Evapotranspiration Based Irrigation Trials Examine Water Requirement, Nitrogen Use, and Yield of Romaine Lettuce in the Salinas Valley
Abstract
:1. Introduction
2. Materials and Methods
2.1. Irrigation Trials
2.2. CropManage Calculations
2.3. Crop Evaluation
2.4. Comparative Water Use
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shock, C.; Pereira, A.; Hanson, B.; Cahn, M. Vegetable Irrigation. In Irrigation of Agricultural Crops, 2nd ed.; Lascano, R., Sojka, R., Eds.; American Society of Agronomy: Madison, WI, USA, 2007; pp. 535–604. [Google Scholar]
- California Department of Water Resources. Sustainable Groundwater Management Act (SGMA). Available online: https://water.ca.gov/programs/groundwater-management/sgma-groundwater-management (accessed on 17 August 2022).
- Harter, T.; Lund, J.R. Addressing Nitrate in California’s Drinking Water with a Focus on Tulare Lake Basin and Salinas Valley Groundwater; Report for the State Water Resources Control Board Report to the Legislature; Center for Watershed Sciences, University of California: Davis, CA, USA, 2012; Available online: https://ucanr.edu/sites/groundwaternitrate/ (accessed on 17 August 2022).
- Central Coast Regional Water Quality Control Board. General Waste Discharge Requirements for Discharges from Irrigated Lands. Attachment A: Findings. 2021. Available online: https://www.waterboards.ca.gov/centralcoast/water_issues/programs/ilp/docs/ag_order4/2021/ao4_att_a.pdf (accessed on 17 August 2022).
- Smith, R.; Cahn, M.; Hartz, T.; Love, P.; Farrara, B. Nitrogen dynamics of cole crop production: Implications for fertility management and environmental protection. HortSciences 2016, 51, 1586–1591. [Google Scholar] [CrossRef]
- Cahn, M.D. (U.C. Cooperative Extension). Unpublished data.
- Bozkurt, S.; Mansuroglu, G.; Kara, M.; Onder, S. Responses of lettuce to irrigation levels and nitrogen forms. Afr. J. Agric. Res. 2009, 4, 1171–1177. [Google Scholar]
- Karam, F.; Mounzer, O.; Sarkis, F.; Lahoud, R. Yield and nitrogen recovery of lettuce under different irrigation regimes. J. Appl. Hort. 2002, 4, 70–76. [Google Scholar] [CrossRef]
- Michelon, N.; Pennisi, G.; Myint, N.; Orsini, F.; Gianquinto, G. Strategies for improved water use efficiency (WUE) of field-grown lettuce (Lactuca sativa L.) under a semi-arid climate. Agronomy 2020, 10, 668. [Google Scholar] [CrossRef]
- Sanchez, C. Response of lettuce to water and nitrogen on sand and the potential for leaching of nitrate-N. HortScience 2000, 35, 73–77. [Google Scholar] [CrossRef]
- Gallardo, M.; Jackson, L.; Schulbach, K.; Snyder, R.; Thompson, R.; Wyland, L. Production and water use in lettuces under variable water supply. Irrig. Sci. 1996, 16, 125–137. [Google Scholar] [CrossRef]
- Dhungel, R.; Anderson, R.; French, A.; Saber, M.; Sanchez, C.; Scudiero, E. Assessing evapotranspiration in a lettuce crop with a two-source energy balance model. Irrig. Sci. 2022. [Google Scholar] [CrossRef]
- Temesgen, B.; Eching, S.; Davidoff, B.; Frame, K. Comparison of some reference evapotranspiration equations for California. J. Irrig. Drain. Eng. 2005, 131, 73–84. [Google Scholar] [CrossRef]
- Hart, Q.; Brugnach, M.; Temesgen, B.; Rueda, C.; Ustin, S.; Frame, K. Daily reference evapotranspiration for California using satellite imagery and weather station measurement interpolation. Civ. Engrg. Environ. Syst. 2009, 26, 19–33. [Google Scholar] [CrossRef]
- Ventura, F.; Faber, B.; Bali, K.; Snyder, R.; Spano, D.; Duce, P.; Schulbach, K. Model for estimating evaporation and transpiration from row crops. J. Irrig. Drain. Engrg. 2001, 127, 339–345. [Google Scholar] [CrossRef]
- Snyder, R.; Geng, S.; Orang, M.; Sarreshteh, S. Calculation and simulation of evapotranspiration of applied water. J. Integr. Agric. 2012, 11, 489–501. [Google Scholar] [CrossRef]
- Miras-Avalos, J.; Rubio-Asensio, J.; Ramirez-Cuesta, J.; Maestre-Valero, J.; Intrigliolo, D. Irrigation-Advisor—A decision support system for irrigation of vegetable crops. Water 2019, 11, 2245. [Google Scholar] [CrossRef]
- Gallardo, M.; Elia, A.; Thompson, R. Decision support systems and models for aiding irrigation and nutrient management of vegetable crops. Agric. Water Manag. 2020, 240, 106209. [Google Scholar] [CrossRef]
- Zinkernagel, J.; Maestre-Valero, J.; Sereste, S.; Intrigliolo, D. New technologies and practical approaches to improve irrigation management of open field vegetable crops. Agric. Water Manag. 2020, 242, 106404. [Google Scholar] [CrossRef]
- Cahn, M.; Smith, R.; Hartz, T.; Farrara, B.; Johnson, L.; Melton, F. Irrigation and nitrogen management decision support tool for cool season vegetables and berries. In Proceedings of the US Committee on Irrigation and Drainage, Water Management Conference, Sacramento, CA, USA, 4–7 March 2014. [Google Scholar]
- Cahn, M.; Johnson, L. New approaches to irrigation scheduling of vegetables. Special issue: Refining irrigation strategies in horticultural production. Horticulturae 2017, 3, 28. [Google Scholar] [CrossRef]
- Johnson, L.; Cahn, M.; Martin, F.; Melton, F.; Benzen, S.; Farrara, B.; Post, K. Evapotranspiration-based irrigation scheduling of lettuce and broccoli. HortSciences 2016, 51, 935–940. [Google Scholar] [CrossRef]
- Monterey County Agricultural Commission. Monterey County 2020 Crop Report. Available online: https://www.co.monterey.ca.us/home/showpublisheddocument/103876 (accessed on 17 August 2022).
- California Irrigation Management Information System. Available online: https://cimis.water.ca.gov/ (accessed on 17 August 2022).
- Breschini, S.; Hartz, T. Presidedress soil nitrate testing reduces nitrogen fertilizer use and nitrate leaching hazard in lettuce production. HortSciences 2002, 37, 1061–1064. [Google Scholar] [CrossRef]
- Gallardo, M.; Snyder, R.; Schulbach, K.; Jackson, L. Crop growth and water use model for lettuce. J. Irrig. Drain. Eng. 1996, 122, 354–359. [Google Scholar] [CrossRef]
- Bryla, D.; Trout, T.; Ayars, J. Weighing lysimeters for developing crop coefficients and efficient practices for vegetable crops. HortSciences 2010, 45, 1597–1604. [Google Scholar] [CrossRef]
- Smith, R.; Cahn, M.; Daugovish, O.; Koike, S.; Natwick, E.; Smith, H.; Subbarao, K.; Takele, E.; Turini, T.; Leaf lettuce production in California. UC Agricultural and Natural Resources, Publication No. 7216, 2011. Available online: https://anrcatalog.ucanr.edu/pdf/7216.pdf (accessed on 17 August 2022).
- Sammis, T. Comparison of sprinkler, trickle, subsurface, and furrow irrigation methods for row crops. Agron. J. 1980, 72, 701–704. [Google Scholar] [CrossRef]
- Thompson, T.; Doerge, T. Nitrogen and water rates for subsurface trickle-irrigated romaine lettuce. HortSciences 1995, 30, 1233–1237. [Google Scholar] [CrossRef] [Green Version]
- Kuslu, Y.; Dursun, A.; Sahin, U.; Kiziloglu, F.; Turan, M. Effect of deficit irrigation on curly lettuce grown under semiarid conditions. Span. J. Agric. Res. 2008, 6, 714–719. [Google Scholar] [CrossRef]
- Russo, D. Lettuce yield-irrigation water quality and quantity relationships in a gypsiferous desert soil. Agron. J. 1987, 79, 8–14. [Google Scholar] [CrossRef]
- Capra, A.; Consoli, S.; Russo, A.; Scicoloni, B. Intregrated agro-economic approach to deficit irrigation on lettuce crops. J. Irrig. Drain. Eng. 2008, 134, 437–445. [Google Scholar] [CrossRef]
- Sutton, B.; Merit, N. Maintenance of lettuce root zone at field capacity give best yields with drip irrigation. Sci. Hortic. 1993, 56, 1–11. [Google Scholar] [CrossRef]
- Monterey County Water Resources Agency. Monterey County Groundwater Extraction Summary Report. Available online: https://www.co.monterey.ca.us/home/showpublisheddocument/105304/637677507531170000 (accessed on 17 August 2022).
- Hanson, B.; Schwankl, L.; Schulbach, K.; Pettygrove, G. A comparison of furrow, surface drip, and subsurface drip irrigation on lettuce yield and applied water. Agric. Water Manag. 1997, 33, 139–157. [Google Scholar] [CrossRef]
- Hanson, B.; May, D.; Schwankl, L. Effect of irrigation frequency on subsurface drip irrigated vegetables. HortTechnology 2003, 13, 115–120. [Google Scholar] [CrossRef]
- Melton, F.; Huntington, J.; Grimm, R.; Herring, J.; Hall, M.; Rollison, D.; Erickson, T.; Allen, R.; Anderson, M.; Fisher, J.; et al. OpenET: Filling a critical data gap in water management for the western United States. J. Am. Water Resour. Assn. 2021. [Google Scholar] [CrossRef]
Applied Water (mm) | |||
---|---|---|---|
Irrigation Treatment | Establishment | Drip | Total |
------------------ 2015 --------------- | |||
50% | 66 | 67 | 133 |
75% | 66 | 93 | 159 |
100% | 66 | 119 | 185 |
150% | 66 | 169 | 235 |
------------------ 2016 --------------- | |||
50% | 82 | 91 | 173 |
75% | 82 | 130 | 211 |
100% | 82 | 165 | 247 |
150% | 82 | 239 | 321 |
Irrigation Treatment | Biomass Yield | Dry Matter Yield | Carton Yield | Untrimmed Plant wt. | Trimmed Plant wt. | Circumference |
---|---|---|---|---|---|---|
----------- kg ha−1 ----------- | ----- g plant−1 ------ | cm | ||||
---------------------- 2015 --------------------------- | ||||||
50% | 37,183a | 3328a | 26,501a | 540a | 378a | 76a |
75% | 49,154b | 3378a | 33,294b | 735b | 508b | 82b |
100% | 73,048c | 4006b | 50,569c | 1058c | 717c | 81b |
150% | 75,445c | 4058b | 47,902c | 1070c | 684c | 86c |
----------------------- 2016 -------------------------- | ||||||
50% | 42,602a | 3422a | 25,551a | 625a | 375a | 68a |
75% | 69,767b | 3852b | 44,528b | 1072b | 683b | 72b |
100% | 87,575c | 4311c | 57,403c | 1229c | 805c | 81c |
150% | 88,488c | 4014b | 57,224c | 1303c | 844c | 78c |
Treatment/Year | Leaf Count | Core Height |
---|---|---|
leaves/plant | cm | |
--------- Year Main Effects ------- | ||
Trial 1 (2015) | 57.8a | 7.9a |
Trial 2 (2016) | 59.9a | 8.6b |
--------- Irrigation Treatment Effects ------- | ||
50% | 56.7a | 6.9a |
75% | 57.9a | 7.9b |
100% | 60.3b | 9.1c |
150% | 60.5b | 9.1c |
Treatment/Year | Tissue N Content | Crop N Uptake | NRE |
---|---|---|---|
% | kg·ha−1 | % | |
------------- Year Effects ------------- | |||
Trial 1 (2015) | 3.2a | 119a | 88a |
Trial 2 (2016) | 3.4b | 133b | 63b |
--------- Irrigation Treatment Effects ------- | |||
50% | 3.1a | 105a | 64a |
75% | 3.4b | 122b | 73b |
100% | 3.4b | 141c | 85c |
150% | 3.3b | 135c | 82c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cahn, M.D.; Johnson, L.F.; Benzen, S.D. Evapotranspiration Based Irrigation Trials Examine Water Requirement, Nitrogen Use, and Yield of Romaine Lettuce in the Salinas Valley. Horticulturae 2022, 8, 857. https://doi.org/10.3390/horticulturae8100857
Cahn MD, Johnson LF, Benzen SD. Evapotranspiration Based Irrigation Trials Examine Water Requirement, Nitrogen Use, and Yield of Romaine Lettuce in the Salinas Valley. Horticulturae. 2022; 8(10):857. https://doi.org/10.3390/horticulturae8100857
Chicago/Turabian StyleCahn, Michael D., Lee F. Johnson, and Sharon D. Benzen. 2022. "Evapotranspiration Based Irrigation Trials Examine Water Requirement, Nitrogen Use, and Yield of Romaine Lettuce in the Salinas Valley" Horticulturae 8, no. 10: 857. https://doi.org/10.3390/horticulturae8100857
APA StyleCahn, M. D., Johnson, L. F., & Benzen, S. D. (2022). Evapotranspiration Based Irrigation Trials Examine Water Requirement, Nitrogen Use, and Yield of Romaine Lettuce in the Salinas Valley. Horticulturae, 8(10), 857. https://doi.org/10.3390/horticulturae8100857