Pheno-Morphological and Essential Oil Composition Responses to UVA Radiation and Protectants: A Case Study in Three Thymus Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Pheno-Morphological Evaluation
2.3. Essential Oil Isolation
2.4. Essential Oil Composition
2.5. Experimental Design and Statistical Analysis
3. Results
3.1. Phenological Responses to UVA and Protectant Treatments
3.2. Morphological Responses to UVA and Protectant Treatments
3.3. Essential Oil Composition Responses to UVA and Protectant Treatments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fowler, M.W. Plants, medicines and man. J. Sci. Food Agric. 2006, 86, 1797–1804. [Google Scholar] [CrossRef]
- Sharmeen, J.; Mahomoodally, F.; Zengin, G.; Maggi, F. Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef]
- Zhang, W.J.; Björn, L.O. The effect of ultraviolet radiation on the accumulation of medicinal compounds in plants. Fitoterapia 2009, 80, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Thamkaew, G.; Sjöholm, I.; Galindo, F.G. A review of drying methods for improving the quality of dried herbs. Crit. Rev. Food Sci. Nutr. 2021, 61, 1763–1786. [Google Scholar] [CrossRef]
- Dutta, T.; Anand, U.; Saha, S.C.; Mane, A.B.; Prasanth, D.A.; Kandimalla, R.; Proćków, J.; Dey, A. Advancing urban ethnopharmacology: A modern concept of sustainability, conservation and cross-cultural adaptations of medicinal plant lore in the urban environment. Conserv. Physiol. 2021, 9, 073. [Google Scholar] [CrossRef]
- Taheri-Garavand, A.; Mumivand, H.; Fanourakis, D.; Fatahi, S.; Taghipour, S. An artificial neural network approach for noninvasive estimation of essential oil content and composition through considering drying processing factors: A case study in Mentha aquatica. Ind. Crops Prod. 2021, 171, 113985. [Google Scholar] [CrossRef]
- Mumivand, H.; Ebrahimi, A.; Shayganfar, A.; Khoshro, H.H. Screening of tarragon accessions based on physiological and phytochemical responses under water deficit. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Kovács, V.; Gondor, O.; Szalai, G.; Majláth, I.; Janda, T.; Pál, M. UV-B radiation modifies the acclimation processes to drought or cadmium in wheat. Environ. Exp. Bot. 2014, 100, 122–131. [Google Scholar] [CrossRef] [Green Version]
- Mumivand, H.; Ebrahimi, A.; Morshedloo, M.R.; Shayganfar, A. Water deficit stress changes in drug yield, antioxidant enzymes activity and essential oil quality and quantity of Tarragon (Artemisia dracunculus L.). Ind. Crop. Prod. 2021, 164, 113381. [Google Scholar] [CrossRef]
- Brune, D.; Hellborg, R.; Persson, B.R.R.; Pääkkönen, R. Radiation: At Home, Outdoors and in the Workplace. Am. J. Phys. 2003, 71, 189–190. [Google Scholar] [CrossRef]
- Verdaguer, D.; Jansen, M.A.; Llorens, L.; Morales, L.O.; Neugart, S. UV-A radiation effects on higher plants: Exploring the known unknown. Plant Sci. 2017, 255, 72–81. [Google Scholar] [CrossRef]
- Kataria, S.; Devi Ahilya University; Baroniya, S.S.; Kanungo, M.; Bhaghel, L. Effect of Exclusion of Solar UV radiation on Plants. Plant Sci. Today 2014, 1, 224–232. [Google Scholar] [CrossRef]
- Helsper, J.P.F.G.; De Vos, C.H.R.; Maas, F.M.; Jonker, H.H.; Broeck, H.C.V.D.; Jordi, W.; Pot, C.S.; Keizer, L.C.P.; Schapendonk, A.H.C.M. Response of selected antioxidants and pigments in tissues of Rosa hybrida and Fuchsia hybrida to supplemental UV-A exposure. Physiol. Plant. 2003, 117, 171–178. [Google Scholar] [CrossRef]
- Yang, L.; Fanourakis, D.; Tsaniklidis, G.; Li, K.; Yang, Q.; Li, T. Contrary to Red, Blue Monochromatic Light Improves the Bioactive Compound Content in Broccoli Sprouts. Agronomy 2021, 11, 2139. [Google Scholar] [CrossRef]
- Chen, Y.; Fanourakis, D.; Tsaniklidis, G.; Aliniaeifard, S.; Yang, Q.; Li, T. Low UVA intensity during cultivation improves the lettuce shelf-life, an effect that is not sustained at higher intensity. Postharvest Biol. Technol. 2021, 172, 111376. [Google Scholar] [CrossRef]
- Shiozaki, N.; Hattori, I.; Gojo, R.; Tezuka, T. Activation of growth and nodulation in a symbiotic system between pea plants and leguminous bacteria by near-UV radiation. J. Photochem. Photobiol. B Biol. 1999, 50, 33–37. [Google Scholar] [CrossRef]
- Paschalidis, K.; Fanourakis, D.; Tsaniklidis, G.; Tzanakakis, V.A.; Bilias, F.; Samara, E.; Kalogiannakis, K.; Debouba, F.J.; Ipsilantis, I.; Tsoktouridis, G.; et al. Pilot Cultivation of the Vulnerable Cretan Endemic Verbascum arcturus L. (Scrophulariaceae): Effect of Fertilization on Growth and Quality Features. Sustainability 2021, 13, 14030. [Google Scholar] [CrossRef]
- Yao, Y.; Yang, Y.; Ren, J.; Li, C. UV-spectra dependence of seedling injury and photosynthetic pigment change in Cucumis sativus and Glycine max. Environ. Exp. Bot. 2005, 57, 160–167. [Google Scholar] [CrossRef]
- Krizek, D.T.; Chalker-Scott, L. Ultraviolet Radiation and Terrestrial Ecosystems. Photochem. Photobiol. 2005, 81, 1021–1025. [Google Scholar] [CrossRef]
- Shayganfar, A.; Azizi, M.; Rasouli, M. Various strategies elicited and modulated by elevated UV-B radiation and protectant compounds in Thymus species: Differences in response over treatments, acclimation and interaction. Ind. Crop. Prod. 2018, 113, 298–307. [Google Scholar] [CrossRef]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Nawaz, K.; Chaudhary, R.; Sarwar, A.; Ahmad, B.; Gul, A.; Hano, C.; Abbasi, B.; Anjum, S. Melatonin as Master Regulator in Plant Growth, Development and Stress Alleviator for Sustainable Agricultural Production: Current Status and Future Perspectives. Sustainability 2020, 13, 294. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Anee, T.I.; Fujita, M. Glutathione in plants: Biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biol. Plants 2017, 23, 249–268. [Google Scholar] [CrossRef]
- Paramo, L.A.; Feregrino-Pérez, A.A.; Guevara, R.; Mendoza, S.; Esquivel, K. Nanoparticles in Agroindustry: Applications, Toxicity, Challenges, and Trends. Nanomaterials 2020, 10, 1654. [Google Scholar] [CrossRef]
- Sangwan, N.S.; Farooqi, A.H.A.; Shabih, F.; Sangwan, R.S. Regulation of essential oil production in plants. Plant Growth Regul. 2001, 34, 3–21. [Google Scholar] [CrossRef]
- Prado, F.E.; Rosa, M.; Prado, C.; Podazza, G.; Interdonato, R.; González, J.A.; Hilal, M. UV-B Radiation, Its Effects and Defense Mechanisms in Terrestrial Plants. In Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change; Ahmad, P., Prasad, M., Eds.; Springer: New York, NY, USA, 2011; pp. 57–83. [Google Scholar]
- El-Saadony, M.T.; Almoshadak, A.S.; Shafi, M.E.; Albaqami, N.M.; Saad, A.M.; El-Tahan, A.M.; Desoky, E.-S.M.; Elnahal, A.S.; Almakas, A.; El-Mageed, T.A.A.; et al. Vital roles of sustainable nano-fertilizers in improving plant quality and quantity-an updated review. Saudi J. Biol. Sci. 2021, 28, 7349–7359. [Google Scholar] [CrossRef]
- Verdaguer, D.; Llorens, L.; Bernal, M.; Badosa, J. Photomorphogenic effects of UVB and UVA radiation on leaves of six Mediterranean sclerophyllous woody species subjected to two different watering regimes at the seedling stage. Environ. Exp. Bot. 2012, 79, 66–75. [Google Scholar] [CrossRef]
- Kataria, S.; Dehariya, P.; Guruprasad, K.; Pandey, G. Effect of Exclusion of Ambient Solar Uv-A/B Components on Growth and Antioxidant Response of Cotton (Gossypium Hirsutum L.). Acta Biol. Cracoviensia Ser. Bot. 2012, 54, 47–53. [Google Scholar] [CrossRef]
- Morales, R.V. The history, botany and taxonomy of the genus Thymus. In Thyme: The genus Thymus; Stahl-Biskup, E., Saez, F., Eds.; Taylor & Francis: London, UK, 2002; pp. 1–43. Available online: https://scirp.org/reference/ReferencesPapers.aspx?ReferenceID=2581722 (accessed on 16 February 2020).
- Foyo-Moreno, I.; Alados, I.; Olmo, F.; Alados-Arboledas, L. The influence of cloudiness on UV global irradiance (295–385 nm). Agric. For. Meteorol. 2003, 120, 101–111. [Google Scholar] [CrossRef]
- (IPCC) Climate IP on C Change. Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-frontmatter-1.pdf (accessed on 18 February 2020).
- Mumivand, H.; Shayganfar, A.; Hasanvand, F.; Maggi, F.; Alizadeh, A.; Darvishnia, M. Antimicrobial Activity and Chemical Composition of Essential Oil from Thymus daenensis and Thymus fedtschenkoi During Phenological Stages. J. Essent. Oil Bear. Plants 2021, 24, 469–479. [Google Scholar] [CrossRef]
- Rustaiee, A.R.; Mirahmadi, S.F.; Sefidkon, F.; Tabatabaei, M.F.; Omidbaigi, R. Essential Oil Content and Composition of Thymus fedtschenkoi Ronniger at Different Phenological Stages. J. Essent. Oil Bear. Plants 2011, 14, 625–629. [Google Scholar] [CrossRef]
- Jalas, J. Notes on Thymus L.(Labiatae) in Europe. I. Supraspecific classification and nomenclature. Bot. J. Linn. Soc. 1971, 64, 199–215. [Google Scholar]
- Rustaiee, A.R.; Yavari, A.; Nazeri, V.; Shokrpour, M.; Sefidkon, F.; Rasouli, M. Genetic Diversity and Chemical Polymorphism of SomeThymusSpecies. Chem. Biodivers. 2013, 10, 1088–1098. [Google Scholar] [CrossRef]
- Satyal, P.; Murray, B.L.; McFeeters, R.L.; Setzer, W.N. Essential Oil Characterization of Thymus vulgaris from Various Geographical Locations. Foods 2016, 5, 70. [Google Scholar] [CrossRef] [PubMed]
- q-lab. q-lab.com. 2018. Available online: https://www.q-lab.com/products/lamps-optical-filters/lamps-and-optical-filters (accessed on 16 October 2018).
- Fanourakis, D.; Papadopoulou, E.; Valla, A.; Tzanakakis, V.A.; Nektarios, P.A. Partitioning of transpiration to cut flower organs and its mediating role on vase life response to dry handling: A case study in chrysanthemum. Postharvest Biol. Technol. 2021, 181, 111636. [Google Scholar] [CrossRef]
- Mumivand, H.; Khanizadeh, P.; Morshedloo, M.R.; Sierka, E.; Żuk-Gołaszewska, K.; Horaczek, T.; Kalaji, H.M. Improvement of Growth, Yield, Seed Production and Phytochemical Properties of Satureja khuzistanica Jamzad by Foliar Application of Boron and Zinc. Plants 2021, 10, 2469. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation Carol Stream: Carol Stream, IL, USA, 2007. [Google Scholar]
- Mumivand, H.; Aghemiri, A.; Aghemiri, A.; Morshedloo, M.R.; Nikoumanesh, K. Ferulago angulata and Tetrataenium lasiopetalum: Essential oils composition and antibacterial activity of the oils and extracts. Biocatal. Agric. Biotechnol. 2019, 22, 101407. [Google Scholar] [CrossRef]
- Takeno, K. Stress-induced flowering. In Abiotic Stress Responses in Plants; Ahmad, P., Prassad, M.N.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 331–345. Available online: https://link.springer.com/book/10.1007/978-1-4614-0634-1#about (accessed on 22 February 2020).
- Migicovsky, Z.; Kovalchuk, I. Transgenerational changes in plant physiology and in transposon expression in response to UV-C stress in Arabidopsis thaliana. Plant Signal. Behav. 2014, 9, e976490. [Google Scholar] [CrossRef] [Green Version]
- Moreira-Rodríguez, M.; Nair, V.; Benavides, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. UVA, UVB Light Doses and Harvesting Time Differentially Tailor Glucosinolate and Phenolic Profiles in Broccoli Sprouts. Molecules 2017, 22, 1065. [Google Scholar] [CrossRef]
- Neugart, S.; Schreiner, M. UVB and UVA as eustressors in horticultural and agricultural crops. Sci. Hortic. 2018, 234, 370–381. [Google Scholar] [CrossRef]
Species | T. fedtschenkoi | T. vulgaris | |
---|---|---|---|
Trait | Plant Height (cm) | Leaf Dry Weight (g plant−1) | Stem Dry Weight (g plant−1) |
Control | 5.7 ab* | 45.8 b | 37.2 a |
Melatonin | 4.5 b | 49.4 a | 36.8 a |
Glutathione | 6.4 a | 47.4 ab | 38.7 a |
Nano-fertilizer | 4.2 b | 49.9 a | 32.8 b |
LSD | 1.521 | 7.408 | 15.77 |
Species | T. fedtschenkoi | T. daenensis | |||||
---|---|---|---|---|---|---|---|
UVA Levels | Protectant Treatments | Dry Weight loss (%) | Leaf Dry Weight (g plant−1) | Stem Dry Weight (g plant−1) | Stem Dry Weight (g plant−1) | Leaf/Stem Weight Ratio (%) | Plant Height (cm) |
ambient UVA | CON | 54.6 abc | 58.6 bcde | 21.0 a | 29.0 bcde | 22.4 bcde | 17.8 bc |
MEL | 56.0 abc* | 53.6 cdef | 21.0 a | 34.2 ab | 16.4 cde | 16.9 bcd | |
GLU | 63.8 a | 60.7 bcd | 19.7 ab | 36.8 a | 13.1 e | 21.3 ab | |
NAN | 54.4 abc | 52.0 def | 13.8 bcd | 22.0 e | 53.0 a | 9.4 e | |
enriched UVA | CON | 39.5 c | 49.7 ef | 18.9 abc | 34.4 ab | 15.1 de | 23.8 a |
MEL | 61.5 a | 63.8 bc | 12.0 d | 26.4 cde | 30.5 bc | 14.3 cde | |
GLU | 60.6 a | 47.5 f | 13.2 bcd | 33.4 abc | 17.5 cde | 16.7 bcd | |
NAN | 42.6 bc | 57.5 bcdef | 12.3 cd | 33.6 ab | 13.2 e | 18.9 abc | |
excluded UVA | CON | 57.9 ab | 67.4 b | 14.2 bcd | 28.8 bcde | 29.1 bcd | 14.9 cde |
MEL | 53.5 abc | 54.6 cdef | 18.9 ab | 23.8 de | 34.7 b | 11.6 de | |
GLU | 63.6 a | 56.9 bcdef | 18.1 abcd | 33.0 abc | 21.4 bcde | 18.3 abc | |
NAN | 22.1 d | 80.6 a | 22.0 a | 30.0 abcd | 31.9 b | 14.1 cde | |
LSD | 16.49 | 10.89 | 6.537 | 7.12 | 14.21 | 5.689 |
No | RI a | LIT RI b | Component | CON c | MEL | GLU | NAN | CON | MEL | GLU | NAN | CON | MEL | GLU | NAN |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ambient UVA | Enriched UVA | Excluded UVA | |||||||||||||
Monoterpene hydrocarbons | |||||||||||||||
1 | 926 | 924 | α-Thujene | 1.14 | 0.75 | 1.32 | 1.09 | 0.30 | 0.33 | 0.05 | 0.56 | 1.52 | 0.57 | 0.90 | 1.35 |
2 | 929 | 932 | α-Pinene | 0.54 | 0.34 | 0.57 | 0.53 | 0.13 | 0.15 | 0.02 | 0.25 | 0.68 | 0.24 | 0.44 | 0.56 |
3 | 949 | 946 | Camphene | 0.24 | 0.17 | 0.32 | 0.33 | 0.05 | 0.06 | 0.02 | 0.12 | 0.38 | 0.08 | 0.23 | 0.26 |
4 | 983 | 974 | β-Pinene | 0.20 | 0.14 | 0.19 | 0.22 | 0.04 | 0.06 | 0.02 | 0.08 | 0.27 | 0.08 | 0.18 | 0.22 |
5 | 1005 | 988 | β-Myrcene | 1.38 | 1.07 | 1.64 | 1.15 | 0.49 | 0.29 | 0.13 | 0.75 | 1.79 | 0.58 | 0.81 | 1.57 |
6 | 1008 | 1002 | α-Phellandrene | 0.17 | 0.13 | 0.19 | 0.16 | 0.06 | 0.03 | 0.02 | 0.07 | 0.25 | 0.08 | 0.11 | 0.19 |
7 | 1019 | 1014 | α-Terpinene | 0.75 | 0.65 | 1.12 | 0.83 | 0.40 | 0.16 | 0.10 | 0.48 | 1.25 | 0.38 | 0.46 | 0.86 |
8 | 1023 | 1020 | P-Cymene | 5.23 | 5.16 | 5.58 | 10.9 | 2.25 | 5.11 | 2.26 | 4.16 | 6.31 | 6.56 | 6.69 | 5.30 |
9 | 1029 | 1025 | β-Phellandrene | 0.36 | 0.30 | 0.38 | 0.41 | 0.10 | 0.13 | 0.06 | 0.16 | 0.48 | 0.20 | 0.33 | 0.40 |
Oxygenated monoterpenes | |||||||||||||||
10 | 1033 | 1026 | 1,8-Cineole | 0.74 | 0.50 | 0.23 | 1.23 | 0.09 | 0.17 | 0.07 | 0.60 | 0.78 | 0.30 | 0.66 | 0.77 |
11 | 1059 | 1054 | γ-Terpinene | 2.73 | 3.31 | 6.33 | 3.15 | 5.70 | 0.54 | 0.69 | 4.12 | 5.03 | 1.60 | 1.12 | 4.42 |
12 | 1065 | 1065 | Z-Sbinene hydrate | 0.30 | 0.48 | 0.26 | 0.40 | 0.08 | 0.12 | 0.11 | 0.21 | 0.40 | 0.32 | 0.47 | 0.42 |
13 | 1087 | 1086 | α-Terpinolene | 0.09 | 0.07 | 0.08 | 0.09 | 0.02 | 0.02 | 0.01 | 0.04 | 0.11 | 0.04 | 0.06 | 0.08 |
14 | Not identified | 0.20 | 0.04 | ||||||||||||
15 | 1099 | 1095 | Linalool | 0.69 | 0.90 | 0.78 | 0.68 | 0.19 | 0.23 | 0.22 | 0.19 | 0.91 | 0.38 | 0.84 | 0.63 |
16 | 1103 | 1098 | E-Sabinene hydrate | 0.07 | 0.01 | 0.05 | 0.09 | 0.01 | 0.05 | 0.00 | 0.01 | 0.11 | 0.07 | 0.00 | 0.11 |
17 | 1168 | 1165 | Borneol | 0.88 | 1.14 | 1.16 | 1.50 | 0.16 | 0.21 | 0.33 | 0.48 | 1.27 | 0.35 | 0.98 | 0.94 |
18 | 1175 | 1174 | Terpinen-4-ol | 0.27 | 0.32 | 0.18 | 0.31 | 0.04 | 0.08 | 0.06 | 0.06 | 0.29 | 0.13 | 0.31 | 0.20 |
19 | 1195 | 1186 | α-Terpineol | 0.10 | 0.11 | 0.07 | 0.13 | 0.02 | 0.04 | 0.02 | 0.07 | 0.12 | 0.08 | 0.12 | 0.14 |
20 | 1244 | 1232 | Thymol methyl ether | 0.08 | 0.10 | 0.07 | 0.14 | 0.01 | 0.03 | 0.01 | 0.02 | 0.12 | 0.04 | 0.12 | 0.08 |
21 | 1248 | 1241 | Carvacrol methyl ether | 6.09 | 6.29 | 5.87 | 7.97 | 2.40 | 3.75 | 3.93 | 4.58 | 6.74 | 3.21 | 7.03 | 5.82 |
22 | 1295 | 1289 | Thymol | 73.84 | 71.0 | 68.79 | 60.53 | 85.31 | 85.16 | 88.20 | 80.82 | 66.88 | 80.89 | 72.51 | 70.78 |
23 | 1299 | 1298 | Carvacrol | 0.07 | 0.19 | 0.03 | 0.03 | 0.05 | 0.02 | 0.02 | 0.03 | 0.06 | 0.41 | 0.06 | 0.16 |
Sesquiterpene hydrocarbons | |||||||||||||||
24 | 1419 | 1417 | E-Caryophyllene | 1.68 | 2.76 | 2.41 | 2.41 | 0.92 | 0.45 | 2.13 | 0.84 | 1.75 | 0.73 | 1.18 | 2.19 |
25 | 1459 | 1452 | α-Humulene | 0.06 | 0.10 | 0.06 | 0.09 | 0.03 | 0.02 | 0.05 | 0.03 | 0.06 | 0.03 | 0.05 | 0.07 |
26 | 1510 | 1505 | β-Bisabolene | 0.16 | 0.21 | 0.11 | 0.15 | 0.01 | 0.04 | 0.04 | 0.01 | 0.15 | 0.02 | 0.02 | 0.01 |
27 | 1517 | 1506 | Z-α-Bisabolene | 0.06 | 0.07 | 0.14 | 0.01 | 0.02 | 0.00 | 0.02 | 0.01 | 0.04 | 0.01 | 0.01 | 0.05 |
Oxygenated sesquiterpenes | |||||||||||||||
28 | Not identified | 0.01 | 0.11 | 0.03 | 0.61 | 0.01 | 0.00 | 0.00 | 0.01 | 0.06 | 0.12 | 0.12 | 0.03 | ||
29 | 1587 | 1577 | Spathulenol | 0.05 | 0.00 | 0.04 | 0.03 | 0.01 | 0.04 | 0.03 | 0.02 | 0.02 | 0.05 | 0.11 | 0.10 |
30 | 1589 | 1582 | Caryophyllene oxide | 0.42 | 0.69 | 0.35 | 1.25 | 0.05 | 0.31 | 0.21 | 0.11 | 0.40 | 0.50 | 0.74 | 0.42 |
31 | 1661 | 1652 | α-Cadinol | 0.17 | 0.15 | 0.10 | 0.31 | 0.01 | 0.05 | 0.05 | 0.02 | 0.11 | 0.28 | 0.31 | 0.08 |
32 | 1944 | 1937 | Cembrene | 0.26 | 0.24 | 0.15 | 0.49 | 0.02 | 0.08 | 0.07 | 0.03 | 0.16 | 0.40 | 0.46 | 0.12 |
33 | Not identified | 0.09 | 0.09 | 0.06 | 0.16 | 0.01 | 0.02 | 0.03 | 0.01 | 0.06 | 0.14 | 0.16 | 0.04 | ||
Total | 98.92 | 97.55 | 98.66 | 97.58 | 99.03 | 97.75 | 98.98 | 98.99 | 98.56 | 98.87 | 97.59 | 98.37 | |||
Essential oil content | 1.40 | 1.05 | 1.60 | 1.40 | 1.00 | 0.60 | 0.54 | 1.60 | 1.35 | 1.50 | 1.05 | 2.08 | |||
One percent up | 7 | 7 | 9 | 10 | 4 | 3 | 4 | 4 | 9 | 4 | 5 | 7 | |||
One percent down | 25 | 24 | 23 | 23 | 28 | 27 | 26 | 29 | 23 | 28 | 26 | 25 | |||
Monoterpene hydrocarbons | 10.01 | 8.71 | 11.31 | 15.62 | 3.86 | 6.32 | 2.68 | 6.63 | 12.93 | 8.77 | 10.15 | 10.71 | |||
Oxygenated monoterpenes | 85.95 | 84.42 | 83.9 | 76.45 | 94.08 | 90.42 | 93.67 | 91.27 | 82.82 | 87.82 | 84.28 | 84.55 | |||
Sesquiterpene hydrocarbons | 1.96 | 3.14 | 2.72 | 2.66 | 0.98 | 0.51 | 2.24 | 0.89 | 2.00 | 0.79 | 1.26 | 2.32 | |||
Oxygenated sesquiterpenes | 1.00 | 1.28 | 0.73 | 2.85 | 0.11 | 0.50 | 0.39 | 0.20 | 0.81 | 1.49 | 1.90 | 0.79 |
Species | UVA Level | Oil | 1% up | 1% down | MH b | OM | TM | SH | OS | TS |
---|---|---|---|---|---|---|---|---|---|---|
T. daenensis | Ambient UVA a | 5.45 | 33 | 95 | 11.41 | 82.68 | 94.09 | 2.62 | 1.47 | 4.09 |
Enriched UVA | 3.74 | 15 | 110 | 4.87 | 92.36 | 97.23 | 1.16 | 0.30 | 1.46 | |
Excluded UVA | 5.98 | 25 | 102 | 10.64 | 84.87 | 95.51 | 1.59 | 1.25 | 2.84 | |
T. fedtschenkoi | Ambiente UVA | 6.01 | 42 | 130 | 5.35 | 83.71 | 89.06 | 5.10 | 4.43 | 9.54 |
Enriched UVA | 7.15 | 44 | 130 | 4.96 | 86.28 | 91.23 | 3.52 | 4.01 | 7.52 | |
Excluded UVA | 5.73 | 40 | 126 | 5.50 | 88.51 | 94.01 | 2.48 | 2.15 | 4.62 | |
T. vulgaris | Ambiente UVA | 4.45 | 15 | 141 | 14.63 | 82.45 | 97.07 | 0.39 | 0.18 | 0.57 |
Enriched UVA | 4.54 | 42 | 120 | 21.13 | 73.78 | 94.90 | 1.38 | 0.71 | 2.09 | |
Excluded UVA | 4.50 | 12 | 143 | 13.27 | 83.34 | 96.61 | 0.43 | 0.34 | 0.77 |
No | RI a | LIT RI b | Component | CON c | MEL | GLU | NAN | CON | MEL | GLU | UAN | CON | MEL | DUG | DUN |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ambient UVA | Enriched UVA | Excluded UVA | |||||||||||||
Monoterpene hydrocarbons | |||||||||||||||
1 | 925 | 924 | α-Thujene | 0.08 | 0.04 | 0.23 | 0.09 | 0.07 | 0.07 | 0.03 | 0.10 | 0.15 | 0.03 | 0.04 | 0.06 |
2 | 933 | 932 | α-Pinene | 1.24 | 0.36 | 0.97 | 2.30 | 2.67 | 2.13 | 0.28 | 2.46 | 2.74 | 0.33 | 1.25 | 1.91 |
3 | 946 | 946 | Camphene | 1.56 | 0.51 | 1.44 | 0.94 | 0.83 | 1.97 | 0.46 | 2.70 | 3.18 | 0.76 | 0.75 | 1.72 |
4 | 974 | 969 | Sabinene | 0.91 | 0.20 | 0.41 | 0.43 | 0.28 | 0.31 | 0.18 | 0.47 | 0.48 | 0.59 | 0.14 | 0.18 |
5 | 975 | 974 | β-Pinene | 0.33 | 0.23 | 0.51 | 0.31 | 0.22 | 0.38 | 0.15 | 0.57 | 0.64 | 0.14 | 0.15 | 0.28 |
6 | 976 | 974 | 1-Octen-3-ol | 0.08 | 0.07 | 0.15 | 0.07 | 0.05 | 0.13 | 0.09 | 0.04 | 0.08 | 0.05 | 0.20 | 0.04 |
7 | 999 | 988 | β-Myrcene | 3.68 | 0.14 | 0.37 | 0.31 | 0.25 | 0.23 | 0.11 | 0.30 | 0.40 | 2.92 | 0.16 | 0.18 |
8 | 1001 | 988 | 3-Octanol | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.02 | 0.01 | 0.05 | 0.01 |
9 | 1007 | 1002 | α-Phellandrene | 0.03 | 0.01 | 0.04 | 0.05 | 0.04 | 0.05 | 0.02 | 0.02 | 0.04 | 0.02 | 0.02 | 0.02 |
10 | 1017 | 1014 | α-Terpinene | 0.06 | 0.10 | 0.11 | 0.29 | 0.13 | 0.12 | 0.06 | 0.09 | 0.11 | 0.04 | 0.04 | 0.02 |
11 | 1025 | 1020 | P-Cymene | 0.17 | 0.15 | 0.70 | 0.23 | 0.16 | 0.19 | 0.11 | 0.11 | 0.4 | 0.07 | 0.18 | 0.05 |
12 | 1027 | 1025 | β-Phellandrene | 0.68 | 0.13 | 0.26 | 0.40 | 0.41 | 0.37 | 0.09 | 0.31 | 0.43 | 0.39 | 0.21 | 0.30 |
Oxygenated monoterpenes | |||||||||||||||
13 | 1029 | 1026 | 1,8-Cineole | 3.01 | 4.21 | 5.58 | 4.42 | 2.87 | 6.49 | 3.94 | 7.50 | 4.85 | 1.66 | 2.27 | 4.43 |
14 | 1037 | 1032 | Z-β-Ocimene | 0.02 | 0.04 | 0.12 | 0.12 | 0.07 | 0.05 | 0.03 | 0.01 | 0.04 | 0.01 | 0.05 | 0.00 |
15 | Not identified | 0.15 | 0.27 | 0.99 | 1.00 | 0.57 | 0.58 | 0.35 | 0.10 | 0.45 | 0.11 | 0.48 | 0.01 | ||
16 | 1059 | 1054 | γ-Terpinene | 0.16 | 0.16 | 0.48 | 0.49 | 0.21 | 0.16 | 0.11 | 0.13 | 0.41 | 0.09 | 0.09 | 0.02 |
17 | 1066 | 1065 | Cis-Sabinene hydrate | 2.83 | 3.23 | 0.39 | 14.4 | 10.4 | 2.28 | 8.75 | 4.21 | 4.21 | 2.12 | 1.01 | 0.44 |
18 | 1067 | 1067 | Linalool oxide | 0.20 | 0.70 | 0.30 | 0.86 | 0.54 | 1.62 | 0.45 | 0.63 | 0.13 | 0.30 | 0.87 | 0.73 |
19 | 1088 | 1086 | α-Terpinolene | 0.21 | 0.57 | 0.20 | 0.74 | 0.45 | 1.20 | 0.33 | 0.54 | 0.07 | 0.24 | 0.67 | 0.62 |
20 | 1099 | 1095 | Linalool | 31.8 | 68.22 | 62.9 | 46.6 | 57.5 | 57.53 | 58.4 | 55.3 | 56.8 | 28.14 | 75.7 | 66.8 |
21 | 1144 | 1141 | Camphor | 2.07 | 1.04 | 1.44 | 1.91 | 1.81 | 1.24 | 2.11 | 4.07 | 3.52 | 2.07 | 1.90 | 5.40 |
22 | 1169 | 1165 | Borneol | 3.17 | 2.80 | 3.81 | 3.63 | 3.02 | 8.69 | 3.54 | 6.03 | 4.23 | 2.93 | 2.07 | 4.90 |
23 | 1177 | 1174 | Terpinen-4-ol | 0.34 | 0.62 | 0.12 | 1.95 | 0.93 | 1.04 | 0.75 | 0.66 | 0.23 | 0.29 | 0.24 | 0.19 |
24 | 1190 | 1186 | α-Terpineol | 35.4 | 1.01 | 0.65 | 0.94 | 0.71 | 0.82 | 3.81 | 1.11 | 0.53 | 46.18 | 1.45 | 3.83 |
25 | 1195 | 1191 | Cis-Dihydro carvone | 35.4 | 0.08 | 0.09 | 0.09 | 0.01 | 0.14 | 0.06 | 0.19 | 0.17 | 46.18 | 0.03 | 0.19 |
26 | 1206 | 1201 | n-Decanal | 0.05 | 0.04 | 0.13 | 0.09 | 0.09 | 0.08 | 0.07 | 0.05 | 0.08 | 0.08 | 0.05 | 0.07 |
27 | 1233 | 1227 | Nerol | 0.17 | 0.20 | 0.19 | 0.24 | 0.19 | 0.14 | 0.22 | 0.13 | 0.12 | 0.10 | 0.13 | 0.12 |
28 | 1246 | 1241 | Carvacrol methyl ether | 0.11 | 0.12 | 0.47 | 0.24 | 0.17 | 0.15 | 0.20 | 0.18 | 0.38 | 0.08 | 0.29 | 0.11 |
29 | 1267 | 1260 | 2-Decenal (E) | 0.08 | 0.09 | 0.16 | 0.17 | 0.14 | 0.11 | 0.14 | 0.18 | 0.15 | 0.08 | 0.35 | 0.15 |
30 | 1289 | 1284 | Bornyl acetate | 0.34 | 0.07 | 0.10 | 0.11 | 0.21 | 0.53 | 0.24 | 0.46 | 0.54 | 0.40 | 0.24 | 0.71 |
31 | 1291 | 1289 | Thymol | 2.5 | 3.43 | 5.24 | 3.75 | 3.11 | 2.4 | 8.14 | 3.54 | 6.62 | 3 | 3.59 | 2.23 |
Sesquiterpene hydrocarbons | |||||||||||||||
32 | 1388 | 1389 | β-elemene | 0.03 | 0.03 | 0.10 | 0.03 | 0.03 | 0.04 | 0.03 | 0.05 | 0.07 | 0.03 | 0.01 | 0.00 |
33 | 1390 | 1387 | β-Bourbonene | 0.13 | 0.21 | 0.10 | 0.05 | 0.06 | 0.07 | 0.08 | 0.14 | 0.06 | 0.09 | 0.01 | 0.02 |
34 | 1422 | 1417 | E-Caryophyllene | 2.57 | 3.82 | 5.42 | 2.23 | 2.05 | 2.24 | 1.73 | 3.14 | 1.75 | 1.35 | 1.80 | 0.63 |
35 | Not identified | 0.09 | 0.13 | 0.19 | 0.07 | 0.07 | 0.08 | 0.06 | 0.10 | 0.08 | 0.06 | 0.06 | 0.02 | ||
36 | 1489 | 1484 | Germacrene D | 0.44 | 0.64 | 0.83 | 0.20 | 0.28 | 0.15 | 0.42 | 0.57 | 0.62 | 0.63 | 0.33 | 0.19 |
37 | 1513 | 1505 | β-Bisabolene | 0.48 | 0.48 | 1.47 | 0.41 | 0.45 | 0.55 | 0.53 | 0.75 | 1.04 | 0.41 | 0.18 | 0.05 |
38 | Not identified | 0.08 | 0.07 | 0.04 | 0.07 | 0.24 | 0.09 | 0.02 | 0.05 | 0.05 | 0.30 | 0.05 | 0.02 | ||
Oxygenated sesquiterpenes | |||||||||||||||
39 | 1570 | 1561 | E-Nerolidol | 0.08 | 2.05 | 0.13 | 6.38 | 5.18 | 1.97 | 0.07 | 0.05 | 0.64 | 0.45 | 0.04 | 1.71 |
40 | 1579 | 1577 | Spathulenol | 0.42 | 0.21 | 0.32 | 0.21 | 0.28 | 0.23 | 0.33 | 0.12 | 0.23 | 0.33 | 0.08 | 0.03 |
41 | 1588 | 1582 | Caryophyllene oxide | 2.32 | 1.89 | 1.24 | 1.83 | 1.87 | 2.15 | 1.84 | 1.48 | 1.30 | 1.21 | 1.47 | 0.44 |
42 | 1643 | Agaruspirol | 0.08 | 0.13 | 0.05 | 0.05 | 0.06 | 0.05 | 0.06 | 0.04 | 0.18 | 0.23 | 0.04 | 0.05 | |
43 | 1669 | epi-α-Bisabolol | 0.16 | 0.09 | 0.04 | 0.05 | 0.06 | 0.05 | 0.07 | 0.06 | 0.05 | 0.05 | 0.04 | 0.01 | |
Total | 98.42 | 98.6 | 98.54 | 98.82 | 98.81 | 98.88 | 98.51 | 98.82 | 98.32 | 98.37 | 98.84 | 98.98 | |||
Essential oil content | 1.0 | 1.00 | 1.75 | 2.26 | 2.40 | 1.57 | 1.35 | 1.83 | 0.80 | 1.68 | 1.50 | 1.75 | |||
One percent up | 12 | 10 | 9 | 11 | 10 | 14 | 9 | 11 | 11 | 10 | 10 | 9 | |||
One percent down | 31 | 34 | 34 | 31 | 33 | 30 | 35 | 32 | 31 | 32 | 32 | 31 | |||
Monoterpene hydrocarbons | 8.83 | 1.95 | 5.20 | 5.42 | 5.11 | 5.96 | 1.59 | 7.17 | 8.67 | 5.35 | 3.19 | 4.77 | |||
Oxygenated monoterpenes | 82.71 | 86.9 | 83.41 | 81.82 | 83.07 | 85.25 | 91.68 | 85.1 | 83.58 | 87.88 | 91.54 | 91.04 | |||
Sesquiterpene hydrocarbons | 3.82 | 5.38 | 8.15 | 3.06 | 3.18 | 3.22 | 2.87 | 4.8 | 3.67 | 2.87 | 2.44 | 0.93 | |||
Oxygenated sesquiterpenes | 3.06 | 4.37 | 1.78 | 8.52 | 7.45 | 4.45 | 2.37 | 1.75 | 2.40 | 2.27 | 1.67 | 2.24 |
No | RI a | LIT RI b | Component | CON c | MEL | GLU | NAN | CON | MEL | GLU | NAN | CON | MEL | GLU | NAN |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ambient UVA | Enriched UVA | Excluded UVA | |||||||||||||
Monoterpene hydrocarbons | |||||||||||||||
1 | 923 | 924 | α-Thujene | 0.38 | 0.39 | 0.42 | 0.47 | 1.10 | 1.55 | 1.62 | 1.23 | 0.46 | 0.38 | 0.35 | 0.47 |
2 | 933 | 932 | α-Pinene | 0.19 | 0.18 | 0.20 | 0.36 | 0.55 | 0.75 | 1.10 | 0.62 | 0.22 | 0.19 | 0.17 | 0.29 |
3 | 947 | 946 | Camphene | 0.12 | 0.10 | 0.11 | 0.38 | 0.26 | 0.41 | 0.95 | 0.34 | 0.14 | 0.11 | 0.09 | 0.22 |
4 | 973 | 969 | Sabinene | 0.00 | 0.00 | 0.01 | 0.04 | 0.03 | 0.00 | 0.12 | 0.04 | 0.10 | 0.02 | 0.02 | 0.02 |
5 | 975 | 974 | β-Pinene | 0.08 | 0.08 | 0.06 | 0.12 | 0.18 | 0.27 | 0.35 | 0.21 | 0.07 | 0.06 | 0.06 | 0.08 |
6 | 977 | 974 | 1-Octen-3-ol | 0.49 | 0.42 | 0.42 | 0.29 | 1.84 | 1.58 | 1.04 | 1.34 | 0.57 | 0.41 | 0.28 | 0.33 |
7 | 990 | 988 | β-Myrcene | 0.61 | 0.59 | 0.56 | 0.51 | 1.47 | 2.02 | 1.47 | 1.73 | 0.66 | 0.55 | 0.59 | 0.67 |
8 | 992 | 988 | 3-Octanol | 0.02 | 0.03 | 0.03 | 0.03 | 0.13 | 0.10 | 0.10 | 0.10 | 0.03 | 0.03 | 0.02 | 0.02 |
9 | 1005 | 1002 | α-Phellandrene | 0.06 | 0.06 | 0.07 | 0.07 | 0.18 | 0.21 | 0.22 | 0.20 | 0.07 | 0.07 | 0.06 | 0.07 |
10 | 1007 | 1008 | δ-3-Carene | 0.02 | 0.03 | 0.03 | 0.03 | 0.07 | 0.09 | 0.09 | 0.07 | 0.03 | 0.02 | 0.00 | 0.03 |
11 | 1017 | 1014 | α-Terpinene | 0.62 | 0.64 | 0.64 | 1.00 | 1.88 | 2.26 | 2.53 | 2.08 | 0.75 | 0.72 | 0.69 | 0.79 |
12 | 1022 | 1020 | P- Cymene | 15.45 | 12.17 | 9.01 | 10.23 | 13.84 | 11.68 | 12.67 | 9.61 | 13.28 | 8.27 | 9.22 | 10.63 |
13 | 1027 | 1025 | β-Phellandrene | 0.17 | 0.15 | 0.15 | 0.21 | 0.47 | 0.57 | 0.69 | 0.49 | 0.17 | 0.16 | 0.16 | 0.19 |
Oxygenated monoterpenes | |||||||||||||||
14 | 1029 | 1026 | 1,8-Cineole | 0.21 | 0.20 | 0.18 | 0.58 | 0.60 | 0.64 | 1.37 | 0.98 | 0.22 | 0.30 | 0.25 | 0.12 |
15 | 1055 | 1054 | γ-Terpinene | 21.36 | 21.1 | 19.88 | 27.24 | 16.46 | 17.95 | 17.94 | 18.21 | 20.61 | 21.62 | 20.97 | 26.49 |
16 | 1056 | 1065 | Z-Sabinene hydrate | 0.67 | 0.60 | 0.61 | 0.65 | 2.23 | 1.96 | 1.82 | 1.94 | 0.69 | 0.91 | 0.80 | 0.58 |
17 | 1066 | 1067 | Linalool oxide | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 |
18 | 1088 | 1086 | α-Terpinolene | 0.03 | 0.03 | 0.03 | 0.04 | 0.09 | 0.10 | 0.13 | 0.08 | 0.03 | 0.02 | 0.03 | 0.03 |
19 | Not Identified | 0.08 | 0.10 | 0.13 | 0.25 | 0.37 | 0.11 | ||||||||
20 | 1099 | 1098 | E-Sabinene hydrate | 0.63 | 0.65 | 1.19 | 0.37 | 1.97 | 1.68 | 0.99 | 2.36 | 0.78 | 0.89 | 0.81 | 0.67 |
21 | 1148 | 1141 | Camphor | 0.03 | 0.03 | 0.05 | 0.01 | 0.10 | 0.11 | 0.05 | 0.08 | 0.02 | 0.02 | 0.02 | 0.02 |
22 | 1169 | 1165 | Borneol | 0.63 | 0.53 | 0.51 | 2.09 | 1.20 | 1.34 | 3.87 | 1.34 | 0.55 | 0.53 | 0.38 | 0.94 |
23 | 1177 | 1174 | Terpinen-4-ol | 0.11 | 0.11 | 0.11 | 0.13 | 0.43 | 0.32 | 0.37 | 0.38 | 0.12 | 0.17 | 0.16 | 0.10 |
24 | 1193 | 1186 | α-Terpineol | 0.06 | 0.06 | 0.18 | 0.08 | 0.25 | 0.18 | 0.23 | 0.21 | 0.06 | 0.13 | 0.08 | 0.05 |
25 | 1239 | 1232 | Thymol methyl ether | 0.07 | 0.05 | 0.05 | 0.05 | 0.05 | 0.18 | 0.13 | 0.16 | 0.07 | 0.03 | 0.08 | 0.05 |
26 | Not Identified | 0.01 | 0.01 | 0.02 | 0.01 | 0.20 | 0.05 | 0.05 | 0.14 | 0.01 | 0.00 | 0.02 | 0.07 | ||
27 | 1254 | 1241 | Carvacrol methyl ether | 0.07 | 0.06 | 0.10 | 0.01 | 0.05 | 0.21 | 0.06 | 0.15 | 0.11 | 0.07 | 0.08 | 0.04 |
28 | 1271 | 1260 | 2-Decenal (E) | 0.07 | 0.07 | 0.07 | 0.03 | 0.18 | 0.20 | 0.09 | 0.15 | 0.08 | 0.04 | 0.05 | 0.04 |
29 | 1289 | 1284 | Bornyl acetate | 0.12 | 0.11 | 0.14 | 0.03 | 0.27 | 0.35 | 0.12 | 0.27 | 0.17 | 0.12 | 0.12 | 0.07 |
30 | 1294 | 1289 | Thymol | 0.09 | 0.07 | 0.08 | 0.06 | 0.38 | 0.34 | 0.17 | 0.27 | 0.09 | 0.08 | 0.10 | 0.04 |
31 | 1306 | 1298 | Carvacrol | 54.15 | 58.98 | 62.07 | 51.96 | 47.69 | 48.23 | 43.35 | 50.73 | 56.86 | 59.2 | 60.47 | 54.78 |
Sesquiterpene hydrocarbons | |||||||||||||||
32 | 1422 | 1417 | E-Caryophyllene | 0.22 | 0.19 | 0.29 | 0.24 | 0.91 | 0.85 | 1.04 | 0.66 | 0.20 | 0.24 | 0.34 | 0.27 |
33 | 1459 | 1452 | α-Humulene | 0.02 | 0.01 | 0.02 | 0.01 | 0.05 | 0.03 | 0.04 | 0.04 | 0.01 | 0.03 | 0.02 | 0.01 |
34 | 1489 | 1484 | Germacrene D | 0.09 | 0.09 | 0.12 | 0.06 | 0.37 | 0.35 | 0.20 | 0.36 | 0.09 | 0.16 | 0.15 | 0.07 |
35 | 1512 | 1505 | β-Bisabolene | 0.00 | 0.07 | 0.02 | 0.00 | 0.10 | 0.06 | 0.02 | 0.07 | 0.01 | 0.00 | 0.01 | 0.00 |
36 | 1533 | 1522 | δ-Cadinene | 0.03 | 0.02 | 0.04 | 0.02 | 0.10 | 0.1 | 0.07 | 0.09 | 0.02 | 0.04 | 0.03 | 0.02 |
Oxygenated sesquiterpenes | |||||||||||||||
37 | 1566 | 1561 | E-Nerolidol | 0.02 | 0.02 | 0.03 | 0.01 | 0.07 | 0.05 | 0.03 | 0.07 | 0.01 | 0.03 | 0.06 | 0.01 |
38 | 1579 | 1577 | Spathulenol | 0.02 | 0.02 | 0.03 | 0.04 | 0.08 | 0.05 | 0.14 | 0.03 | 0.02 | 0.08 | 0.02 | 0.03 |
39 | 1589 | 1582 | Caryophyllene oxide | 0.10 | 0.07 | 0.09 | 0.09 | 0.34 | 0.34 | 0.31 | 0.28 | 0.08 | 0.12 | 0.20 | 0.07 |
40 | 1598 | 1592 | Viridiflorol | 0.01 | 0.03 | 0.01 | 0.01 | 0.25 | 0.05 | 0.02 | 0.21 | 0.02 | 0.18 | 0.06 | 0.05 |
41 | Not Identified | 0.04 | 0.03 | 0.04 | 0.02 | 0.15 | 0.12 | 0.06 | 0.19 | 0.04 | 0.13 | 0.06 | 0.08 | ||
Total | 97.15 | 98.05 | 97.68 | 97.69 | 96.95 | 97.59 | 95.89 | 97.52 | 97.52 | 96.27 | 97.19 | 98.51 | |||
Essential oil content | 1.30 | 1.10 | 1.05 | 1.00 | 0.94 | 1.50 | 1.00 | 1.10 | 1.00 | 0.90 | 0.80 | 1.80 | |||
One percent up | 3 | 3 | 4 | 5 | 10 | 10 | 12 | 10 | 3 | 3 | 3 | 3 | |||
One percent down | 35 | 35 | 36 | 35 | 31 | 30 | 29 | 30 | 36 | 36 | 36 | 35 | |||
Monoterpene hydrocarbons | 18.21 | 14.84 | 11.71 | 13.74 | 22 | 21.49 | 22.95 | 18.06 | 16.55 | 10.99 | 11.71 | 13.81 | |||
Oxygenated monoterpenes | 78.39 | 82.66 | 85.28 | 83.45 | 72.53 | 74.1 | 71.01 | 77.46 | 80.47 | 84.27 | 84.53 | 84.09 | |||
Sesquiterpene hydrocarbons | 0.36 | 0.38 | 0.49 | 0.33 | 1.53 | 1.39 | 1.37 | 1.22 | 0.33 | 0.47 | 0.55 | 0.37 | |||
Oxygenated sesquiterpenes | 0.19 | 0.17 | 0.2 | 0.17 | 0.89 | 0.61 | 0.56 | 0.78 | 0.17 | 0.54 | 0.4 | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mumivand, H.; Shayganfar, A.; Tsaniklidis, G.; Emami Bistgani, Z.; Fanourakis, D.; Nicola, S. Pheno-Morphological and Essential Oil Composition Responses to UVA Radiation and Protectants: A Case Study in Three Thymus Species. Horticulturae 2022, 8, 31. https://doi.org/10.3390/horticulturae8010031
Mumivand H, Shayganfar A, Tsaniklidis G, Emami Bistgani Z, Fanourakis D, Nicola S. Pheno-Morphological and Essential Oil Composition Responses to UVA Radiation and Protectants: A Case Study in Three Thymus Species. Horticulturae. 2022; 8(1):31. https://doi.org/10.3390/horticulturae8010031
Chicago/Turabian StyleMumivand, Hasan, Alireza Shayganfar, Georgios Tsaniklidis, Zohreh Emami Bistgani, Dimitrios Fanourakis, and Silvana Nicola. 2022. "Pheno-Morphological and Essential Oil Composition Responses to UVA Radiation and Protectants: A Case Study in Three Thymus Species" Horticulturae 8, no. 1: 31. https://doi.org/10.3390/horticulturae8010031
APA StyleMumivand, H., Shayganfar, A., Tsaniklidis, G., Emami Bistgani, Z., Fanourakis, D., & Nicola, S. (2022). Pheno-Morphological and Essential Oil Composition Responses to UVA Radiation and Protectants: A Case Study in Three Thymus Species. Horticulturae, 8(1), 31. https://doi.org/10.3390/horticulturae8010031