Optimizing Seed Germination and Seedling Growth in Different Kiwifruit Genotypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Treatments
2.3. Data and Statistical Analysis
3. Results
3.1. Germination Characteristics
3.2. Seedling Growth Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guroo, I.; Wani, S.; Wani, S.; Ahmad, M.; Mir, S.; Masoodi, F. A review of production and processing of kiwifruit. J. Food. Proc. Technol. 2017, 8, 1–6. [Google Scholar] [CrossRef]
- Ministry of Agriculture Jihad. Agricultural Production Statistics; Ministry of Agriculture Jihad: Tehran, Iran. Available online: https://irandataportal.syr.edu/ministry-of-agriculture (accessed on 5 August 2021). (In Persian).
- FAOSTAT (Food and Agriculture Organization of the United Nations). Statistics Database. Available online: http://www.fao.org/faostat/en/#data (accessed on 2 August 2021).
- Çelik, H.; Zenginbal, H.; Özcan, M. Enhancing germination of kiwifruit seeds with temperature, medium and gibberellic acid. Hortic. Sci. 2006, 33, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Strik, B.; Cahn, H. Growing Kiwifruit, EC 1464; Oregon State University: Corvallis, OR, USA, 1994. [Google Scholar]
- Sale, R.P. Kiwifruit Culture; V.R. Ward Government Printer: Wellington, New Zealand, 1985. [Google Scholar]
- Kim, I.S.; Hwang, J.L.; Han, K.P.; Lee, K.E. Studies on the germination of seeds in native Actinidia species. Hortic. Abstr. 1998, 58, 7336. [Google Scholar]
- Baskin, C.C.; Baskin, J.M. Germination ecophysiology of herbaceous plant species in a temperate region. Am. J. Bot. 1988, 75, 286–305. [Google Scholar] [CrossRef]
- Hsieh, T.; Nee, C.; Chien, C. Seed germination of Taiwanese Actinidia latifolia (Gardn. and Champ.). Merr. Taiwan J. For. Sci. 2004, 19, 173–176. [Google Scholar]
- Windauer, L.B.; Insausti, P.; Biganzoli, F.; Benech-Arnold, R.; Izaguirre, M.M. Dormancy and germination responses of kiwifruit (Actinidia deliciosa) seeds to environmental cues. Seed Sci. Res. 2016, 26, 342–350. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Kong, L.; Tang, H. Effects of different treatment methods on seed germination of kiwifruit. IOP Conf. Ser. Mater. Sci. Eng. 2018, 394, 1–6. [Google Scholar] [CrossRef]
- Bishwas, K.; Amit, K.; Santosh, S.; Raj, K.K.; Dipendra, R. Effect of GA3 on germination parameters of different varieties of kiwi. Curr. Investig. Agric. Curr. Res. 2018, 165, 338–341. [Google Scholar] [CrossRef]
- Sekhukhune, M.K.; Maila, M.Y.; Nikolova, R.V.; Mphosi, M.S. Preliminary studies on in vivo germination of Actinidia arguta and Actinidia chinensis. Acta Hortic. 2016, 1204, 123–131. [Google Scholar] [CrossRef]
- Atak, A.; Yalçın, T. Effects of different applications on rooting of Actinidia deliciosa ‘Hayward’ hardwood and softwood cuttings. Acta Hortic. 2015, 1096, 117–126. [Google Scholar] [CrossRef]
- González-Puelles, J.E.; Landin, M.; Gallego, P.P.; Barreal, M.E. Deciphering kiwifruit seed germination using neural network tools. Acta Hortic. 2018, 1218, 359–365. [Google Scholar] [CrossRef]
- Inglis, G.J.; Waycott, M. Methods for assessing seagrass seed ecology and population genetics. In Global Seagrass Research Methods; Short, F.T., Coles, R.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 123–140. [Google Scholar]
- Soltani, A.; Madah, V. Simple Applied Programs for Education and Research in Agriculture; Niac Press Publication: Dublin, Ireland, 2009; p. 80. [Google Scholar]
- SAS. Statistical Analysis System. SAS Release 9.1 for Windows; SAS Institute Inc.: Cary, NC, USA, 2003. [Google Scholar]
- Zhao, T.; Li, D.; Li, L.; Han, F.; Liu, X.; Zhang, P.; Chen, M.; Zhong, C. The differentiation of chilling requirements of kiwifruit cultivars related to ploidy variation. Hortic. Sci. 2017, 52, 1676–1679. [Google Scholar] [CrossRef] [Green Version]
- Asakura, I.; Hoshino, Y. Interspecific hybridization using miyama matatabi (Actinidia kolomikta), a japanese indigenous wild kiwifruit relative. Hortic. J. 2018, 84, 481–489. [Google Scholar] [CrossRef]
- Lastuvka, M.; Beneck-Arnold, R.; Windauer, L. A stratification thermal time-based model as a tool for de-signing efficient methodologies to overcome seed dormancy constraints to kiwifruit seedling production. Sci. Hortic. 2021, 277, 109776. [Google Scholar] [CrossRef]
- Salisbury, F.B.; Ross, C.W. Plant Physiology, Hormones and Plant Regulators: Auxins and Gibberellins, 4th ed.; Wadsworth Publishing: Belmont, CA, USA, 1992; pp. 357–381. [Google Scholar]
- Ahmad, M.F. Enhancement of seed germination in kiwi fruit by stratification and gibberellic acid application. Ind. J. Hortic. 2010, 67, 34–36. [Google Scholar]
- Rezaee, A.; Mobli, M.; Etemadi, N.; Baninasab, B.; Khoshgoftarmanesh, A.H. Effect of different growing substrates on the yield and cut flower quality of rose cv. Maroussia. J. Sci. Technol. Greenh. Cult. 2013, 4, 105–114. [Google Scholar]
- Torkashvand, A.M.; Seyedi, N. To evaluate influence of Ca concentration in nutrient solution and growth medium on the quantitative and qualitative yield of Lilium (Asiatic hybrid lilium). Ir. J. Hortic. Sci. Tech. 2016, 46, 637–647. [Google Scholar] [CrossRef]
- Savvas, D.; Samantouros, K.; Paralemos, D.; Vlachakos, G.; Stamnatakis, M.; Vassilatos, C. Yield and nutrient status in the root environment of tomatoes (Lycopersicon esculentum) grown on chemically active and inactive inorganic substrates. Acta Hortic. 2004, 644, 377–383. [Google Scholar] [CrossRef]
- Treder, J. The effects of cocopeat and fertilization on the growth and flowering of oriental lily ‘star gazer’. J. Fruit Ornam. Plant Res. 2008, 16, 361–370. [Google Scholar]
- Ozenc, D.B.; Ozenc, N. The effect of hazelnut husk compost and some organic and inorganic media on root growth of kiwifruit (Actinidia deliciosa). J. Agron. 2007, 6, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Devkota, D.; Thapa, M.; Bista, B. Improving germination and stand establishment of kiwifruit (Actinidia deliciosa cv. Hayward) seed through media selection and hormonal use in Dolakha, Nepal. Trop. Agrobiodiversity 2021, 2, 16–21. [Google Scholar] [CrossRef]
- Verdonck, O.D.; de Vleeschauwer, D.; de Boodt, M. The influence of the substrate to plant growth. Acta Hortic. 1981, 126, 251–258. [Google Scholar] [CrossRef]
- Şirin, U.; Ertan, E.; Ertan, B. Growth substrates and fig nursery tree production. Sci. Agric. 2010, 67, 633–638. [Google Scholar] [CrossRef]
- Gungor, F.; Yildirim, E. Effect of different growing media on quality, growth and yield of pepper (Capsicum annuum L.) under greenhouse conditions. Pak. J. Bot. 2013, 45, 1605–1608. [Google Scholar]
- Morton, J.F. Fruits of Warm Climates; Creative Resource Systems Inc.: Winterville, NC, USA, 1987; pp. 293–300. [Google Scholar]
- Oki, L.R.; Lieth, J.H. Effect of changes in substrate salinity on the elongation of Rosa hybrida L. ‘Kardinal’ stems. Sci. Hortic. 2004, 101, 103–119. [Google Scholar] [CrossRef]
Symbol | Flesh Color | Ploidy Level | Species |
---|---|---|---|
CK1 | Red | - | Actinidia chinensis var. chinensis |
CK2 | Red | 4x | Actinidia chinensis var. chinensis |
CK3 | Red | 2x | Actinidia chinensis var. chinensis |
CK4 | Red | 2x | Actinidia chinensis var. chinensis |
CK5 | Red | 2x | Actinidia chinensis var. chinensis |
CK6 | Red | - | Actinidia chinensis var. chinensis |
CK7 | Gold | 4x | Actinidia chinensis var. chinensis |
CK8 | Gold | 2x | Actinidia chinensis var. chinensis |
CK9 | Gold | 4x | Actinidia chinensis var. chinensis |
DA1 | Green | 6x | Actinidia chinensis var. deliciosa |
DA2 | Green | 6x | Actinidia chinensis var. deliciosa |
DA3 | - | - | Actinidia chinensis var. deliciosa |
DA4 | Green | 6x | Actinidia chinensis var. deliciosa |
DA5 | Green | 6x | Actinidia chinensis var. deliciosa |
Hybrid | Green | 4x | Actinidia chinensis var. deliciosa X Actinidia chinensis var. chinensis |
AA | Green | 4x | Actinidia arguta |
Mean Square | ||||
---|---|---|---|---|
Source of Variation | df | Germination Percentage | Germination Rate | Germination Uniformity |
Genotype (A) | 15 | 4224.5292 ** | 0.3935 ** | 554.6365 ** |
Stratification duration (B) | 2 | 6249 ** | 0.0995 ** | 361.0304 ** |
A × B | 30 | 527.0667 ** | 0.0211 ** | 143.6298 ** |
Error | 96 | 7.7917 | 0.0003 | 0.7035 |
Genotype | Stratification Period (Week) | Germination Percentage | Germination Rate | Germination Uniformity |
---|---|---|---|---|
CK1 | 3 | 60 i | 0.26 g | 32.97 b |
CK1 | 4 | 59 i | 0.1 m–q | 29.1 b, c |
CK1 | 5 | 67 h | 0.28 f, g | 24.96 c–e |
CK2 | 3 | 52 k, l | 0.11 m–p | 28.99 b, c |
CK2 | 4 | 86 d, e | 0.15 j–l | 7.42 p, q |
CK2 | 5 | 54 k, j | 0.26 g | 15.32 j–n |
CK3 | 3 | 13 q | 0.04 s, t | 39.2 a |
CK3 | 4 | 37 o | 0.09 o–r | 25.6 c, d |
CK3 | 5 | 27 p | 0.13 k–n | 14.42 k–n |
CK4 | 3 | 36 o | 0.09 o–r | 19.5 f–j |
CK4 | 4 | 34 o | 0.09 o–r | 19.16 f–j |
CK4 | 5 | 62 i | 0.55 c | 19.13 f–j |
CK5 | 3 | 62 i | 0.11 m–p | 13.68 l–o |
CK5 | 4 | 69 g, h | 0.16 j, k | 15.67 j–m |
CK5 | 5 | 68 h | 0.11 m–p | 11.25 m–p |
CK6 | 3 | 77 f | 0.09 o–r | 14.49 k–n |
CK6 | 4 | 76 f | 0.15 j–l | 11.51 m–p |
CK6 | 5 | 60 i | 0.28 f, g | 8.69 p |
CK7 | 3 | 1 s | 0.03 t | 0.12 r |
CK7 | 4 | 26 p | 0.03 t | 22.17 d–h |
CK7 | 5 | 57 i, j | 0.04 s, t | 23.15 d–f |
CK8 | 3 | 48 l, m | 0.11 m–p | 20.76 e–i |
CK8 | 4 | 59 i | 0.13 k–m | 21.34 d–h |
CK8 | 5 | 61 i | 0.18 i, j | 16.22 i–l |
CK9 | 3 | 1 s | 0.03 t | 41.2 a |
CK9 | 4 | 52 k, l | 0.03 t | 16.45 i–l |
CK9 | 5 | 45 n, m | 0.04 s, t | 18.1 g–l |
DA1 | 3 | 69 g, h | 0.15 j–l | 9.84 o, p |
DA1 | 4 | 82 e | 0.21 h | 7.31 p, q |
DA1 | 5 | 92 b, c | 0.44 d | 3.9 q, r |
DA2 | 3 | 92 b, c | 0.1 n- q | 7.08 p, q |
DA2 | 4 | 99 a | 0.2 h, i | 2.37 r |
DA2 | 5 | 95 a, b | 0.17 i, j | 7.47 p, q |
DA3 | 3 | 57 k–m | 0.84 b | 2.27 r |
DA3 | 4 | 74 f | 0.93 a | 1.71 r |
DA3 | 5 | 85 e | 0.96 a | 1.69 r |
DA4 | 3 | 42 n | 0.1 m–p | 17.56 h–l |
DA4 | 4 | 34 o | 0.08 p–r | 14.11 l–o |
DA4 | 5 | 49 k–m | 0.12 l–o | 10.83 n–p |
DA5 | 3 | 43 n | 0.3 f | 19.46 f–j |
DA5 | 4 | 73 f, g | 0.4 e | 7.29 p, q |
DA5 | 5 | 90 d, c | 0.22 h | 8.79 p |
Hybrid | 3 | 10 q, r | 0.03 t | 20.4 f–i |
Hybrid | 4 | 13 q | 0.04 s, t | 19.48 f–j |
Hybrid | 5 | 36 o | 0.06 r–t | 20.68 f–i |
AA | 3 | 8 r | 0.14 k–m | 11.33 m–p |
AA | 4 | 50 k–m | 0.07 q–s | 22.73 d–g |
AA | 5 | 67 h | 0.08 p–r | 18.73 f–k |
Genotype | Media | Crown Diameter | Leaf Number | Height of Seedling |
---|---|---|---|---|
CK1 | Cocopeat–Perlite (1:1) | 2.04 k–m | 7.3 d | 8 i |
CK1 | Cocopeat–Peat–Perlite (1:1:1) | 3.82 b–f | 5.2 f | 5 l, m |
CK1 | Peat–Perlite (1:1) | 4.63 a | 5 f | 9 h |
CK1 | Peat–Perlite (1:2) | 0 | 0 | 0 |
CK2 | Cocopeat–Perlite (1:1) | 0 | 0 | 0 |
CK2 | Cocopeat–Peat–Perlite (1:1:1) | 1.74 l–n | 3.5 h | 1.65 r–t |
CK2 | Peat–Perlite (1:1) | 3.92 b–f | 5.31 f | 11.41 g |
CK2 | Peat–Perlite (1:2) | 4.21 a–d | 5.33 f | 15.05 d |
CK3 | Cocopeat–Perlite (1:1) | 0 | 0 | 0 |
CK3 | Cocopeat–Peat–Perlite (1:1:1) | 1.25 n–p | 3.6 h | 0.75 u–w |
CK3 | Peat–Perlite (1:1) | 0 | 0 | 0 |
CK3 | Peat–Perlite (1:2) | 0 | 0 | 0 |
CK4 | Cocopeat–Perlite (1:1) | 1.34 n, o | 3.23 h | 1.25 s–v |
CK4 | Cocopeat–Peat–Perlite (1:1:1) | 2.6 h–j | 4.33 g | 4 n, o |
CK4 | Peat–Perlite (1:1) | 2.26 i–k | 4.13 g | 3.75 n–p |
CK4 | Peat–Perlite (1:2) | 0 | 0 | 0 |
CK5 | Cocopeat–Perlite (1:1) | 1.3 n, o | 3.41 h | 1.3 s–u |
CK5 | Cocopeat–Peat–Perlite (1:1:1) | 1.24 n–p | 3 h | 1.32 s–u |
CK5 | Peat–Perlite (1:1) | 4.31 a, b | 6 e | 18.8 a |
CK5 | Peat–Perlite (1:2) | 3.52 e–g | 5.33 f | 16.6 b |
CK6 | Cocopeat–Perlite (1:1) | 1.6 n, m | 4 g | 2.1 r |
CK6 | Cocopeat–Peat–Perlite (1:1:1) | 1.04 o, p | 3 h | 1.5 r–u |
CK6 | Peat–Perlite (1:1) | 4.26 a–c | 4 g | 16.9 b |
CK6 | Peat–Perlite (1:2) | 3.58 e, f | 5 f | 17 b |
CK7 | Cocopeat–Perlite (1:1) | 0 | 0 | 0 |
CK7 | Cocopeat–Peat–Perlite (1:1:1) | 2.57 h–j | 4.6 g | 3.25 p, q |
CK7 | Peat–Perlite (1:1) | 3.85 b–f | 5 f | 12.8 f |
CK7 | Peat–Perlite (1:2) | 3.06 g, h | 5 f | 7.2 j |
CK8 | Cocopeat–Perlite (1:1) | 0 | 0 | 0 |
CK8 | Cocopeat–Peat–Perlite (1:1:1) | 1.68 l–n | 3.34 h | 0.83 u–w |
CK8 | Peat–Perlite (1:1) | 3.97 b–e | 6.1 e | 12.8 f |
CK8 | Peat–Perlite (1:2) | 0 | 0 | 0 |
CK9 | Cocopeat–Perlite (1:1) | 0 | 0 | 0 |
CK9 | Cocopeat–Peat–Perlite (1:1:1) | 1.26 n–p | 3 h | 2.2 r |
CK9 | Peat–Perlite (1:1) | 3.76 c–f | 5.33 f | 6.75 j |
CK9 | Peat–Perlite (1:2) | 2.56 h–j | 3 h | 3.4 o–q |
DA1 | Cocopeat–Perlite (1:1) | 0.77 p, q | 8 c | 0.5 v, w |
DA1 | Cocopeat–Peat–Perlite (1:1:1) | 1.03 o, p | 3.63 h | 1 t–v |
DA1 | Peat–Perlite (1:1) | 4.24 a–c | 6.14 e | 11.38 g |
DA1 | Peat–Perlite (1:2) | 3.71 d–f | 7.53 d | 11.63 g |
DA2 | Cocopeat–Perlite (1:1) | 0 | 0 | 0 |
DA2 | Cocopeat–Peat–Perlite (1:1:1) | 1.52 n, o | 4.3 g | 2 rs |
DA2 | Peat–Perlite (1:1) | 3.68 d–f | 7.24 d | 11.2 g |
DA2 | Peat–Perlite (1:2) | 3.97 b–e | 6 e | 11.6 g |
DA3 | Cocopeat–Perlite (1:1) | 0 | 0 | 0 |
DA3 | Cocopeat–Peat–Perlite (1:1:1) | 3.39 f, g | 6.2 e | 8.2 i |
DA3 | Peat–Perlite (1:1) | 3.96 b–e | 6.18 e | 14.6 d |
DA3 | Peat–Perlite (1:2) | 4.29 a–c | 6 e | 13.6 e |
DA4 | Cocopeat–Perlite (1:1) | 0 | 0 | 0 |
DA4 | Cocopeat–Peat–Perlite (1:1:1) | 0.76 p, q | 2 i | 0.5 u–w |
DA4 | Peat–Perlite (1:1) | 0 | 0 | 0 |
DA4 | Peat–Perlite (1:2) | 3.48 e–g | 6 e | 6 k |
DA5 | Cocopeat–Perlite (1:1) | 0 | 0 | 0 |
DA5 | Cocopeat–Peat–Perlite (1:1:1) | 2.71 h, i | 5 f | 5.2 l |
DA5 | Peat–Perlite (1:1) | 3.86 b–f | 6.3 e | 15.9 c |
DA5 | Peat–Perlite (1:2) | 3.69 d–f | 6.25 e | 9.6 h |
Hybrid | Cocopeat–Perlite (1:1) | 0.54 q, r | 2 i | 0.75 u, v |
Hybrid | Cocopeat–Peat–Perlite (1:1:1) | 2.14 j–l | 4.61 g | 3.2 p, q |
Hybrid | Peat–Perlite (1:1) | 3.59 ef | 5 f | 5.4 k |
Hybrid | Peat–Perlite (1:2) | 3.7 d–f | 4.23 g | 4.4 m, n |
AA | Cocopeat–Perlite (1:1) | 0 | 0 | 0 |
AA | Cocopeat–Peat–Perlite (1:1:1) | 2.43 i–k | 9.1 b | 8 i |
AA | Peat–Perlite (1:1) | 2.6 h–j | 10 a | 2.9 q |
AA | Peat–Perlite (1:2) | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maghdouri, M.; Ghasemnezhad, M.; Rabiei, B.; Golmohammadi, M.; Atak, A. Optimizing Seed Germination and Seedling Growth in Different Kiwifruit Genotypes. Horticulturae 2021, 7, 314. https://doi.org/10.3390/horticulturae7090314
Maghdouri M, Ghasemnezhad M, Rabiei B, Golmohammadi M, Atak A. Optimizing Seed Germination and Seedling Growth in Different Kiwifruit Genotypes. Horticulturae. 2021; 7(9):314. https://doi.org/10.3390/horticulturae7090314
Chicago/Turabian StyleMaghdouri, Maryam, Mahmood Ghasemnezhad, Babak Rabiei, Morteza Golmohammadi, and Arif Atak. 2021. "Optimizing Seed Germination and Seedling Growth in Different Kiwifruit Genotypes" Horticulturae 7, no. 9: 314. https://doi.org/10.3390/horticulturae7090314
APA StyleMaghdouri, M., Ghasemnezhad, M., Rabiei, B., Golmohammadi, M., & Atak, A. (2021). Optimizing Seed Germination and Seedling Growth in Different Kiwifruit Genotypes. Horticulturae, 7(9), 314. https://doi.org/10.3390/horticulturae7090314