Genome-Wide Identification and Expression Analysis of the PpYUCCA Gene Family in Weeping Peach Trees (Prunus persica ‘Pendula’)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of PpYUCCA Genes in the Weeping Peach Genome
2.2. Classification and Structural Analysis of PpYUCCA Genes
2.3. Phylogenetic Analysis of Weeping Peach YUCCA Genes
2.4. Plant Materials and Treatments
2.5. Gene Expression Analysis
2.6. Statistical Analysis
3. Results
3.1. PpYUCCA Gene Family Analysis in the Weeping Peach Genome
3.2. Classification and Structural Analysis of PpYUCCA Genes
3.3. Phylogenetic Analysis of Weeping Peach YUCCA Genes
3.4. Gene Expression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, H.Q.; Chao, L.I. Research Advances of Auxin Signal Transduction. Biotechnol. Bull. 2018, 34, 24–30. [Google Scholar] [CrossRef]
- Péret, B.; De Rybel, B.; Casimiro, I.; Benková, E.; Swarup, R.; Laplaze, L.; Beeckman, T.; Bennett, M.J. Arabidopsis lateral root development: An emerging story. Trends Plant Sci. 2009, 14, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Andrea, G. The role of auxin in shaping shoot architecture. J. Exp. Bot. 2013, 64, 2593–2608. [Google Scholar] [CrossRef]
- Müller-Moulé, P.; Nozue, K.; Pytlak, M.L.; Palmer, C.M.; Covington, M.F.; Wallace, A.D.; Harmer, S.L.; Maloof, J.N. YUCCA auxin biosynthetic genes are required for Arabidopsis shade avoidance. PeerJ 2016, 4, e2574. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Gao, S.; Tian, H.; Wu, W.; Robert, H.S.; Ding, Z. Local Transcriptional Control of YUCCA Regulates Auxin Promoted Root-Growth Inhibition in Response to Aluminium Stress in Arabidopsis. PLoS Genet. 2016, 12, e1006360. [Google Scholar] [CrossRef]
- Qin, M.; Wang, J.; Zhang, T.; Hu, X.; Liu, R.; Gao, T.e.; Zhao, S.; Yuan, Y.; Zheng, J.; Wang, Z.; et al. Genome-Wide Identification and Analysis on YUCCA Gene Family in Isatis indigotica Fort. and IiYUCCA6-1 Functional Exploration. Int. J. Mol. Sci. 2020, 21, 2188. [Google Scholar] [CrossRef]
- Yuan, H.-Z.; Zhao, M.-Z.; Wu, W.-M.; Yu, H.-M.; Qian, Y.-M.; Wang, Z.-W.; Wang, X.-C. Genome-wide identification and expression analysis of auxin-related gene families in grape. Yi Chuan 2015, 37, 720–730. [Google Scholar] [CrossRef]
- Wang, X.; Chen, B.; Ma, C.; Qiao, K.; Li, Z.; Wang, J.; Peng, R.; Fan, S.; Ma, Q. Systematical characterization of YUCCA gene family in five cotton species, and potential functions of YUCCA22 gene in drought resistance of cotton. Ind. Crops Prod. 2021, 162, 113290. [Google Scholar] [CrossRef]
- Cha, J.-Y.; Kim, W.-Y.; Kang, S.B.; Kim, J.I.; Baek, D.; Jung, I.J.; Kim, M.R.; Li, N.; Kim, H.-J.; Nakajima, M.; et al. A novel thiol-reductase activity of Arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis. Nat. Commun. 2015, 6, 8041. [Google Scholar] [CrossRef]
- Tanimoto, E. Regulation of Root Growth by Plant Hormones—Roles for Auxin and Gibberellin. Crit. Rev. Plant Sci. 2005, 24, 249–265. [Google Scholar] [CrossRef]
- Mao, T.-Y.; Zhu, H.-H.; Liu, Y.-Y.; Bao, M.-Z.; Zhang, J.-W.; Fu, Q.; Xiong, C.-F.; Zhang, J. Weeping candidate genes screened using comparative transcriptomic analysis of weeping and upright progeny in an F1 population of Prunus mume. Physiol. Plant. 2020, 170, 318–334. [Google Scholar] [CrossRef] [PubMed]
- Sugano, M.; Nakagawa, Y.; Nyunoya, H.; Nakamura, T. Expression of gibberellin 3β-hydroxylase gene in a gravi-response mutant, weeping Japanese flowering cherry. Biol. Sci. Space 2004, 18, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Joshi, C.P.; Thammannagowda, S.; Fujino, T.; Gou, J.-Q.; Avci, U.; Haigler, C.H.; McDonnell, L.M.; Mansfield, S.D.; Mengesha, B.; Carpita, N.C.; et al. Perturbation of Wood Cellulose Synthesis Causes Pleiotropic Effects in Transgenic Aspen. Mol. Plant 2011, 4, 331–345. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Yu, H.; Yu, H.; Cai, Y.; Huang, L.; Xu, C.; Xiong, G.; Meng, X.; Wang, J.; Chen, H.; et al. A Core Regulatory Pathway Controlling Rice Tiller Angle Mediated by the LAZY1-Dependent Asymmetric Distribution of Auxin. Plant Cell 2018, 30, 1461–1475. [Google Scholar] [CrossRef]
- Bassi, D.; Rizzo, M. Peach breeding for growth habit. Acta Hortic. 2000, 538, 411–414. [Google Scholar] [CrossRef]
- Cheng, Y.; Dai, X.; Zhao, Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 2006, 20, 1790–1799. [Google Scholar] [CrossRef]
- Kim, J.I.; Murphy, A.S.; Baek, D.; Lee, S.-W.; Yun, D.-J.; Bressan, R.A.; Narasimhan, M.L. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. J. Exp. Bot. 2011, 62, 3981–3992. [Google Scholar] [CrossRef]
- Lee, M.; Jung, J.-H.; Han, D.-Y.; Seo, P.J.; Park, W.J.; Park, C.-M. Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in Arabidopsis. Planta 2012, 235, 923–938. [Google Scholar] [CrossRef]
- Li, L.; Ljung, K.; Breton, G.; Schmitz, R.J.; Pruneda-Paz, J.; Cowing-Zitron, C.; Cole, B.J.; Ivans, L.J.; Pedmale, U.V.; Jung, H.-S.; et al. Linking photoreceptor excitation to changes in plant architecture. Genes Dev. 2012, 26, 785–790. [Google Scholar] [CrossRef]
- Woodward, C.; Bemis, S.M.; Hill, E.J.; Sawa, S.; Koshiba, T.; Torii, K.U. Interaction of auxin and ERECTA in elaborating Arabidopsis inflorescence architecture revealed by the activation tagging of a new member of the YUCCA family putative flavin monooxygenases. Plant Physiol. 2005, 139, 192–203. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.I.; Sharkhuu, A.; Jin, J.B.; Li, P.; Jeong, J.C.; Baek, D.; Lee, S.Y.; Blakeslee, J.J.; Murphy, A.S.; Bohnert, H.J.; et al. yucca6, a dominant mutation in Arabidopsis, affects auxin accumulation and auxin-related phenotypes. Plant Physiol. 2007, 145, 722–735. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xu, T.; Wang, H.; Feng, D. Genome-wide identification and expression analysis of the TaYUCCA gene family in wheat. Mol. Biol. Rep. 2021, 48, 1269–1279. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Kamiya, N.; Morinaka, Y.; Matsuoka, M.; Sazuka, T. Auxin Biosynthesis by the YUCCA Genes in Rice. Plant Physiol. 2007, 143, 1362–1371. [Google Scholar] [CrossRef]
- Expósito-Rodríguez, M.; Borges, A.A.; Borges-Pérez, A.; Hernández, M.; Pérez, J.A. Cloning and Biochemical Characterization of ToFZY, a Tomato Gene Encoding a Flavin Monooxygenase Involved in a Tryptophan-dependent Auxin Biosynthesis Pathway. J. Plant Growth Regul. 2007, 26, 329–340. [Google Scholar] [CrossRef]
- Expósito-Rodríguez, M.; Borges, A.A.; Borges-Pérez, A.; Pérez, J.A. Gene structure and spatiotemporal expression profile of tomato genes encoding YUCCA-like flavin monooxygenases: The ToFZY gene family. Plant Physiol. Biochem. 2011, 49, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Ying, Y.-Y.; Zhang, L.; Gao, Q.-H.; Li, J.; Zhang, Z.; Fang, J.-G.; Duan, K. Isolation and characterization of two YUCCA flavin monooxygenase genes from cultivated strawberry (Fragaria × ananassa Duch.). Plant Cell Rep. 2012, 31, 1425–1435. [Google Scholar] [CrossRef]
- Abu-Zaitoon, Y.M. Phylogenetic Analysis of Putative Genes Involved in the Tryptophan-Dependent Pathway of Auxin Biosynthesis in Rice. Appl. Biochem. Biotechnol. 2014, 172, 2480–2495. [Google Scholar] [CrossRef]
- Jung, S.; Lee, T.; Cheng, C.H.; Buble, K.; Zheng, P.; Yu, J.; Humann, J.; Ficklin, S.P.; Gasic, K.; Scott, K.; et al. 15 years of GDR: New data and functionality in the Genome Database for Rosaceae. Nucleic Acids Res. 2019, 47, D1137–D1145. [Google Scholar] [CrossRef]
- Verde, I.; Jenkins, J.; Dondini, L.; Micali, S.; Pagliarani, G.; Vendramin, E.; Paris, R.; Aramini, V.; Gazza, L.; Rossini, L.; et al. The Peach v2.0 release: High-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genom. 2017, 18, 225. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Zheng, T.; Zhuo, X.; Li, P.; Qiu, L.; Liu, W.; Wang, J.; Cheng, T.; Zhang, Q. Comparative gene expression analysis reveals that multiple mechanisms regulate the weeping trait in Prunus mume. Sci. Rep. 2021, 11, 2675. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, Y.; Yan, P.; He, C.; Zhang, J. Transcriptional and Hormonal Regulation of Weeping Trait in Salix matsudana. Genes 2017, 8, 359. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, H.; Wang, S.; Li, H. Genome-wide identification and expression analysis of the YUCCA gene family in soybean (Glycine max L.). Plant Growth Regul. 2017, 81, 265–275. [Google Scholar] [CrossRef]
- Song, C.; Zhang, D.; Zheng, L.; Shen, Y.; Zuo, X.; Mao, J.; Meng, Y.; Wu, H.; Zhang, Y.; Liu, X.; et al. Genome-wide identification and expression profiling of the YUCCA gene family in Malus domestica. Sci. Rep. 2020, 10, 10866. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Cai, D.; Potter, D.; Postman, J.; Liu, J.; Teng, Y. Phylogeny and evolutionary histories of Pyrus L. revealed by phylogenetic trees and networks based on data from multiple DNA sequences. Mol. Phylogenet. Evol. 2014, 80, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Sakata, T.; Oshino, T.; Miura, S.; Tomabechi, M.; Tsunaga, Y.; Higashitani, N.; Miyazawa, Y.; Takahashi, H.; Watanabe, M.; Higashitani, A. Auxins reverse plant male sterility caused by high temperatures. Proc. Natl. Acad. Sci. USA 2010, 107, 8569–8574. [Google Scholar] [CrossRef]
- Yao, X.; Tian, L.; Yang, J.; Zhao, Y.-N.; Zhu, Y.-X.; Dai, X.; Zhao, Y.; Yang, Z.-N. Auxin production in diploid microsporocytes is necessary and sufficient for early stages of pollen development. PLoS Genet. 2018, 14, e1007397. [Google Scholar] [CrossRef]
- Di, D.-W.; Wu, L.; Zhang, L.; An, C.-W.; Zhang, T.-Z.; Luo, P.; Gao, H.-H.; Kriechbaumer, V.; Guo, G.-Q. Functional roles of Arabidopsis CKRC2/YUCCA8 gene and the involvement of PIF4 in the regulation of auxin biosynthesis by cytokinin. Sci. Rep. 2016, 6, 36866. [Google Scholar] [CrossRef]
- Moghe, G.D.; Hufnagel, D.E.; Tang, H.; Xiao, Y.; Dworkin, I.; Town, C.D.; Conner, J.K.; Shiu, S.-H. Consequences of Whole-Genome Triplication as Revealed by Comparative Genomic Analyses of the Wild Radish Raphanus raphanistrum and Three Other Brassicaceae Species. Plant Cell 2014, 26, 1925–1937. [Google Scholar] [CrossRef]
- Cannon, S.B.; Mitra, A.; Baumgarten, A.; Young, N.D.; May, G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4, 10. [Google Scholar] [CrossRef] [Green Version]
Gene Name | Gene ID | Strand | Position | Transcript No. | CDS No. | Amino Acid No. | Molecular Weight (Da) | pI | Instability Index | Aliphatic Index | GRAVY | Location |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PpYUCCA1 | Prupe.1G054300 | + | Pp01:3818775-3820670 | 1 | 3 | 424 | 47245.45 | 9 | 47.25 | 89.62 | −0.158 | Cytoplasmic |
PpYUCCA2 | Prupe.1G401400 | − | Pp01:35432515-35435187 | 1 | 5 | 532 | 60781.52 | 6.45 | 40.37 | 78.97 | −0.261 | Extracellular |
PpYUCCA3 | Prupe.1G453400 | − | Pp01:38104726-38108612 | 2 | 7 | 477 | 52240.22 | 9.17 | 63.13 | 81.55 | −0.211 | Cytoplasmic |
PpYUCCA4 | Prupe.1G468500 | − | Pp01:39008965-39011716 | 1 | 4 | 409 | 45248.33 | 8.84 | 35.61 | 84.38 | −0.163 | Cytoplasmic |
PpYUCCA5 | Prupe.5G074800 | + | Pp05:8900638-8903781 | 1 | 7 | 467 | 52998.92 | 5.64 | 43.01 | 79.44 | −0.344 | Plasma membrane |
PpYUCCA6 | Prupe.5G074900 | + | Pp05:8904055-8907232 | 1 | 7 | 455 | 51384.34 | 6.15 | 38.17 | 80.53 | −0.401 | Plasma membrane |
PpYUCCA7 | Prupe.6G157500 | − | Pp06:14093728-14095013 | 1 | 1 | 224 | 24644.57 | 4.68 | 28.57 | 80 | −0.235 | Cytoplasmic |
PpYUCCA8 | Prupe.7G193500 | − | Pp07:18401078-18404874 | 1 | 5 | 521 | 59740.42 | 6.97 | 43.75 | 80.81 | −0.311 | Extracellular |
PpYUCCA9 | Prupe.7G231200 | + | Pp07:20262969-20266244 | 1 | 4 | 432 | 48257.2 | 8.52 | 37.57 | 90.3 | −0.053 | Cytoplasmic |
PpYUCCA10 | Prupe.8G014100 | + | Pp08:1154046-1156168 | 1 | 4 | 383 | 42744.13 | 8.78 | 37.17 | 87.99 | −0.191 | Cytoplasmic |
PpYUCCA11 | Prupe.8G177000 | − | Pp08:17881032-17883309 | 2 | 7 | 514 | 57946.66 | 6.26 | 47.05 | 82.84 | −0.135 | Extracellular |
PpYUCCA12 | Prupe.8G177100 | − | Pp08:17886297-17888935 | 1 | 5 | 528 | 59623.4 | 6.87 | 46.61 | 82.88 | −0.222 | Extracellular |
PpYUCCA13 | Prupe.8G211000 | − | Pp08:19516938-19519204 | 1 | 3 | 423 | 47290.8 | 9.06 | 45.81 | 84.99 | −0.145 | Cytoplasmic |
PpYUCCA14 | Prupe.8G252500 | − | Pp08:21655932-21658120 | 2 | 5 | 384 | 42867.25 | 8.67 | 38.03 | 86.02 | −0.181 | Cytoplasmic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Mao, Q.; Ma, R.; Xu, J.; Yu, M. Genome-Wide Identification and Expression Analysis of the PpYUCCA Gene Family in Weeping Peach Trees (Prunus persica ‘Pendula’). Horticulturae 2022, 8, 878. https://doi.org/10.3390/horticulturae8100878
Zhang Y, Mao Q, Ma R, Xu J, Yu M. Genome-Wide Identification and Expression Analysis of the PpYUCCA Gene Family in Weeping Peach Trees (Prunus persica ‘Pendula’). Horticulturae. 2022; 8(10):878. https://doi.org/10.3390/horticulturae8100878
Chicago/Turabian StyleZhang, Yuyan, Qinsi Mao, Ruijuan Ma, Jianlan Xu, and Mingliang Yu. 2022. "Genome-Wide Identification and Expression Analysis of the PpYUCCA Gene Family in Weeping Peach Trees (Prunus persica ‘Pendula’)" Horticulturae 8, no. 10: 878. https://doi.org/10.3390/horticulturae8100878
APA StyleZhang, Y., Mao, Q., Ma, R., Xu, J., & Yu, M. (2022). Genome-Wide Identification and Expression Analysis of the PpYUCCA Gene Family in Weeping Peach Trees (Prunus persica ‘Pendula’). Horticulturae, 8(10), 878. https://doi.org/10.3390/horticulturae8100878