Functional Oligosaccharides Derived from Fruit-and-Vegetable By-Products and Wastes
Abstract
:1. Introduction
Sources of Solid Wastes | Approximate Percentage of Waste from Raw Material (w/w) | References |
---|---|---|
Banana peel | 30 | [5] |
Apple (pomace, skin, seeds, stem) | 25–30 | [6,7] |
Citrus (orange, lemon, grapefruit-pomace, peel, seeds) | 50 | [8,9] |
Exotic fruits (pineapple, mango, mangosteen-skin, core, peel, stone) | 35–60 | [10,11,12] |
Artichoke (bracts, stem, leaves) | 60 | [13,14] |
Asparagus spear | 40–50 | [15] |
Potato peel | 15–40 | [5] |
Corn cob | 20–30 | [16] |
2. Lignocellulosic Residues from FVSW
3. Production of Functional Oligosaccharides
3.1. Pectic Oligosaccharides
3.1.1. Acid hydrolysis
3.1.2. Enzymatic Process
3.1.3. Hydrothermal Treatment
3.2. Inulin and Fructooligosaccharides
3.3. Xylooligosaccharides
3.4. Isomaltooligosaccharides
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database—Crops and Livestock Products. FAO. 2020. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 8 August 2022).
- Cho, E.J.; Trinh, L.T.P.; Song, Y.; Lee, Y.G.; Bae, H.J. Bioconversion of biomass waste into high value chemicals. Bioresour. Technol. 2020, 298, 122386. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. Food Wastage Footprint & Climate Change; FAO: Rome, Italy, 2015. [Google Scholar]
- Baiano, A. Recovery of Biomolecules from Food Wastes—A Review. Molecules 2014, 19, 14821–14842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schieber, A.; Stintzing, F.C.; Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- Shalini, R.; Gupta, D.K. Utilization of pomace from apple processing industries: A review. Food Sci. Technol. 2010, 47, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, G.S.; Kaur, S.; Brar, S.K. Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: A review. Renew. Sustain. Energy Rev. 2013, 27, 789–805. [Google Scholar] [CrossRef]
- Rezzadori, K.; Benedetti, S.; Amante, E.R. Proposals for the residues recovery: Orange waste as raw material for new products. Food Bioprod. Process. 2012, 90, 606–614. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Varzakas, T.H. Vegetable waste treatment: Comparison and critical presentation of methodologies. Crit. Rev. Food Sci. Nutr. 2008, 48, 205–247. [Google Scholar] [CrossRef]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Prasada Rao, U.J.S. Sustainable solutions for agro processing waste management: An overview. In Environmental Protection Strategies for Sustainable Development; Springer: Berlin/Heidelberg, Germany, 2012; pp. 65–109. [Google Scholar]
- Tran, C.T.; Mitchell, D.A. Pineapple waste-a novel substrate for citric acid production by solid-state fermentation. Biotechnol. Lett. 1995, 17, 1107–1110. [Google Scholar] [CrossRef]
- Banerjee, S.; Munagala, M.; Shastri, Y.; Vijayaraghavan, R.; Patti, A.F.; Arora, A. Process Design and Techno-Economic Feasibility Analysis of an Integrated Pineapple Processing Waste Biorefinery. ACS Eng. 2022, 2, 208–218. [Google Scholar] [CrossRef]
- Garcia-Castello, E.M.; Mayor, L.; Calvo-Ramirez, A.; Ruiz-Melero, R.; Rodriguez-Lopez, A.D. Response Surface Optimization of Inulin and Polyphenol Extraction from Artichoke (Cynara scolymus (L.)) Solid Wastes. Appl. Sci. 2022, 12, 7957. [Google Scholar] [CrossRef]
- Llorach, R.; Espin, J.C.; Tomas-Barberan, F.A.; Ferreres, F. Artichoke (Cynara scolymus L.) by-products as a potential source of health-promoting antioxidant phenolics. J. Agric. Food Chem. 2002, 50, 3458–3464. [Google Scholar] [CrossRef] [PubMed]
- Santiago, B.; Feijoo, G.; Moreira, M.T.; González-García, S. Identifying the sustainability route of asparagus co-product extraction: From waste to bioactive compounds. Food Bioprod. Process. 2021, 129, 176–189. [Google Scholar] [CrossRef]
- Samanta, A.K.; Senani, S.; Kolte, A.P.; Sridhar, M.; Sampath, K.T.; Jayapal, N.; Devi, A. Production and in vitro evaluation of xylooligosaccharides generated from corn cobs. Food Bioprod. Process. 2012, 90, 466–474. [Google Scholar] [CrossRef]
- Laufenberg, G.; Kunz, B.; Nystroem, M. Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresour. Technol. 2003, 87, 167–198. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushan, B. An overview of the recent trends on the waste valorization techniques for food wastes. J. Environ. Manag. 2019, 233, 352–370. [Google Scholar] [CrossRef]
- Cano, M.E.; García-Martin, A.; Comendador Morales, P.; Wojtusik, M.; Santos, V.E.; Kovensky, J.; Ladero, M. Production of Oligosaccharides from Agrofood Wastes. Fermentation 2020, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, L.; Sharma, A.; Bachheti, R.K.; Chandel, A.K. Lignocellulose derived functional oligosaccharides: Production, properties, and health benefits. Prep. Biochem. Biotechnol. 2019, 49, 744–758. [Google Scholar] [CrossRef]
- Pérez, J.; Munoz-Dorado, J.; de la Rubia, T.; Martinez, J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. Int. Microbiol. 2002, 5, 53–63. [Google Scholar] [CrossRef]
- Carvalho, A.F.A.; De Oliva Neto, P.; Da Silva, D.F.; Pastore, G.M. Xylo-oligosaccharides from lignocellulosic materials: Chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Res. Int. 2013, 51, 75–85. [Google Scholar] [CrossRef]
- Nawirska, A.; Kwaśniewska, M. Dietary fibre fractions from fruit and vegetable processing waste. Food Chem. 2005, 91, 221–225. [Google Scholar] [CrossRef]
- Szymańska-Chargot, M.; Chylińska, M.; Gdula, K.; Kozioł, A.; Zdunek, A. Isolation and characterization of cellulose from different fruit and vegetable pomaces. Polymers 2017, 9, 495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, M.A.F.; Monteiro, C.R.M.; Pereira, G.N.; Júnior, S.E.B.; Zanella, E.; Ávila, P.F.; Stambuk, B.U.; Goldbeck, R.; De Oliveira, D.; Poletto, P. Deconstruction of banana peel for carbohydrate fractionation. Bioprocess. Biosyst. Eng. 2021, 44, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Pereira, B.S.; de Freitas, C.; Contiero, J.; Brienzo, M. Enzymatic Production of Xylooligosaccharides from Xylan Solubilized from Food and Agroindustrial Waste. BioEnergy Res. 2022, 15, 1195–1203. [Google Scholar] [CrossRef]
- Oberoi, H.S.; Sandhu, S.K.; Vadlani, P.V. Statistical optimization of hydrolysis process for banana peels using cellulolytic and pectinolytic enzymes. Food Bioprod. Process. 2012, 90, 257–265. [Google Scholar] [CrossRef]
- Boluda-Aguilar, M.; García-Vidal, L.; del Pilar González-Castañeda, F.; López-Gómez, A. Mandarin peel wastes pretreatment with steam explosion for bioethanol production. Bioresour. Technol. 2010, 101, 3506–3513. [Google Scholar] [CrossRef] [PubMed]
- Mamma, D.; Christakopoulos, P. Biotransformation of citrus by-products into value added products. Waste Biomass Valorization 2014, 5, 529–549. [Google Scholar] [CrossRef]
- Ángel Siles López, J.; Li, Q.; Thompson, I.P. Biorefinery of waste orange peel. Crit. Rev. Biotechnol. 2010, 30, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, J.; Singh, R.; Vijayaraghavan, R.; MacFarlane, D.; Patti, A.F.; Arora, A. Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chem. 2017, 225, 10–22. [Google Scholar] [CrossRef]
- Toushik, S.H.; Lee, K.T.; Lee, J.S.; Kim, K.S. Functional Applications of Lignocellulolytic Enzymes in the Fruit and Vegetable Processing Industries. J. Food Sci. 2017, 82, 585–593. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, S.; Kognou, A.L.M.; Zhang, J.; Qin, W. Different Facets of Lignocellulosic Biomass Including Pectin and Its Perspectives. Waste Biomass Valorization 2021, 12, 4805–4823. [Google Scholar] [CrossRef]
- Taylor, N.G. Cellulose biosynthesis and deposition in higher plants. New Phytol. 2008, 178, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; He, H.; Liu, Y.; Wang, Y.; Huo, F.; Fan, M.; Adidharma, H.; Li, X.; Zhang, S. Recent progress in theoretical and computational studies on the utilization of lignocellulosic materials. Green Chem. 2019, 21, 9–35. [Google Scholar] [CrossRef]
- Martínez-Sanz, M.; Mikkelsen, D.; Flanagan, B.M.; Gidley, M.J.; Gilbert, E.P. Multi-scale characterisation of deuterated cellulose composite hydrogels reveals evidence for different interaction mechanisms with arabinoxylan, mixed-linkage glucan and xyloglucan. Polymer 2017, 124, 1–11. [Google Scholar] [CrossRef]
- Sun, S.; Sun, S.; Cao, X.; Sun, R. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour. Technol. 2016, 199, 49–58. [Google Scholar] [CrossRef]
- El Mansouri, N.E.; Salvadó, J. Analytical methods for determining functional groups in various technical lignins. Ind. Crops Prod. 2007, 26, 116–124. [Google Scholar] [CrossRef]
- Müller-Maatsch, J.; Bencivenni, M.; Caligiani, A.; Tedeschi, T.; Bruggeman, G.; Bosch, M.; Janos Petrus, J.; Van Droogenbroecke, B.; Elstf, K.; Sforzaa, S. Pectin content and composition from different food waste streams. Food Chem. 2016, 201, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Mohnen, D. Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 2008, 11, 266–277. [Google Scholar] [CrossRef]
- Voragen, A.G.J.; Coenen, G.J.; Verhoef, R.P.; Schols, H.A. Pectin, a versatile polysaccharide present in plant cell walls. Struct. Chem. 2009, 20, 263. [Google Scholar] [CrossRef] [Green Version]
- Babbar, N.; Dejonghe, W.; Gatti, M.; Sforza, S.; Elst, K. Pectic oligosaccharides from agricultural by-products: Production, characterization and health benefits. Crit. Rev. Biotechnol. 2016, 36, 594–606. [Google Scholar] [CrossRef]
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- Gibson, G.R.; Scott, K.P.; Rastall, R.A.; Tuohy, K.M.; Hotchkiss, A.; Dubert-Ferrandon, A.; Hotchkiss, A.; Gareau, M.; Murphy, E.F.; Saulnier, D.; et al. Dietary prebiotics: Current status and new definition. Food Sci. Technol. Bull. Funct. Foods 2010, 7, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.J.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods 2019, 8, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberfroid, M. Prebiotics: The Concept Revisited. J. Nutr. 2007, 137, 830S–837S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gullón, B.; Gómez, B.; Martínez-Sabajanes, M.; Yáñez, R.; Parajó, J.C.; Alonso, J.L. Pectic oligosaccharides: Manufacture and functional properties. Trends Food Sci. Technol. 2013, 30, 153–161. [Google Scholar] [CrossRef]
- Martínez Sabajanes, M.; Yáñez, R.; Alonso, J.L.; Parajó, J.C. Pectic oligosaccharides production from orange peel waste by enzymatic hydrolysis. Int. J. Food Sci. Technol. 2012, 47, 747–754. [Google Scholar] [CrossRef]
- Cano, M.E.; García-Martín, A.; Ladero, M.; Lesur, D.; Pilard, S.; Kovensky, J. A simple procedure to obtain a medium-size oligogalacturonic acids fraction from orange peel and apple pomace wastes. Food Chem. 2021, 346, 128909. [Google Scholar] [CrossRef] [PubMed]
- Gómez, B.; Gullón, B.; Yáñez, R.; Schols, H.; Alonso, J.L. Prebiotic potential of pectins and pectic oligosaccharides derived from lemon peel wastes and sugar beet pulp: A comparative evaluation. J. Funct. Foods 2016, 20, 108–121. [Google Scholar] [CrossRef]
- Del Castillo-Llamosas, A.; Rodríguez-Martínez, B.; Del Río, P.G.; Eibes, G.; Garrote, G.; Gullón, B. Hydrothermal treatment of avocado peel waste for the simultaneous recovery of oligosaccharides and antioxidant phenolics. Bioresour. Technol. 2021, 342, 125981. [Google Scholar] [CrossRef]
- Klinchongkon, K.; Khuwijitjaru, P.; Wiboonsirikul, J.; Adachi, S. Extraction of Oligosaccharides from Passion Fruit Peel by Subcritical Water Treatment. J. Food Process. Eng. 2017, 40, e12269. [Google Scholar] [CrossRef]
- Xue, L.; Long, J.; Lu, C.; Li, X.; Xu, X.; Jin, Z. Immobilization of polygalacturonase for the preparation of pectic oligosaccharides from mango peel wastes and assessment of their antibacterial activities. Food Biosci. 2021, 39, 100837. [Google Scholar] [CrossRef]
- Rico, X.; Gullón, B.; Yáñez, R. Environmentally Friendly Hydrothermal Processing of Melon by-Products for the Recovery of Bioactive Pectic-Oligosaccharides. Foods 2020, 9, 1702. [Google Scholar] [CrossRef]
- Banerjee, S.; Patti, A.F.; Ranganathan, V.; Arora, A. Hemicellulose based biorefinery from pineapple peel waste: Xylan extraction and its conversion into xylooligosaccharides. Food Bioprod. Process. 2019, 117, 38–50. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Z.; Xiao, F.; Jin, X. Production of xylooligosaccharides from corncobs using ultrasound-assisted enzymatic hydrolysis. Food Sci. Biotechnol. 2015, 24, 2077–2081. [Google Scholar] [CrossRef]
- Teng, C.; Yan, Q.; Jiang, Z.; Fan, G.; Shi, B. Production of xylooligosaccharides from the steam explosion liquor of corncobs coupled with enzymatic hydrolysis using a thermostable xylanase. Bioresour. Technol. 2010, 101, 7679–7682. [Google Scholar] [CrossRef]
- Parajó, J.C.; Garrote, G.; Cruz, J.M.; Dominguez, H. Production of xylooligosaccharides by autohydrolysis of lignocellulosic materials. Trends Food Sci. Technol. 2004, 15, 115–120. [Google Scholar] [CrossRef]
- Moura, P.; Barata, R.; Carvalheiro, F.; Gírio, F.; Loureiro-Dias, M.C.; Esteves, M.P. In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains. LWT-Food Sci. Technol. 2007, 40, 963–972. [Google Scholar] [CrossRef]
- Lara-Fiallos, M.V.; Bastidas-Delgado, L.A.; Montalvo Villacreses, D.T.; Espín Valladares, R.C.; Núñez-Pérez, J.; Pérez Martínez, A.; Santiago Vispo, N.; Yachay, P.; González Suárez, E.; Pais-Chanfrau, J.M.; et al. Optimization of inulin extraction from garlic (Allium sativum L.) waste using the response surface methodology. Rev. Educ. 2021, 392, 2–31. [Google Scholar] [CrossRef]
- Castellino, M.; Renna, M.; Leoni, B.; Calasso, M.; Difonzo, G.; Santamaria, P.; Gambacorta, G.; Caponio, F.; De Angelis, M.; Paradiso, V.M. Conventional and unconventional recovery of inulin rich extracts for food use from the roots of globe artichoke. Food Hydrocoll. 2020, 107, 105975. [Google Scholar] [CrossRef]
- Zeaiter, Z.; Regonesi, M.E.; Cavini, S.; Labra, M.; Sello, G.; Di Gennaro, P. Extraction and Characterization of Inulin-Type Fructans from Artichoke Wastes and Their Effect on the Growth of Intestinal Bacteria Associated with Health. BioMed Res. Int. 2019, 2019, 1083952. [Google Scholar] [CrossRef]
- Cavini, S.; Guzzetti, L.; Givoia, F.; Regonesi, M.E.; Di Gennaro, P.; Magoni, C.; Campone, L.; Massimo Labra, M.; Bruni, I. Artichoke (Cynara cardunculus var. scolymus L.) by-products as a source of inulin: How to valorise an agricultural supply chain extracting an added-value compound. Nat. Prod. Res. 2022, 36, 2140–2144. [Google Scholar] [CrossRef] [PubMed]
- Lopes, S.M.S.; Krausová, G.; Carneiro, J.W.P.; Gonçalves, J.E.; Gonçalves, R.A.C.; de Oliveira, A.J.B. A new natural source for obtainment of inulin and fructo-oligosaccharides from industrial waste of Stevia rebaudiana Bertoni. Food Chem. 2017, 225, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.T.C.; Eça, K.S.; Vieira, G.S.; Menegalli, F.C.; Martínez, J.; Hubinger, M.D. Prebiotic oligosaccharides from artichoke industrial waste: Evaluation of different extraction methods. Ind. Crops Prod. 2015, 76, 141–148. [Google Scholar] [CrossRef]
- Ganaie, M.A.; Soni, H.; Naikoo, G.A.; Santos Oliveira, L.T.; Rawat, H.K.; Mehta, P.K.; Narain, N. Screening of low cost agricultural wastes to maximize the fructosyltransferase production and its applicability in generation of fructooligosaccharides by solid state fermentation. Int. Biodeterior. Biodegrad. 2017, 118, 19–26. [Google Scholar] [CrossRef]
- Sangeetha, P.T.; Ramesh, M.N.; Siddalingaiya, P. Production of fructosyl transferase by Aspergillus oryzae CFR 202 in solid-state fermentation using agricultural by-products. Appl. Microbiol. Biotechnol. 2004, 65, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Mutturi, S.; Prapulla, S.G. Production of isomaltooligosaccharides (IMO) using simultaneous saccharification and transglucosylation from starch and sustainable sources. Process Biochem. 2016, 51, 1464–1471. [Google Scholar] [CrossRef]
- Gómez, J.A.; Berni, P.; Matallana, L.G.; Sánchez, Ó.J.; Teixeira, J.A.; Nobre, C. Towards a biorefinery processing waste from plantain agro–Industry: Process development for the production of an isomalto–oligosaccharide syrup from rejected unripe plantain fruits. Food Bioprod. Process. 2022, 133, 100–118. [Google Scholar] [CrossRef]
- Singh, R.P.; Tingirikari, J.M.R. Agro waste derived pectin poly and oligosaccharides: Synthesis and functional characterization. Biocatal. Agric. Biotechnol. 2021, 31, 101910. [Google Scholar] [CrossRef]
- Sabater, C.; Calvete-Torre, I.; Villamiel, M.; Moreno, F.J.; Margolles, A.; Ruiz, L. Vegetable waste and by-products to feed a healthy gut microbiota: Current evidence, machine learning and computational tools to design novel microbiome-targeted foods. Trends Food Sci. Technol. 2021, 118, 399–417. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, H.; Wang, L.; Liu, F.; Pan, S. Preparation and prebiotic potential of pectin oligosaccharides obtained from citrus peel pectin. Food Chem. 2018, 244, 232–237. [Google Scholar] [CrossRef]
- Thibault, J.F.; Renard, C.M.G.C.; Axelos, M.A.V.; Roger, P.; Crépeau, M.J. Studies of the length of homogalacturonic regions in pectins by acid hydrolysis. Carbohydr. Res. 1993, 238, 271–286. [Google Scholar] [CrossRef]
- Manderson, K.; Pinart, M.; Tuohy, K.M.; Grace, W.E.; Hotchkiss, A.T.; Widmer, W.; Yadhav, M.P.; Gibson, G.R.; Rastall, R.A. In vitro determination of prebiotic properties of oligosaccharides derived from an orange juice manufacturing by-product stream. Appl. Environ. Microbiol. 2005, 71, 8383–8389. [Google Scholar] [CrossRef] [Green Version]
- la Cava, E.L.; Gerbino, E.; Sgroppo, S.C.; Gómez-Zavaglia, A. Pectin hydrolysates from different cultivars of pink/red and white grapefruits (Citrus Paradisi [macf.]) as Culture and Encapsulating Media for Lactobacillus Plantarum. J. Food Sci. 2019, 84, 1776–1783. [Google Scholar] [CrossRef] [PubMed]
- Wandee, Y.; Uttapap, D.; Mischnick, P.; Rungsardthong, V. Production of pectic-oligosaccharides from pomelo peel pectin by oxidative degradation with hydrogen peroxide. Food Chem. 2021, 348, 129078. [Google Scholar] [CrossRef]
- Pedrolli, D.B.; Monteiro, A.C.; Gomes, E.; Carmona, E.C. Pectin and pectinases: Production, characterization and industrial application of microbial pectinolytic enzymes. Open Biotechnol. J. 2009, 3, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Bonnin, E.; Dolo, E.; Le Goff, A.; Thibault, J.F. Characterisation of pectin subunits released by an optimised combination of enzymes. Carbohydr. Res. 2002, 337, 1687–1696. [Google Scholar] [CrossRef]
- Combo, A.M.M.; Aguedo, M.; Quiévy, N.; Danthine, S.; Goffin, D.; Jacquet, N.; Blecker, C.; Devaux, J.; Paquot, M. Characterization of sugar beet pectic-derived oligosaccharides obtained by enzymatic hydrolysis. Int. J. Biol. Macromol. 2013, 52, 148–156. [Google Scholar] [CrossRef]
- Martínez, M.; Gullón, B.; Yáñez, R.; Alonso, J.L.; Parajó, J.C. Direct Enzymatic Production of Oligosaccharide Mixtures from Sugar Beet Pulp: Experimental Evaluation and Mathematical Modeling. J. Agric. Food Chem. 2009, 57, 5510–5517. [Google Scholar] [CrossRef]
- Babbar, N.; Dejonghe, W.; Sforza, S.; Elst, K. Enzymatic pectic oligosaccharides (POS) production from sugar beet pulp using response surface methodology. J. Food Sci. Technol. 2017, 54, 3707–3715. [Google Scholar] [CrossRef]
- Li, P.-J.; Xia, J.-I.; Nie, Z.-Y.; Shan, Y. Pectic oligosaccharides hydrolyzed from orange peel by fungal multi-enzyme complexes and their prebiotic and antibacterial potentials. LWT-Food Sci. Technol. 2016, 69, 203–210. [Google Scholar] [CrossRef]
- Foti, P.; Ballistreri, G.; Timpanaro, N.; Rapisarda, P.; Romeo, F.V. Prebiotic effects of citrus pectic oligosaccharides. Nat. Prod. Res. 2022, 36, 3173–3176. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Tan, H.; Li, S.; Zhang, M.; Che, J.; Li, K.; Chen, W.; Yin, H. Application of engineered yeast strain fermentation for oligogalacturonides production from pectin-rich waste biomass. Bioresour. Technol. 2020, 300, 122645. [Google Scholar] [CrossRef] [PubMed]
- Mandalari, G.; Nueno Palop, C.; Tuohy, K.; Gibson, G.R.; Bennett, R.N.; Waldron, K.W.; Bisignano, G.; Narbad, A.; Faulds, C.B. In vitro evaluation of the prebiotic activity of a pectic oligosaccharide-rich extract enzymatically derived from bergamot peel. Appl. Microbiol. Biotechnol. 2007, 73, 1173–1179. [Google Scholar] [CrossRef] [PubMed]
- Rajulapati, V.; Dhillon, A.; Goyal, A. Enzymatically produced pectic-oligosaccharides from fruit waste of Citrus reticulata (mandarin) peels display cytotoxicity against colon cancer cells. Bioresour. Technol. Rep. 2021, 15, 100740. [Google Scholar] [CrossRef]
- Wongkaew, M.; Tinpovong, B.; Sringarm, K.; Leksawasdi, N.; Jantanasakulwong, K.; Rachtanapun, P.; Hanmoungjai, P.; Sommano, S.R. Crude pectic oligosaccharide recovery from Thai Chok Anan mango peel using pectinolytic enzyme hydrolysis. Foods 2021, 10, 627. [Google Scholar] [CrossRef]
- Babbar, N.; Baldassarre, S.; Maesen, M.; Prandi, B.; Dejonghe, W.; Sforza, S.; Elst, K. Enzymatic production of pectic oligosaccharides from onion skins. Carbohydr. Polym. 2016, 146, 245–252. [Google Scholar] [CrossRef]
- Baldassarre, S.; Babbar, N.; van Roy, S.; Dejonghe, W.; Maesen, M.; Sforza, S.; Elst, K. Continuous production of pectic oligosaccharides from onion skins with an enzyme membrane reactor. Food Chem. 2018, 267, 101–110. [Google Scholar] [CrossRef]
- Sabater, C.; Blanco-Doval, A.; Margolles, A.; Corzo, N.; Montilla, A. Artichoke pectic oligosaccharide characterisation and virtual screening of prebiotic properties using in silico colonic fermentation. Carbohydr. Polym. 2021, 255, 117367. [Google Scholar] [CrossRef]
- Tekin, K.; Karagöz, S.; Bektaş, S. A review of hydrothermal biomass processing. Renew. Sustain. Energy Rev. 2014, 40, 673–687. [Google Scholar] [CrossRef]
- Bobleter, O. Hydrothermal degradation of polymers derived from plants. Prog. Polym. Sci. 1994, 19, 797–841. [Google Scholar] [CrossRef]
- Overend, R.P.; Chornet, E. Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1987, 321, 523–536. [Google Scholar] [CrossRef]
- Martínez, M.; Gullón, B.; Schols, H.A.; Alonso, J.L.; Parajó, J.C. Assessment of the Production of Oligomeric Compounds from Sugar Beet Pulp. Ind. Eng. Chem. Res. 2009, 48, 4681–4687. [Google Scholar] [CrossRef]
- Gómez, B.; Gullón, B.; Remoroza, C.; Schols, H.A.; Parajó, J.C.; Alonso, J.L. Purification, Characterization, and Prebiotic Properties of Pectic Oligosaccharides from Orange Peel Wastes. J. Agric. Food Chem. 2014, 62, 9769–9782. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, S.; Gullón, B.; Moreira, M.T. Environmental assessment of biorefinery processes for the valorization of lignocellulosic wastes into oligosaccharides. J. Clean. Prod. 2018, 172, 4066–4073. [Google Scholar] [CrossRef] [Green Version]
- Niness, K.R. Inulin and Oligofructose: What Are They? J. Nutr. 1999, 129, 1402S–1406S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoaib, M.; Shehzad, A.; Omar, M.; Rakha, A.; Raza, H.; Sharif, H.R.; Shakeel, A.; Ansari, A.; Niazia, S. Inulin: Properties, health benefits and food applications. Carbohydr. Polym. 2016, 147, 444–454. [Google Scholar] [CrossRef]
- Zhu, Z.; He, J.; Liu, G.; Barba, F.J.; Koubaa, M.; Ding, L.; Bals, O.; Grimi, N.; Vorobiev, E. Recent insights for the green recovery of inulin from plant food materials using non-conventional extraction technologies: A review. Innov. Food Sci. Emerg. Technol. 2016, 33, 1–9. [Google Scholar] [CrossRef]
- Roberfroid, M.B. Introducing inulin-type fructans. Br. J. Nutr. 2005, 93, S13–S25. [Google Scholar] [CrossRef]
- Apolinário, A.C.; De Lima Damasceno, B.P.G.; De Macêdo Beltrão, N.E.; Pessoa, A.; Converti, A.; da Silva, J.A. Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohydr. Polym. 2014, 101, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Flores-Maltos, D.A.; Mussatto, S.I.; Contreras-Esquivel, J.C.; Rodríguez-Herrera, R.; Teixeira, J.A.; Aguilar, C.N. Biotechnological production and application of fructooligosaccharides. Crit. Rev. Biotechnol. 2016, 36, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Costa, G.T.; Vasconcelos, Q.; Abreu, G.C.; Albuquerque, A.O.; Vilar, J.L.; Aragao, G.F. Systematic review of the ingestion of fructooligosaccharides on the absorption of minerals and trace elements versus control groups. Clin. Nutr. 2021, 41, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, S.; Macfarlane, G.T.; Cummings, J.H. Review article: Prebiotics in the gastrointestinal tract. Aliment. Pharm. Ther. 2006, 24, 701–714. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.H.; Macfarlane, G.T.; Englyst, H.N. Prebiotic digestion and fermentation. Am. J. Clin. Nutr. 2001, 73, 415s–4120s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Martínez, M.J.; Soto-Jover, S.; Antolinos, V.; Martínez-Hernández, G.B.; López-Gómez, A. Manufacturing of short-chain fructooligosaccharides: From laboratory to industrial scale. Food Eng. Rev. 2020, 12, 149–172. [Google Scholar] [CrossRef]
- Crittenden, R.G.; Playne, M. Production, properties and applications of food-grade oligosaccharides. Trends Food Sci. Technol. 1996, 7, 353–361. [Google Scholar] [CrossRef]
- de la Rosa, O.; Flores-Gallegos, A.C.; Muñíz-Marquez, D.; Nobre, C.; Contreras-Esquivel, J.C.; Aguilar, C.N. Fructooligosaccharides production from agro-wastes as alternative low-cost source. Trends Food Sci. Technol. 2019, 91, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Santiago, B.; Arias Calvo, A.; Gullón, B.; Feijoo, G.; Moreira, M.T.; González-García, S. Production of flavonol quercetin and fructooligosaccharides from onion (Allium cepa L.) waste: An environmental life cycle approach. Chem. Eng. J. 2020, 392, 123772. [Google Scholar] [CrossRef]
- Bhadra, S.; Chettri, D.; Verma, A.K. Microbes in fructooligosaccharides production. Bioresour. Technol. Rep. 2022, 20, 101159. [Google Scholar] [CrossRef]
- de la Rosa, O.; Múñiz-Marquez, D.B.; Contreras-Esquivel, J.C.; Wong-Paz, J.E.; Rodríguez-Herrera, R.; Aguilar, C.N. Improving the fructooligosaccharides production by solid-state fermentation. Biocatal. Agric. Biotechnol. 2020, 27, 10170. [Google Scholar] [CrossRef]
- Shallom, D.; Shoham, Y. Microbial hemicellulases. Curr. Opin. Microbiol. 2003, 6, 219–228. [Google Scholar] [CrossRef]
- Vázquez, M.J.; Alonso, J.L.; Domínguez, H.; Parajó, J.C. Xylooligosaccharides: Manufacture and applications. Trends Food Sci. Technol. 2000, 11, 387–393. [Google Scholar] [CrossRef]
- Samanta, A.K.; Jayapal, N.; Kolte, A.P.; Senani, S.; Sridhar, M.; Dhali, A.; Suresh, K.P.; Jayaram, C.; Prasad, C.S. Process for Enzymatic Production of Xylooligosaccharides from the Xylan of Corn Cobs. J. Food Process. Preserv. 2015, 39, 729–736. [Google Scholar] [CrossRef]
- Yang, R.; Xu, S.; Wang, Z.; Yang, W. Aqueous extraction of corncob xylan and production of xylooligosaccharides. LWT-Food Sci. Technol. 2005, 38, 677–682. [Google Scholar] [CrossRef]
- Louis, A.C.F.; Venkatachalam, S. Energy efficient process for valorization of corn cob as a source for nanocrystalline cellulose and hemicellulose production. Int. J. Biol. Macromol. 2020, 163, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Wee, M.Y.J.; Azelee, N.I.W.; Pachelles, S.; Murad, A.M.A.; Bakar, F.D.A.; Illias, R.M. Bioconversion of pineapple pomace for xylooligosaccharide synthesis using surface display of xylanase on Escherichia coli. Biomass Convers. Biorefinery 2020. [Google Scholar] [CrossRef]
- Zhao, L.C.; Wang, Y.; Lin, J.F.; Guo, L.Q. Adsorption and kinetic behavior of recombinant multifunctional xylanase in hydrolysis of pineapple stem and bagasse and their hemicellulose for Xylo-oligosaccharide production. Bioresour. Technol. 2012, 110, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Khangwal, I.; Chhabra, D.; Shukla, P. Multi-objective optimization through machine learning modeling for production of xylooligosaccharides from alkali-pretreated corn-cob xylan via enzymatic hydrolysis. Indian J. Microbiol. 2021, 61, 458–466. [Google Scholar] [CrossRef]
- Boonchuay, P.; Techapun, C.; Seesuriyachan, P.; Chaiyaso, T. Production of xylooligosaccharides from corncob using a crude thermostable endo-xylanase from Streptomyces thermovulgaris TISTR1948 and prebiotic properties. Food Sci. Biotechnol. 2014, 23, 1515–1523. [Google Scholar] [CrossRef]
- Sorndech, W.; Nakorn, K.N.; Tongta, S.; Blennow, A. Isomalto-oligosaccharides: Recent insights in production technology and their use for food and medical applications. LWT 2018, 95, 135–142. [Google Scholar] [CrossRef]
- Pan, Y.C.; Lee, W.C. Production of high-purity isomalto-oligosaccharides syrup by the enzymatic conversion of transglucosidase and fermentation of yeast cells. Biotechnol. Bioeng. 2005, 89, 797–804. [Google Scholar] [CrossRef]
- Duong Hong, Q.; Hoang Minh, T.; Nguyen Thi, H.G.; Nguyen Thi, T.H.; Nguyen, N.H.; Nguyen, T.T.L.; Nguyen, T.V.A.; Vu, T.T.; Luong, H.N. Synthesis of Isomaltooligosaccharides (IMOs) from Sweet Potato Starch by Simultaneous Saccharification and Transglycosylation Using Saccharomyces cerevisiae Var. diastaticus BE 134 to Improve Purity of IMOs. J. Food Qual. 2021, 2021, 1987219. [Google Scholar] [CrossRef]
- Sorndech, W.; Sagnelli, D.; Blennow, A.; Tongta, S. Combination of amylase and transferase catalysis to improve IMO compositions and productivity. LWT-Food Sci. Technol. 2017, 79, 479–486. [Google Scholar] [CrossRef]
- Kaulpiboon, J.; Rudeekulthamrong, P.; Watanasatitarpa, S.; Ito, K.; Pongsawasdi, P. Synthesis of long-chain isomaltooligosaccharides from tapioca starch and an in vitro investigation of their prebiotic properties. J. Mol. Catal. B Enzym. 2015, 120, 127–135. [Google Scholar] [CrossRef]
- Chockchaisawasdee, S.; Poosaran, N. Production of isomaltooligosaccharides from banana flour. J. Sci. Food Agric. 2013, 93, 180–186. [Google Scholar] [CrossRef] [PubMed]
Source of Lignocellulosic Residues | Cellulose (%) | Hemi-Cellulose (%) | Lignin (%) | Pectin (%) | References |
---|---|---|---|---|---|
Pear pomace | 34 | 19–21 | 20–33 | 2–13 | [23,24] |
Apple pomace | 7–44 | 4–24 | 5–24 | 4–14 | [23,24] |
Banana peel | 6–10 | 2–26 | 6–18 | 9–22 | [25,26,27] |
Orange bagasse and peel | 9–37 | 11–31 | 7–22 | 16–42 | [26,28,29,30] |
Lemon peel and pulp | 23–36 | 8–11 | 8 | 13–23 | [30] |
Carrot pomace | 30–52 | 7–12 | 18–32 | 2–4 | [23,24] |
Tomato pomace | 6–40 | 8–12 | 5–36 | 6–8 | [23,24] |
Potato peel | 55 | 12 | 14 | 19–21 | [31] |
Pomegranate peel | 26 | 11 | 6 | 28 | [31] |
Sugar beet pulp | 22–30 | 24–32 | 3–4 | 24–32 | [32] |
Functional Oligosaccharides | Source of Lignocellulosic Residues | Treatment | Optimal Conditions | Yields (Dry Weight Basis) | References |
---|---|---|---|---|---|
POS | orange peel | Enzymatic hydrolysis (commercial cellulases and pectinases) | 37 °C and pH 5 up to 20 h | 31 g/100 g peel (model predicted) | [49] |
Pectin extraction and acid hydrolysis | HCl at100 °C, 18 h and Trifluoroacetic acid at 85 °C for 2.5 h | 20 g/100 g pectin (DP 6–18) | [50] | ||
Apple pomace | Pectin extraction and acid hydrolysis | HCl, 100 °C, 18 h and Trifluoroacetic acid at 85 °C for 2.5 h | 20 g/100 g pectin (DP 6–18) | [50] | |
Sugar beet pulp | Hydrothermal treatment | 160 °C; Severity factor (R0) = 326 min | 44 g/100 g solids (80% arabinooligosaccharides, 20% galactooligosacchrides) | [51] | |
Lemon peel | Hydrothermal treatment | 160 °C; Severity factor (R0) = 326 min | 24 g/100 g solids (60% arabinooligosaccharides, 40% galactooligosacchrides) | [51] | |
Avocado peel | Hydrothermal treatment | 150 °C, severity (S0) = 1.90 | 14 g/100 g peel Oligogalacturonides | [52] | |
Passion fruit peel | Subcritical water treatment | 150 °C within 4.5 min, or 175 °C within 5.5 min.; Severity (S0) = 3.4–5.1 | 21 g/100 g peel | [53] | |
Mango peel | Pectin extraction (acid) and enzymatic hydrolysis (commercial polygalacturonase) | Acidhydrolysis: HCl, 80 °C. 3 h. Enzymatic: 50 °C; pH 4.5 up to 60 min | n.a. | [54] | |
Melon peel | hydrothermal | 140 °C; Severity (S0) = 2.03 | 15 g/100 g solids | [55] | |
XOS | Banana peel | Xylan extraction (water, acid or alkali) and enzymatic hydrolysis (Aspergillus versicolor endoxylanase) | 55 °C upto 48 h, pH 6 | 11 g/100 g hemicellulose (DP = 3–4) | [26] |
Orange bagasse | Xylan extraction (water, acid or alkali) and enzymatic hydrolysis (Aspergillus versicolor endoxylanase) | 55 °C upto 48 h, pH 6 | 10 g/100 g hemicellulose (DP = 3–4) | [26] | |
Guava bagasse | Xylan extraction (water, acid or alkali) and enzymatic hydrolysis (Aspergillus versicolor endoxylanase) | 55 °C upto 48 h, pH 6 | 12 g/100 g hemicellulose (DP = 3–4) | [26] | |
Pineapple peel | Xylan extraction (alkali and hydrothermal-assisted alkali) and enzymatic hydrolysis (Trichoderma viridea endoxylanase) | Hydrothermal-assisted: Enzymatic: 50 °C, 24 h, pH 5 | 26 g/100 g of xylan (84% xylobiose and 16% xylotriose) | [56] | |
Corn cob | Xylan extraction (alkali) and ultrasound-assisted enzymatic hydrolysis (Trichoderma viridea endoxylanase) | 50 °C, 10 min, 200 W | 6 g/100 g corncob (Average DP = 2) | [57] | |
Xylan extraction (steam explosion) and enzymatic hydrolysis (Paecilomyces themophila J18 xylanase) | Steam: 188–204 °C, 2.5–7.5 min, S0 2.99–3.94 Enzymatic: 70 °C, 2.5 h, pH 7.0 | 29 g/100 g xylan (DP = 2–3) | [58] | ||
Autohydrolysis | 145–200 °C in 40 min | 25 g/100 g xylan (DP = 2–5) | [59] | ||
Autohydrolysis | 180–225 °C; Severity (S0) = 3.75 | 25 g/100 g xylan (DP = 2–6) | [60] | ||
Inulin | Garlic waste (damaged bulb, husk, paste) | Water extraction | 80 °C, 45 min | 8 g/100 g waste | [61] |
Artichoke root (Five cultivars) | Water and ultrasound-assisted extraction | Water: 80 °C, 2 h, pH 6.8 Ultrasound: 80 °C, pH 6.8, 70% sonication amplitude, 5 min | 7–21 g/100 g root | [62] | |
Artichoke waste (bract, stem, leaves) | Ultrasound-assisted extraction | 70 °C, 2 h, 40 Hz | 5–28 g/100 g waste (DP = 32–42) | [63] | |
Artichoke bract | Ultrasound-assisted extraction | 70 °C, 30 min, 37 Hz | 7 g/100 g bract | [64] | |
Stevia rebaudiana Berton (stem) | Water extraction | 80 °C, 4 h | 4 g/100 g stem | [65] | |
FOS | Stevia rebaudiana Berton (stem) | Water extraction | 80 °C, 4 h | 11 g/100 g stem | [65] |
Artichoke waste | Ultrasound-assisted extraction | 360 W, 10 min, 60 °C | 1 g/100 g waste (DP = 2–4) | [66] | |
Banana peel | Solid state fermentation by Aspergillus flavus NFCCI 2364 strain | 28 °C, 96 h | 7 g/100 g peel | [67] | |
Apple pomace | Solid state fermentation by Aspergillus flavus NFCCI 2364 strain | 28 °C, 96 h | 5 g/100 g pomace | [67] | |
Corn cob | Solid state fermentation by Aspergilus oryzae CFR 202 | 30 °C up to 120 h | 15 g/100 g waste | [68] | |
IMO | Potato processing waste | Acid hydrolysis and enzymatic liquefaction, saccharification and transglucosylation (enzyme cocktail: a commercial bacterial α-amylase, a commercial fungal α-amylase, and Aspergillus niger PFS08 α-amylase) | Acid hydrolysis: 0.7 M HCl, 3 h reflux Transglucosylation: 55 °C, 12 h, pH 5.0 | 92 g/L reaction mixture (DP = 2–5) | [69] |
Rejected unripen plantain fruits | Enzymatic liquefaction, saccharification and transglucosylation of flour made from rejected fruits (commercial α-amylase, β-amylase, pullulanase, α-glucosidase) | Transglucosylation: 50 °C, 30 h, pH 4.5, | 51 g IMO/100 g maltose; (DP = 2, 4–5) | [70] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chockchaisawasdee, S.; Stathopoulos, C.E. Functional Oligosaccharides Derived from Fruit-and-Vegetable By-Products and Wastes. Horticulturae 2022, 8, 911. https://doi.org/10.3390/horticulturae8100911
Chockchaisawasdee S, Stathopoulos CE. Functional Oligosaccharides Derived from Fruit-and-Vegetable By-Products and Wastes. Horticulturae. 2022; 8(10):911. https://doi.org/10.3390/horticulturae8100911
Chicago/Turabian StyleChockchaisawasdee, Suwimol, and Constantinos E. Stathopoulos. 2022. "Functional Oligosaccharides Derived from Fruit-and-Vegetable By-Products and Wastes" Horticulturae 8, no. 10: 911. https://doi.org/10.3390/horticulturae8100911
APA StyleChockchaisawasdee, S., & Stathopoulos, C. E. (2022). Functional Oligosaccharides Derived from Fruit-and-Vegetable By-Products and Wastes. Horticulturae, 8(10), 911. https://doi.org/10.3390/horticulturae8100911