 d | 0.82 ± 0.04 a | 0.65 ± 0.04 b | 0.17 ± 0.02 c |
31 | Dimethyl sulfide | - | 0.80 ± 0.06 a | 0.38 ± 0.03 b | 0.11 ± 0.01 c |
32 | Hexanal | 0.15 ± 0.01 d | 0.74 ± 0.05 a | 0.44 ± 0.03 b | 0.37 ± 0.04 c |
33 | cis-β-Farnesene | 0.24 ± 0.03 c | 0.72 ± 0.05 a | 0.76 ± 0.07 a | 0.37 ± 0.04 b |
34 | Safranal | 0.07 ± 0.001 d | 0.62 ± 0.05 a | 0.54 ± 0.04 b | 0.32 ± 0.03 c |
35 | Naphthalene | 0.10 ± 0.01 d | 0.56 ± 0.03 a | 0.46 ± 0.04 b | 0.16 ± 0.02 c |
36 | Benzaldehyde | 0.13 ± 0.01 d | 0.55 ± 0.04 a | 0.44 ± 0.03 b | 0.19 ± 0.02 c |
37 | 2,3-Octanedione | 0.11 ± 0.01 c | 0.52 ± 0.06 a | 0.40 ± 0.02 b | - |
38 | 2-Decenal, (E)- | - | 0.49 ± 0.03 a | 0.27 ± 0.02 b | - |
39 | Sulcatone | 0.15 ± 0.01 c | 0.48 ± 0.04 b | 0.53 ± 0.03 a | 0.12 ± 0.01 c |
40 | Copaene | 0.12 ± 0.01 b | 0.46 ± 0.05 a | - | - |
41 | Naphthalene, 1-methyl- | - | 0.39 ± 0.02 a | 0.40 ± 0.03 a | - |
42 | Citral | 0.15 ± 0.01 d | 0.39 ± 0.03 a | 0.34 ± 0.02 b | 0.22 ± 0.01 c |
43 | Undecanal | 0.11 ± 0.01 c | 0.38 ± 0.04 a | 0.34 ± 0.03 b | 0.13 ± 0.01 c |
44 | 3-Hexen-1-ol | - | 0.29 ± 0.01 | - | - |
45 | 1-Octen-3-ol | 0.44 ± 0.04 a | - | - | 0.09 ± 0.004 b |
46 | 2-Octen-1-ol, (E)- | 0.29 ± 0.03 b | - | 0.91 ± 0.06 a | - |
47 | cis-Linalool oxide | 1.21 ± 0.09 b | - | - | 2.08 ± 0.36 a |
48 | α-Terpineol | - | 0.30 ± 0.02 a | 0.29 ± 0.02 a | 0.14 ± 0.01 b |
49 | 2-Heptenal, (Z)- | 0.17 ± 0.02 b | - | 0.20 ± 0.02 a | - |
50 | 2-Octenal, (E)- | 0.21 ± 0.01 | - | - | - |
51 | trans-β-Ocimene | 0.10 ± 0.01 b | - | - | 0.28 ± 0.02 a |
52 | Acetic acid, phenylmethyl ester | 0.09 ± 0.002 b | - | - | 0.14 ± 0.01 a |
total | 44.00 ± 3.06 d | 172.06 ± 16.80 a | 152.90 ± 15.32 b | 79.55 ± 7.12 c |
Volatile Compounds | CK | M1 | M2 | M3 |
---|---|---|---|---|
alcohols | 10.36 ± 1.23 c | 24.67 ± 2.31 a | 24.84 ± 1.69 a | 19.29 ± 1.53 b |
aldehydes | 6.41 ± 0.26 c | 23.09 ± 1.48 a | 20.25 ± 1.24 a | 10.19 ± 0.33 b |
ketones | 3.90 ± 0.11 c | 27.58 ± 2.16 a | 23.57 ± 1.59 a | 8.71 ± 0.44 b |
alkenes | 13.92 ± 0.96 d | 52.19 ± 3.11 a | 45.73 ± 2.96 b | 23.37 ± 1.83 c |
esters | 6.70 ± 0.13 c | 26.11 ± 1.67 a | 22.45 ± 1.38 a | 12.66 ± 0.81 b |
others | 2.71 ± 0.14 c | 18.41 ± 1.15 a | 16.06 ± 0.94 a | 5.33 ± 0.06 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Wang, Y.; Chen, X.; Wu, J.; Wang, H.; Tan, R.; Jiao, L.; Mao, Y. Application of Tea-Specific Fertilizer Combined with Organic Fertilizer Improves Aroma of Green Tea. Horticulturae 2022, 8, 950. https://doi.org/10.3390/horticulturae8100950
Huang D, Wang Y, Chen X, Wu J, Wang H, Tan R, Jiao L, Mao Y. Application of Tea-Specific Fertilizer Combined with Organic Fertilizer Improves Aroma of Green Tea. Horticulturae. 2022; 8(10):950. https://doi.org/10.3390/horticulturae8100950
Chicago/Turabian StyleHuang, Danjuan, Youping Wang, Xun Chen, Jiong Wu, Hongjuan Wang, Rongrong Tan, Long Jiao, and Yingxin Mao. 2022. "Application of Tea-Specific Fertilizer Combined with Organic Fertilizer Improves Aroma of Green Tea" Horticulturae 8, no. 10: 950. https://doi.org/10.3390/horticulturae8100950
APA StyleHuang, D., Wang, Y., Chen, X., Wu, J., Wang, H., Tan, R., Jiao, L., & Mao, Y. (2022). Application of Tea-Specific Fertilizer Combined with Organic Fertilizer Improves Aroma of Green Tea. Horticulturae, 8(10), 950. https://doi.org/10.3390/horticulturae8100950