Detection and Molecular Characterization of Chickpea Chlorotic Dwarf Virus and Tomato Leaf Curl New Delhi Virus in Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey and Samples Collection
2.2. DNA Isolation and PCR Amplification
2.3. Sequence Comparison and Phylogenetic Analysis
2.4. Recombination Analysis
3. Results
3.1. Symptoms Description
3.2. Virus Detection and Characterization
3.3. Sequence and Phylogenetic Analysis
3.4. Recombination Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marwal, A.; Sahu, A.K.; Gaur, R.K. Transmission and Host Interaction of Geminivirus in Weeds; Academic Press: Cambridge, MA, USA, 2014; pp. 143–161. ISBN 9780124115842. [Google Scholar]
- Briddon, R.W.; Akbar, F.; Iqbal, Z.; Amrao, L.; Amin, I.; Saeed, M.; Mansoor, S. Effects of genetic changes to the begomovirus/betasatellite complex causing cotton leaf curl disease in South Asia post-resistance breaking. Virus Res. 2014, 186, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Padidam, R.; Beachy, R.N.; Fauquet, C.M.; Padidam, M.; Beachy, R.N.; Fauquet, C.M.; Jolla, L. Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. J. Gen. Virol. 1995, 76, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Moriones, E.; Praveen, S.; Chakraborty, S. Tomato Leaf Curl New Delhi Virus: An Emerging Virus Complex Threatening Vegetable and Fiber Crops. Viruses 2017, 9, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, L.; Simon, A.; Velasco, L.; Janssen, D. Biological characterization of Tomato leaf curl New Delhi virus from Spain. Plant Pathol. 2016, 66, 376–382. [Google Scholar] [CrossRef]
- Radouane, N.; Ezrari, S.; Belabess, Z.; Tahiri, A.; Tahzima, R.; Massart, S.; Jijakli, H.; Benjelloun, M.; Lahlali, R. Viruses of cucurbit crops: Current status in the Mediterranean Region. Phytopathol. Mediterr. 2021, 60, 493–519. [Google Scholar] [CrossRef]
- López, C.; Ferriol, M.; Picó, M.B. Mechanical transmission of Tomato leaf curl New Delhi virus to cucurbit germplasm: Selection of tolerance sources in Cucumis melo. Euphytica 2015, 204, 679–691. [Google Scholar] [CrossRef]
- Mnari-Hattab, M.; Zammouri, S.; Belkadhi, M.S.; Bellon Doña, D.; ben Nahia, E.; Hajlaoui, M.R. First report of Tomato leaf curl New Delhi virus infecting cucurbits in Tunisia. New Dis. Rep. 2015, 31, 21. [Google Scholar] [CrossRef] [Green Version]
- Panno, S.; Iacono, G.; Davino, M.; Marchione, S.; Zappardo, V.; Bella, P.; Tomassoli, L.; Accotto, G.P.; Davino, S. First report of Tomato leaf curl New Delhi virus affecting zucchini squash in an important horticultural area of southern Italy. New Dis. Rep. 2016, 33, 6. [Google Scholar] [CrossRef] [Green Version]
- Radouane, N.; Tahiri, A.; El Ghadraoui, L.; Al Figuigui, J.; Lahlali, R. First report of Tomato Leaf Curl New Delhi virus in Morocco. New Dis. Rep. 2018, 37, 2. [Google Scholar] [CrossRef] [Green Version]
- Horn, N.M.; Reddy, S.V.; Roberts, I.M.; Reddy, D.V.R. Chickpea chlorotic dwarf virus, a new leafhopper-transmitted geminivirus of chickpea in India. Ann. Appl. Biol. 1993, 122, 467–479. [Google Scholar] [CrossRef]
- Kraberger, S.; Harkins, G.W.; Kumari, S.G.; Thomas, J.E.; Schwinghamer, M.W.; Sharman, M.; Collings, D.A.; Briddon, R.W.; Martin, D.P.; Varsani, A. Evidence that dicot-infecting mastreviruses are particularly prone to inter-species recombination and have likely been circulating in Australia for longer than in Africa and the Middle East. Virology 2013, 444, 282–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraberger, S.; Mumtaz, H.; Claverie, S.; Martin, D.P.; Briddon, R.W.; Varsani, A. Identification of an Australian-like dicot-infecting mastrevirus in Pakistan. Arch. Virol. 2015, 160, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Zaagueri, T.; Mnari-Hattab, M.; Zammouri, S.; Hajlaoui, M.R.; Accotto, G.P.; Vaira, A.M. First report of chickpea chlorotic dwarf virus in watermelon (Citrullus lanatus) in Tunisia. Plant Dis. 2017, 101, 392. [Google Scholar] [CrossRef]
- Kanakala, S.; Kuria, P. Chickpea chlorotic dwarf virus: An emerging monopartite dicot infecting mastrevirus. Viruses 2019, 11, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radouane, N.; Ezrari, S.; Accotto, G.P.; Benjelloun, M.; Lahlali, R.; Tahiri, A.; Vaira, A.M. First report of Chickpea chlorotic dwarf virus in watermelon (Citrullus lanatus) in Morocco. New Dis. Rep. 2019, 39, 4404. [Google Scholar] [CrossRef] [Green Version]
- Muhire, B.; Martin, D.P.; Brown, J.K.; Navas-Castillo, J.; Moriones, E.; Zerbini, F.M.; Rivera-Bustamante, R.; Malathi, V.G.; Briddon, R.W.; Varsani, A. A genome-wide pairwise-identity-based proposal for the classification of viruses in the genus Mastrevirus (family Geminiviridae). Arch. Virol. 2013, 158, 1411–1424. [Google Scholar] [CrossRef] [Green Version]
- Doyle, J.; Doyle, J. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 13–15. [Google Scholar]
- Radouane, N.; Ermadi, S.; Ezrari, S.; Al Figuigui, J.; Benjelloune, M.; Tahiri, A.; Lahlali, R. Occurrence and distribution of viruses infecting Zucchini and Watermelon in Morocco. Arch. Phytopathol. Plant Prot. 2020, 54, 375–387. [Google Scholar] [CrossRef]
- Zaagueri, T.; Miozzi, L.; Mnari-Hattab, M.; Noris, E.; Accotto, G.P.; Vaira, A.M. Deep sequencing data and infectivity assays indicate that chickpea chlorotic dwarf virus is the etiological agent of the “hard fruit syndrome” of watermelon. Viruses 2017, 9, 311. [Google Scholar] [CrossRef] [Green Version]
- Hall, T. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Stecher, G.; Tamura, K.; Kumar, S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol. Biol. Evol. 2020, 37, 1237–1239. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015, 1, vev003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortes, I.M.; Sánchez-Campos, S.; Fiallo-Olivé, E.; Díaz-Pendón, J.A.; Navas-Castillo, J.; Moriones, E. A novel strain of tomato leaf curl New Delhi virus has spread to the Mediterranean basin. Viruses 2016, 8, 307. [Google Scholar] [CrossRef] [Green Version]
- Gilbertson, R.L.; Batuman, O.; Webster, C.G.; Adkins, S. Role of the Insect Supervectors Bemisia tabaci and Frankliniella occidentalis in the Emergence and Global Spread of Plant Viruses. Annu. Rev. Virol. 2015, 2, 67–93. [Google Scholar] [CrossRef]
- Fahmy, I.F.; Taha, O.; El-Ashry, A.N. First genome analysis and molecular characterization of Chickpea chlorotic dwarf virus Egyptian isolate infecting squash. VirusDisease 2015, 26, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Horn, N.M.; Makkouk, K.M.; Kumari, S.G.; Van den Heuvel, J.F.J.M.; Reddy, D.V.R. Survey of chickpea (Cicer arientinum L.) for chickpea stunt disease and associated viruses in Syria, Turkey and Lebanon. Phytopathol. Mediterr. 1995, 34, 192–198. [Google Scholar]
- Ruiz, M.L.; Simón, A.; Velasco, L.; García, M.C.; Janssen, D. First Report of Tomato leaf curl New Delhi virus Infecting Tomato in Spain. Plant Dis. 2015, 99, 894. [Google Scholar] [CrossRef]
- Zammouri, S.; Zaagueri, T.; Eddouzi, J.; Belkhadhi, M.S.; Hajlaoui, M.R.; Mnari-Hattab, M. First report of tomato leaf curl New Delhi virus on tomato crop in Tunisia. J. Plant Pathol. 2017, 99, 813. [Google Scholar] [CrossRef]
- Kil, E.J.; Thi, T.; Vo, B.; Fadhila, C.; Ho, P.T.; Lal, A.; Bich Vo, T.T.; Fadhila, C.; Thi Ho, P.; Lal, A.; et al. Seed Transmission of Tomato Leaf Curl New Delhi Virus from Zucchini Squash in Italy. Plants 2020, 9, 563. [Google Scholar] [CrossRef]
- Panno, S.; Caruso, A.G.; Troiano, E.; Luigi, M.; Manglli, A.; Vatrano, T.; Iacono, G.; Marchione, S.; Bertin, S.; Tomassoli, L.; et al. Emergence of tomato leaf curl New Delhi virus in Italy: Estimation of incidence and genetic diversity. Plant Pathol. 2019, 68, 601–608. [Google Scholar] [CrossRef]
- Juárez, M.; Rabádan, M.P.; Martínez, L.D.; Tayahi, M.; Grande-Pérez, A.; Gómez, P. Natural hosts and genetic diversity of the emerging tomato leaf curl New Delhi virus in Spain. Front. Microbiol. 2019, 10, 140. [Google Scholar] [CrossRef] [PubMed]
Collection Season | Family | Species | Number of Analyzed Samples | |
---|---|---|---|---|
Cultivated plant species | 2017/2018 | Cucurbitaceae | Squash | 16 |
Cucurbitaceae | Zucchini | 119 | ||
Cucurbitaceae | Melon | 264 | ||
Cucurbitaceae | Watermelon | 175 | ||
Solanaceae | Tomato | 10 | ||
2018/2019 | Cucurbitaceae | Squash | 20 | |
Cucurbitaceae | Zucchini | 58 | ||
Cucurbitaceae | Melon | 213 | ||
Cucurbitaceae | Watermelon | 272 | ||
Solanaceae | Tomato | 46 | ||
Fabaceae | Chickpea | 140 |
Virus | Strains | Host | Year | Accession Number |
---|---|---|---|---|
CpCDV | S1Pa8 | Watermelon | 2019 | OL405566 |
S3P5 | Chickpea | 2019 | OL405567 | |
S1Pa5 | Watermelon | 2019 | OL405568 | |
S1Pa6 | Watermelon | 2019 | OL405569 | |
S3Pa1 | Watermelon | 2019 | OL405570 | |
S2Pa2 | Watermelon | 2019 | OL405571 | |
S4P6 | Chickpea | 2019 | OL405572 | |
CgOA1 | Squash | 2019 | OL405573 | |
S1Pa1 | Watermelon | 2019 | OM387012 | |
CP2 | Watermelon | 2019 | OK641611 | |
ToLCNDV | AM1 | Melon | 2019 | OM836560 |
AM2 | Melon | 2019 | OM934827 | |
AZ3 | Zucchini | 2019 | OM934828 | |
AZ4 | Zucchini | 2019 | OM934829 | |
AZ5 | Zucchini | 2019 | OM934830 | |
AZ6 | Zucchini | 2019 | OM934831 | |
AZ7 | Zucchini | 2018 | OM934832 | |
AM8 | Melon | 2018 | OM934833 | |
AT9 | Tomato | 2019 | OM934834 | |
AT10 | Tomato | 2019 | OM934835 | |
AZ11 | Zucchini | 2019 | OM934836 | |
AM12 | Melon | 2018 | OP038626 | |
AZ13 | Zucchini | 2018 | OP038627 | |
AM14 | Melon | 2018 | OP038628 | |
AZ15 | zucchini | 2019 | OP389290 | |
AZ16 | zucchini | 2019 | OP389291 | |
AZ17 | zucchini | 2019 | OP389292 | |
AZ18 | Zucchini | 2019 | OP389293 |
Recombinant Sequence(s) | Recombinant Genome Position | Minor Parental Sequence(s) | Major Parental Sequence(s) | Detection Methods | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R | G | B | M | C | S | T | |||||
In Alignment (Start–End) | In Recombinant Sequence (Start–End) | ||||||||||
MT264781 | 2348–162 | 2261–155 | KX827602 | Unknown | + | + | − | + | + | + | + |
MT264781 | 928–1843 | 900–1774 | MW538661 | Unknown | + | + | − | + | + | + | + |
MW620973 | 2203–2802 | 2101–2675 | Unknown | MK395548 | + | + | + | + | + | + | + |
MH465599 | 1082–1780 | 1037–1714 | MK395548 | Unknown | + | + | + | + | + | + | + |
MT264781 | 1962–2168 | 1887–2092 | JN129254 | Unknown | + | + | + | + | + | + | + |
MH465599 | 1956–2296 | 1884–2191 | MT264781 | MW538661 | + | + | − | + | + | + | + |
KX827602 | 1022–1532 | 992–1477 | Unknown | LC511775 | + | + | + | + | + | + | + |
AZ15 | 1610–2039 | 1131–1284 | MK395548 | MG098230 | − | + | + | + | + | + | + |
AZ18 | 1604–2310 | 1084–1236 | Unknown | MW310624 | + | + | − | + | + | + | + |
AM2 | 1624–488 | 1121–19 | Unknown | MW310624 | + | − | + | + | + | + | + |
KM383736 | 2648–2770 | 2543–2659 | MH465599 | KM383737 | + | + | − | + | − | + | + |
KX827602 | 964–2192 | 935–2100 | Unknown | HM345979 | − | + | − | + | + | + | + |
MH465599 | 814–2850 | 778–2723 | MW310624 | HQ658479 | + | − | − | + | + | + | + |
MF807949 | 648–1532 | 613–1470 | Unknown | KM383741 | − | − | − | + | − | + | + |
AM12 | 1604–488 | 1117–35 | Unknown | MW310624 | + | − | − | + | − | + | + |
MW538661 | 2088–76 | 2015–69 | HM345979 | Unknown | − | − | − | + | + | + | − |
JN129254 | 2480–2826 | 2375–2706 | Unknown | MK395548 | + | − | − | + | − | + | + |
AZ16 | 1602–1725 | 1089–1211 | Unknown | MG098230 | − | + | + | − | − | + | − |
KF891468 | 64–162 | 56–131 | MK395548 | Unknown | − | + | − | − | − | + | − |
MK395548 | 2594–2773 | 2489–2662 | MW310624 | KM383740 | + | − | − | − | − | + | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radouane, N.; Lahlali, R.; Darif, M.; Ezrari, S.; Benjelloun, M.; Belabess, Z.; Barka, E.A.; Tahiri, A. Detection and Molecular Characterization of Chickpea Chlorotic Dwarf Virus and Tomato Leaf Curl New Delhi Virus in Morocco. Horticulturae 2022, 8, 927. https://doi.org/10.3390/horticulturae8100927
Radouane N, Lahlali R, Darif M, Ezrari S, Benjelloun M, Belabess Z, Barka EA, Tahiri A. Detection and Molecular Characterization of Chickpea Chlorotic Dwarf Virus and Tomato Leaf Curl New Delhi Virus in Morocco. Horticulturae. 2022; 8(10):927. https://doi.org/10.3390/horticulturae8100927
Chicago/Turabian StyleRadouane, Nabil, Rachid Lahlali, Meryem Darif, Said Ezrari, Meryem Benjelloun, Zineb Belabess, Essaid Ait Barka, and Abdessalem Tahiri. 2022. "Detection and Molecular Characterization of Chickpea Chlorotic Dwarf Virus and Tomato Leaf Curl New Delhi Virus in Morocco" Horticulturae 8, no. 10: 927. https://doi.org/10.3390/horticulturae8100927
APA StyleRadouane, N., Lahlali, R., Darif, M., Ezrari, S., Benjelloun, M., Belabess, Z., Barka, E. A., & Tahiri, A. (2022). Detection and Molecular Characterization of Chickpea Chlorotic Dwarf Virus and Tomato Leaf Curl New Delhi Virus in Morocco. Horticulturae, 8(10), 927. https://doi.org/10.3390/horticulturae8100927