Advances in Genetics and Molecular Breeding of Broccoli
Abstract
:1. Introduction
2. Genetics and Molecular Breeding of Broccoli
2.1. Abiotic Stress Resistance
2.1.1. Heat Stress
2.1.2. Other Abiotic Stresses
2.2. Desirable Agronomic Traits
2.2.1. Heading
2.2.2. Flowering Time
2.2.3. Plant Architecture
2.2.4. Stem Development
2.2.5. Head Color
2.3. Male Sterility and Fertility Restoration
2.4. Disease Resistance
2.4.1. Downy Mildew
2.4.2. Clubroot
2.4.3. Black Rot
2.5. Secondary Metabolites
2.6. Development of Omics Research
2.7. Genome Editing
2.8. Genetic Transformation
2.8.1. Transgenic Breeding for Fungal Resistance
2.8.2. Transgenic Breeding for Abiotic Stress Resistance
2.8.3. Transgenic Breeding for Insect Resistance
2.8.4. Transgenic Breeding for Enriched Glucosinolate/Sulforaphane Content
2.8.5. Transgenic Breeding for Manipulating Male Fertility
3. Conclusions and Future Perspectives
3.1. Mining Functional Loci/Genes
3.2. Improving Broccoli by Landraces or Other B. oleracea Subspecies
3.3. Introducing Disease Resistance Genes from Related Species
3.4. Improving the CRISPR/Cas9 Genome Editing System
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kumar, P.; Srivastava, D.K. Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Biotechnol. Lett. 2016, 38, 1049–1063. [Google Scholar] [CrossRef] [PubMed]
- Luo, F.; Fang, H.-X.; Wei, B.-D.; Cheng, S.-C.; Zhou, Q.; Zhou, X.; Zhang, X.; Zhao, Y.-B.; Ji, S.-J. Advance in yellowing mechanism and the regulation technology of post-harvested broccoli. Food Qual. Saf. 2020, 4, 107–113. [Google Scholar] [CrossRef]
- Vallejo, F.; Garcia-Viguera, C.; Tomas-Barberan, F. Changes in Broccoli (Brassica oleracea L. var. italica) Health-Promoting Compounds with Inflorescence Development. J. Agric. Food Chem. 2003, 51, 3776–3782. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, F.; Tomas-Barberan, F.; Ferreres, F. Characterisation of flavonols in broccoli (Brassica oleracea L. var. italica) by liquid chromatography–UV diode-array detection–electrospray ionisation mass spectrometry. J. Chromatogr. A 2004, 1054, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, T.A.; Fahey, J.W.; Wade, K.L.; Stephenson, K.K.; Talalay, P. Chemoprotective Glucosinolates and Isothiocyanates of Broccoli Sprouts. Cancer Epidemiol. Prev. Biomark. 2001, 10, 501–508. [Google Scholar]
- Buck, P.A. Origin and taxonomy of broccoli. Econ. Bot. 1956, 10, 250–253. [Google Scholar] [CrossRef]
- Massie, I.H.; Astley, D.; King, G.J. Patterns of genetic diversity and relationships between regional groups and populations of Italian landrace cauliflower and broccoli (Brassica oleracea L. var. botrytis L. and var. italica Plenck). Acta Hort. 1996, 407, 45–54. [Google Scholar] [CrossRef]
- Ciancaleoni, S.; Chiarenza, G.L.; Raggi, L.; Branca, F.; Negri, V. Diversity characterisation of broccoli (Brassica oleracea L. var. italica Plenck) landraces for their on-farm (in situ) safeguard and use in breeding programs. Genet. Resour. Crop. Evol. 2013, 61, 451–464. [Google Scholar] [CrossRef]
- Maggioni, L.; Von Bothmer, R.; Poulsen, G.; Lipman, E. Domestication, diversity and use of Brassica oleracea L., based on ancient Greek and Latin texts. Genet. Resour. Crop. Evol. 2017, 65, 137–159. [Google Scholar] [CrossRef] [Green Version]
- Branca, F.; Chiarenza, G.L.; Cavallaro, C.; Gu, H.; Zhao, Z.; Tribulato, A. Diversity of Sicilian broccoli (Brassica oleracea var. italica) and cauliflower (Brassica oleracea var. botrytis) landraces and their distinctive bio-morphological, antioxidant, and genetic traits. Genet. Resour. Crop. Evol. 2017, 65, 485–502. [Google Scholar] [CrossRef]
- Stansell, Z.; Björkman, T. From landrace to modern hybrid broccoli: The genomic and morphological domestication syndrome within a diverse B. oleracea collection. Hortic. Res. 2020, 7, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Mei, Y.; Liu, Y.; Fang, Z.; Yang, L.; Zhuang, M.; Zhang, Y.; Lv, H. The evolution of genetic diversity of broccoli cultivars in China since 1980. Sci. Hortic. 2019, 250, 69–80. [Google Scholar] [CrossRef]
- Branham, S.E.; Farnham, M.W. Identification of heat tolerance loci in broccoli through bulked segregant analysis using whole genome resequencing. Euphytica 2019, 215, 34. [Google Scholar] [CrossRef]
- Kumar, R.; Kandpal, K. Influence of foliar fertilization of boron on broccoli (Brassica oleracea var. italica) in boron deficient soil of Doon Valley, India. Progress. Hortic. 2017, 49, 65. [Google Scholar] [CrossRef]
- Branham, S.E.; Stansell, Z.J.; Couillard, D.M.; Farnham, M.W. Quantitative trait loci mapping of heat tolerance in broccoli (Brassica oleracea var. italica) using genotyping-by-sequencing. Theor. Appl. Genet. 2017, 130, 529–538. [Google Scholar] [CrossRef]
- Farnham, M.W.; Bjorkman, T. Breeding Vegetables Adapted to High Temperatures: A Case Study with Broccoli. HortScience 2011, 46, 1093–1097. [Google Scholar] [CrossRef] [Green Version]
- Björkman, T.; Pearson, K.J. High temperature arrest of inflorescence development in broccoli (Brassica oleracea var. italica L.). J. Exp. Bot. 1998, 49, 101–106. [Google Scholar] [CrossRef]
- Heather, D.; Sieczka, J.; Dickson, M.; Wolfe, D. Heat Tolerance and Holding Ability in Broccoli. J. Am. Soc. Hortic. Sci. 1992, 117, 887–892. [Google Scholar] [CrossRef] [Green Version]
- Atallah, S.S.; Gómez, M.I.; Björkman, T. Localization effects for a fresh vegetable product supply chain: Broccoli in the eastern United States. Food Policy 2014, 49, 151–159. [Google Scholar] [CrossRef]
- Ward, B.; Smith, P.; James, S.; Stansell, Z.; Farnham, M. Increasing Plant Density in Eastern United States Broccoli Production Systems to Maximize Marketable Head Yields. Horttechnology 2015, 25, 330–334. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-R.; Lee, J.-Y.; Tseng, M.-C.; Lee, C.-Y.; Shen, C.-H.; Wang, C.-S.; Liou, C.-C.; Shuang, L.-S.; Paterson, A.H.; Hwu, K.-K. Subtropical adaptation of a temperate plant (Brassica oleracea var. italica) utilizes non-vernalization-responsive QTLs. Sci. Rep. 2018, 8, 13609. [Google Scholar] [CrossRef] [Green Version]
- Astarini, I.A.; Defiani, M.R.; Suriani, N.L.; Griffiths, P.; Stefanova, K.; Siddique, K. Adaptation of broccoli (Brassica oleracea var. italica L.) to high and low altitudes in Bali, Indonesia. Biodiversitas J. Biol. Divers. 2020, 21, 5263–5269. [Google Scholar] [CrossRef]
- Lin, K.H.; Chang, L.C.; Lai, C.D.; Lo, H.F. AFLP mapping of quantitative trait loci influencing seven head-related traits in broccoli (Brassica oleracea var. italica). J. Hortic. Sci. Biotechnol. 2013, 88, 257–268. [Google Scholar] [CrossRef]
- Lin, K.-H.; Huang, H.-C.; Lin, C.-Y. Cloning, expression and physiological analysis of broccoli catalase gene and Chinese cabbage ascorbate peroxidase gene under heat stress. Plant Cell Rep. 2010, 29, 575–593. [Google Scholar] [CrossRef]
- Chiang, C.-M.; Chen, S.-P.; Chen, L.-F.O.; Chiang, M.-C.; Chien, H.-L.; Lin, K.-H. Expression of the broccoli catalase gene (BoCAT) enhances heat tolerance in transgenic Arabidopsis. J. Plant Biochem. Biotechnol. 2013, 23, 266–277. [Google Scholar] [CrossRef]
- Chen, C.-C.; Fu, S.-F.; Norikazu, M.; Yang, Y.-W.; Liu, Y.-J.; Ikeo, K.; Gojobori, T.; Huang, H.-J. Comparative miRNAs analysis of Two contrasting broccoli inbred lines with divergent head-forming capacity under temperature stress. BMC Genom. 2015, 16, 1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.-W.; Fu, S.-F.; Liu, Y.-J.; Chen, C.-C.; Chang, C.-H.; Yang, Y.-W.; Huang, H.-J. Analysis of ambient temperature-responsive transcriptome in shoot apical meristem of heat-tolerant and heat-sensitive broccoli inbred lines during floral head formation. BMC Plant Biol. 2019, 19, 3. [Google Scholar] [CrossRef]
- Lin, H.-H.; Lin, K.-H.; Chen, S.-C.; Shen, Y.-H.; Lo, H.-F. Proteomic analysis of broccoli (Brassica oleracea) under high temperature and waterlogging stresses. Bot. Stud. 2015, 56, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Y.; Tian, Y.; Luo, X.; Zhou, T.; Huang, Z.; Liu, Y.; Qiu, Y.; Hou, B.; Sun, D.; Deng, H.; et al. Identification and characterization of microRNAs related to salt stress in broccoli, using high-throughput sequencing and bioinformatics analysis. BMC Plant Biol. 2014, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Torres-Contreras, A.M.; Senés-Guerrero, C.; Pacheco, A.; González-Agüero, M.; Ramos-Parra, P.A.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Genes differentially expressed in broccoli as an early and late response to wounding stress. Postharvest Biol. Technol. 2018, 145, 172–182. [Google Scholar] [CrossRef]
- Lee, J.; Yang, K.; Lee, M.; Kim, S.; Kim, J.; Lim, S.; Kang, G.-H.; Min, S.R.; Kim, S.-J.; Park, S.U.; et al. Differentiated cuticular wax content and expression patterns of cuticular wax biosynthetic genes in bloomed and bloomless broccoli (Brassica oleracea var. italica). Process. Biochem. 2015, 50, 456–462. [Google Scholar] [CrossRef]
- Branham, S.E.; Farnham, M.W. Genotyping-by-sequencing of waxy and glossy near-isogenic broccoli lines. Euphytica 2017, 213, 84. [Google Scholar] [CrossRef]
- Stansell, Z.; Farnham, M.; Björkman, T. Complex Horticultural Quality Traits in Broccoli Are Illuminated by Evaluation of the Immortal BolTBDH Mapping Population. Front. Plant Sci. 2019, 10, 1104. [Google Scholar] [CrossRef] [PubMed]
- Duclos, D.V.; Bjoerkman, T. Meristem identity gene expression during curd proliferation and flower initiation in Brassica oleracea. J. Exp. Bot. 2008, 59, 421–433. [Google Scholar] [CrossRef] [Green Version]
- Fujime, Y.; Okuda, N. The physiology of flowering in brassicas, especially about cauliflower and broccoli. Acta Hortic. 1996, 247–254. [Google Scholar] [CrossRef]
- Carr, S.M.; Irish, V.F. Floral homeotic gene expression defines developmental arrest stages in Brassica oleracea L. vars. botrytis and italica. Planta 1997, 201, 179–188. [Google Scholar] [CrossRef]
- Smith, L.B.; King, G.J. The distribution of BoCAL-a alleles in Brassica oleracea is consistent with a genetic model for curd development and domestication of the cauliflower. Mol. Breed. 2000, 6, 603–613. [Google Scholar] [CrossRef]
- Camargo, L.; Williams, P.; Osborn, T. Mapping of quantitative trait loci controlling resistance of Brassica oleracea to Xanthomonas campestris pv. campestris in the field and greenhouse. Phytopathology 1995, 85, 1296–1300. [Google Scholar] [CrossRef]
- Bohuon, E.J.R.; Keith, D.J.; Parkin, I.A.P.; Sharpe, A.G.; Lydiate, D.J. Alignment of the conserved C genomes of Brassica oleracea and Brassica napus. Theor. Appl. Genet. 1996, 93, 833–839. [Google Scholar] [CrossRef]
- Kianian, S.F.; Quiros, C.F. Generation of a Brassica oleracea composite RFLP map: Linkage arrangements among various populations and evolutionary implications. Theor. Appl. Genet. 1992, 84, 544–554. [Google Scholar] [CrossRef] [PubMed]
- Slocum, M.K.; Figdore, S.S.; Kennard, W.C.; Suzuki, J.Y.; Osborn, T.C. Linkage arrangement of restriction fragment length polymorphism loci in Brassica oleracea. Theor. Appl. Genet. 1990, 80, 57–64. [Google Scholar] [CrossRef]
- Brown, A.F.; Jeffery, E.; Juvik, J.A. A Polymerase Chain Reaction-based Linkage Map of Broccoli and Identification of Quantitative Trait Loci Associated with Harvest Date and Head Weight. J. Am. Soc. Hortic. Sci. 2007, 132, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Walley, P.G.; Carder, J.; Skipper, E.; Mathas, E.; Lynn, J.; Pink, D.; Buchanan-Wollaston, V. A new broccoli x broccoli immortal mapping population and framework genetic map: Tools for breeders and complex trait analysis. Theor. Appl. Genet. 2012, 124, 467–484. [Google Scholar] [CrossRef] [Green Version]
- Kennard, W.C.; Slocum, M.K.; Figdore, S.S.; Osborn, T.C. Genetic analysis of morphological variation in Brassica oleracea using molecular markers. Theor. Appl. Genet. 1994, 87, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Camargo, L.; Osborn, T. Mapping loci controlling flowering time in Brassica oleracea. Theor. Appl. Genet. 1996, 92, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Bohuon, E.J.R.; Ramsay, L.D.; Craft, J.A.; Arthur, A.E.; Marshall, D.; Lydiate, D.J.; Kearsey, M.J. The Association of Flowering Time Quantitative Trait Loci with Duplicated Regions and Candidate Loci in Brassica oleracea. Genetics 1998, 150, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Rae, A.M.; Howell, E.C.; Kearsey, M.J. More QTL for flowering time revealed by substitution lines in Brassica oleracea. Heredity 1999, 83, 586–596. [Google Scholar] [CrossRef]
- Okazaki, K.; Sakamoto, K.; Kikuchi, R.; Saito, A.; Togashi, E.; Kuginuki, Y.; Matsumoto, S.; Hirai, M. Mapping and characterization of FLC homologs and QTL analysis of flowering time in Brassica oleracea. Theor. Appl. Genet. 2006, 114, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.S.; Liu, Y.M.; Zhang, L.L.; Li, Z.S.; Fang, Z.Y.; Yang, L.M.; Zhuang, M.; Zhang, Y.Y.; Lv, H.H. QTL-seq for rapid identification of candidate genes for flowering time in broccoli x cabbage. Theor. Appl. Genet. 2018, 131, 917–928. [Google Scholar] [CrossRef] [PubMed]
- Hale, A.L.; Farnham, M.W.; Nzaramba, M.N.; Kimbeng, C.A. Heterosis for horticultural traits in Broccoli. Theor. Appl. Genet. 2007, 115, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.-H.; Paterson, A.H. Comparative Mapping of Quantitative Trait Loci Sculpting the Curd of Brassica oleracea. Genetics 2000, 155, 1927–1954. [Google Scholar] [CrossRef]
- Huang, J.; Sun, J.; Liu, E.; Yuan, S.; Liu, Y.; Han, F.; Li, Z.; Fang, Z.; Yang, L.; Zhuang, M.; et al. Mapping of QTLs detected in a broccoli double diploid population for planting density traits. Sci. Hortic. 2021, 277, 109835. [Google Scholar] [CrossRef]
- Boersma, M.; Gracie, A.; Brown, P. Evidence of mechanical tissue strain in the development of hollow stem in broccoli. Sci. Hortic. 2013, 164, 353–358. [Google Scholar] [CrossRef]
- Boersma, M.; Gracie, A.J.; Brown, P.H. Relationship between growth rate and the development of hollow stem in broccoli. Crop. Pasture Sci. 2009, 60, 995–1001. [Google Scholar] [CrossRef]
- Yu, H.; Wang, J.; Zhao, Z.; Sheng, X.; Shen, Y.; Branca, F.; Gu, H. Construction of a High-Density Genetic Map and Identification of Loci Related to Hollow Stem Trait in Broccoli (Brassic oleracea L. italica). Front. Plant Sci. 2019, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.; Choudhary, S.; Sharma, U.; Vig, A.P.; Singh, B.; Arora, S. Purple head broccoli (Brassica oleracea L. var. italica Plenck), a functional food crop for antioxidant and anticancer potential. J. Food Sci. Technol. 2018, 55, 1806–1815. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; An, G.; Zhu, T.; Zhang, W.; Zhang, L.; Peng, L.; Chen, J.; Kuang, H. Independent activation of the BoMYB2 gene leading to purple traits in Brassica oleracea. Theor. Appl. Genet. 2018, 132, 895–906. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wang, J.; Sheng, X.; Zhao, Z.; Shen, Y.; Branca, F.; Gu, H. Construction of a high-density genetic map and identification of loci controlling purple sepal trait of flower head in Brassica oleracea L. italica. BMC Plant Biol. 2019, 19, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reshma, V.; Adarsh, M.; Dhanush, K. Development of hybrids in cole crops: A review. Plant Arch. 2018, 18, 1–11. [Google Scholar]
- Han, F.; Yuan, K.; Kong, C.; Zhang, X.; Yang, L.; Zhuang, M.; Zhang, Y.; Li, Z.; Wang, Y.; Fang, Z.; et al. Fine mapping and candidate gene identification of the genic male-sterile gene ms3 in cabbage 51S. Theor. Appl. Genet. 2018, 131, 2651–2661. [Google Scholar] [CrossRef]
- Han, F.; Zhang, X.; Yuan, K.; Fang, Z.; Yang, L.; Zhuang, M.; Zhang, Y.; Wang, Y.; Liu, Y.; Li, Z.; et al. A user-friendly KASP molecular marker developed for the DGMS-based breeding system in Brassica oleracea species. Mol. Breed. 2019, 39, 90. [Google Scholar] [CrossRef]
- Ogura, H. Studies on the new male sterility in Japanese radish, with special references on the utilization of this sterility towards the practical raising of hybrid seeds. Mem. Fac. Agric. Kagoshima Univ. 1968, 6, 40–75. [Google Scholar]
- Uyttewaal, M.; Arnal, N.; Quadrado, M.; Martin-Canadell, A.; Vrielynck, N.; Hiard, S.; Gherbi, H.; Bendahmane, A.; Budar, F.; Mireau, H. Characterization of Raphanus sativus Pentatricopeptide Repeat Proteins Encoded by the Fertility Restorer Locus for Ogura Cytoplasmic Male Sterility. Plant Cell 2009, 20, 3331–3345. [Google Scholar] [CrossRef] [Green Version]
- Yamagishi, H.; Jikuya, M.; Okushiro, K.; Hashimoto, A.; Fukunaga, A.; Takenaka, M.; Terachi, T. A single nucleotide substitution in the coding region of Ogura male sterile gene, orf138, determines effectiveness of a fertility restorer gene, Rfo, in radish. Mol. Genet. Genom. 2021, 296, 705–717. [Google Scholar] [CrossRef]
- Bannerot, H.; Boulidard, L.; Cauderon, Y.; Tempe, J. Transfer of cytoplasmic male sterility from Raphanus sativus to Brassica oleracea. Proc. Eucarpia Meet. Crucif. 1974, 25, 52–54. [Google Scholar]
- Sigareva, M.A.; Earle, E.D. Direct transfer of a cold-tolerant Ogura male-sterile cytoplasm into cabbage (Brassica oleracea ssp. capitata) via protoplast fusion. Theor. Appl. Genet. 1997, 94, 213–220. [Google Scholar] [CrossRef]
- Shu, J.; Liu, Y.; Li, Z.; Zhang, L.; Fang, Z.; Yang, L.; Zhuang, M.; Zhang, Y.; Lv, H. Detection of the Diversity of Cytoplasmic Male Sterility Sources in Broccoli (Brassica oleracea var. Italica) Using Mitochondrial Markers. Front. Plant Sci. 2016, 7, 927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Zhang, Y.; Fang, Z.; Liu, Y.; Yang, L.; Zhuang, M. Chloroplast and mitochondrial SSR help to distinguish allo-cytoplasmic male sterile types in cabbage (Brassica oleracea L. var. capitata). Mol. Breed. 2011, 30, 709–716. [Google Scholar] [CrossRef]
- Yao, X.; Li, Y.; Xie, Z.; Liu, L. Identification of specific SRAP marker associated with cytoplasmic male sterility gene of broccoli. Mol. Plant Breed. 2009, 7, 941–947. [Google Scholar]
- Sampson, D.R. Linkage of genetic male sterility with a seedling marker and its use in producing f1 hybrid seed of brassica oleracea (cabbage, broccoli, kale, etc.). Can. J. Plant Sci. 1966, 46, 703. [Google Scholar] [CrossRef]
- Ruffio-Chable, V.; Bellis, H.; Herve, Y. A dominant gene for male sterility in cauliflower (Brassica oleracea var. botrytis): Phenotype expression, inheritance, and use in F1 hybrid production. Euphytica 1993, 67, 9–17. [Google Scholar] [CrossRef]
- Fang, Z.; Sun, P.; Liu, Y.; Yang, L.; Wang, X.; Hou, A.; Bian, C. A male sterile line with dominant gene (Ms) in cabbage (Brassica oleracea var. capitata) and its utilization for hybrid seed production. Euphytica 1997, 97, 265–268. [Google Scholar] [CrossRef]
- Ji, J.-L.; Yang, L.-M.; Fang, Z.-Y.; Zhuang, M.; Zhang, Y.-Y.; Lv, H.-H.; Liu, Y.-M.; Li, Z.-S. Recessive male sterility in cabbage (Brassica oleracea var. capitata) caused by loss of function of BoCYP704B1 due to the insertion of a LTR-retrotransposon. Theor. Appl. Genet. 2017, 130, 1441–1451. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.; Liu, Y.; Li, Z.; Zhang, L.; Fang, Z.; Yang, L.; Zhuang, M.; Lv, H. A generic SSR marker closely linked to a dominant genic male sterility gene (DGMs79-399-3) in broccoli (Brassica oleracea var. italica). Mol. Breed. 2016, 36, 86. [Google Scholar] [CrossRef]
- Yu, H.-L.; Fang, Z.-Y.; Liu, Y.-M.; Yang, L.-M.; Zhuang, M.; Lv, H.; Li, Z.-S.; Han, F.-Q.; Liu, X.-P.; Zhang, Y.-Y. Development of a novel allele-specific Rfo marker and creation of Ogura CMS fertility-restored interspecific hybrids in Brassica oleracea. Theor. Appl. Genet. 2016, 129, 1625–1637. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-Q.; Li, G.-Q.; Yao, X.-Q.; Huang, L.; Wu, X.-Y.; Xie, Z.-J. Characterization of Ogura CMS fertility-restored interspecific hybrids and backcross progenies from crosses between broccoli and rapeseed. Euphytica 2020, 216, 1–12. [Google Scholar] [CrossRef]
- Monot, C.; Pajot, E.; Le Corre, D.; Silué, D. Induction of systemic resistance in broccoli (Brassica oleracea var. botrytis) against downy mildew (Peronospora parasitica) by avirulent isolates. Biol. Control. 2002, 24, 75–81. [Google Scholar] [CrossRef]
- Monot, C.; Penguilly, D.; Silué, D. First confirmed report of downy mildew caused by Hyaloperonospora parasitica on broccoli, cauliflower and Romanesco-type cauliflower heads in France. Plant Pathol. 2010, 59, 1165. [Google Scholar] [CrossRef]
- Farinhó, M.; Coelho, P.; Carlier, J.; Svetleva, D.; Monteiro, A.; Leitão, J.M. Mapping of a locus for adult plant resistance to downy mildew in broccoli (Brassica oleracea convar. italica). Theor. Appl. Genet. 2004, 109, 1392–1398. [Google Scholar] [CrossRef]
- Wang, M.; Farnham, M.W.; Thomas, C.E. Phenotypic Variation for Downy Mildew Resistance among Inbred Broccoli. HortScience 2000, 35, 925–929. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Farnham, M.W.; Thomas, C.E. Inheritance of True Leaf Stage Downy Mildew Resistance in Broccoli. J. Am. Soc. Hortic. Sci. 2001, 126, 727–729. [Google Scholar] [CrossRef]
- Giovannelli, J.L.; Farnham, M.W.; Wang, M.; Strand, A.E. Development of Sequence Characterized Amplified Region Markers Linked to Downy Mildew Resistance in Broccoli. J. Am. Soc. Hortic. Sci. 2002, 127, 597–601. [Google Scholar] [CrossRef] [Green Version]
- Farnham, M.; Wang, M.; Thomas, C. A single dominant gene for downy mildew resistance in broccoli. Euphytica 2002, 128, 405–407. [Google Scholar] [CrossRef]
- Coelho, P.S.; Monteiro, A.A. Inheritance of downy mildew resistance in mature broccoli plants. Euphytica 2003, 131, 65–69. [Google Scholar] [CrossRef]
- Belser, C.; Istace, B.; Denis, E.; Dubarry, M.; Baurens, F.-C.; Falentin, C.; Genete, M.; Berrabah, W.; Chèvre, A.-M.; Delourme, R.; et al. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nat. Plants 2018, 4, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Lovelock, D.A.; Donald, C.E.; Conlan, X.; Cahill, D.M. Salicylic acid suppression of clubroot in broccoli (Brassicae oleracea var. italica) caused by the obligate biotroph Plasmodiophora brassicae. Australas. Plant Pathol. 2012, 42, 141–153. [Google Scholar] [CrossRef]
- Crute, I.; Gray, A.; Crisp, P.; Buczacki, S. Variation in Plasmodiophora brassicae and resistance to clubroot disease in brassicas and allied crops-a critical review. Plant Breed. Abstr. 1980, 50, 91–104. [Google Scholar]
- Hirai, M. Genetic Analysis of Clubroot Resistance in Brassica Crops. Breed. Sci. 2006, 56, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Voorrips, R.E. Plasmodiophora brassicae: Aspects of pathogenesis and resistance in Brassica oleracea. Euphytica 1995, 83, 139–146. [Google Scholar] [CrossRef]
- Diederichsen, E.; Frauen, M.; Linders, E.G.A.; Hatakeyama, K.; Hirai, M. Status and Perspectives of Clubroot Resistance Breeding in Crucifer Crops. J. Plant Growth Regul. 2009, 28, 265–281. [Google Scholar] [CrossRef]
- Hirani, A.; Gao, F.; Liu, J.; Fu, G.; Wu, C.; McVetty, P.B.E.; Duncan, R.W.; Li, G. Combinations of Independent Dominant Loci Conferring Clubroot Resistance in All Four Turnip Accessions (Brassica rapa) from the European Clubroot Differential Set. Front. Plant Sci. 2018, 9, 1628. [Google Scholar] [CrossRef] [Green Version]
- Gan, C.; Deng, X.; Cui, L.; Yu, X.; Yuan, W.; Dai, Z.; Yao, M.; Pang, W.; Ma, Y.; Yu, X.; et al. Construction of a high-density genetic linkage map and identification of quantitative trait loci associated with clubroot resistance in radish (Raphanus sativus L.). Mol. Breed. 2019, 39, 1–12. [Google Scholar] [CrossRef]
- Li, L.; Luo, Y.; Chen, B.; Xu, K.; Zhang, F.; Li, H.; Huang, Q.; Xiao, X.; Zhang, T.; Hu, J.; et al. A Genome-Wide Association Study Reveals New Loci for Resistance to Clubroot Disease in Brassica napus. Front. Plant Sci. 2016, 7, 1483. [Google Scholar] [CrossRef] [Green Version]
- Ren, W.; Li, Z.; Han, F.; Zhang, B.; Li, X.; Fang, Z.; Yang, L.; Zhuang, M.; Lv, H.; Liu, Y.; et al. Utilization of Ogura CMS germplasm with the clubroot resistance gene by fertility restoration and cytoplasm replacement in Brassica oleracea L. Hortic. Res. 2020, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocherieux, J.; Glory, P.; Giboulot, A.; Boury, S.; Barbeyron, G.; Thomas, G.; Manzanares-Dauleux, M.J. Isolate-specific and broad-spectrum QTLs are involved in the control of clubroot in Brassica oleracea. Theor. Appl. Genet. 2004, 108, 1555–1563. [Google Scholar] [CrossRef]
- Nagaoka, T.; Doullah, M.A.U.; Matsumoto, S.; Kawasaki, S.; Ishikawa, T.; Hori, H.; Okazaki, K. Identification of QTLs that control clubroot resistance in Brassica oleracea and comparative analysis of clubroot resistance genes between B. rapa and B. oleracea. Theor. Appl. Genet. 2010, 120, 1335–1346. [Google Scholar] [CrossRef]
- Peng, L.; Zhou, L.; Li, Q.; Wei, D.; Ren, X.; Song, H.; Mei, J.; Si, J.; Qian, W. Identification of Quantitative Trait Loci for Clubroot Resistance in Brassica oleracea With the Use of Brassica SNP Microarray. Front. Plant Sci. 2018, 9, 822. [Google Scholar] [CrossRef]
- Mirik, M.; Selcuk, F.; Aysan, Y.; Sahin, F. First Outbreak of Bacterial Black Rot on Cabbage, Broccoli, and Brussels Sprouts Caused by Xanthomonas campestris pv. campestris in the Mediterranean Region of Turkey. Plant Dis. 2008, 92, 176. [Google Scholar] [CrossRef] [PubMed]
- Nagai, H.; Miyake, N.; Kato, S.; Maekawa, D.; Inoue, Y.; Takikawa, Y. Improved control of black rot of broccoli caused by Xanthomonas campestris pv. campestris using a bacteriophage and a nonpathogenic Xanthomonas sp. strain. J. Gen. Plant Pathol. 2017, 83, 373–381. [Google Scholar] [CrossRef]
- Sakai, H.; Ikeda, K.; Urushibara, T.; Shiraishi, T. Black rot of broccoli (Brassica oleracea var. italica) caused by Xanthomonas campestris pv. campestris. Jpn. J. Phytopathol. 2006, 72, 116–119. [Google Scholar] [CrossRef] [Green Version]
- Saha, P.; Kalia, P.; Sharma, M.; Singh, D. New source of black rot disease resistance in Brassica oleracea and genetic analysis of resistance. Euphytica 2016, 207, 35–48. [Google Scholar] [CrossRef]
- Afrin, K.S.; Rahim, A.; Park, J.-I.; Natarajan, S.; Kim, H.-T.; Nou, I.-S. Identification of NBS-encoding genes linked to black rot resistance in cabbage (Brassica oleracea var. capitata). Mol. Biol. Rep. 2018, 45, 773–785. [Google Scholar] [CrossRef]
- Afrin, K.S.; Rahim, A.; Park, J.-I.; Natarajan, S.; Rubel, M.H.; Kim, H.-T.; Nou, A.I.-S. Screening of Cabbage (Brassica oleracea L.) Germplasm for Resistance to Black Rot. Plant Breed. Biotechnol. 2018, 6, 30–43. [Google Scholar] [CrossRef] [Green Version]
- Doullah, M.; Mohsin, G.; Ishikawa, K.; Hori, H.; Okazaki, K. Construction of a Linkage Map and QTL analysis for Black Rot Resistance in Brassica oleracea L. Int. J. Nat. Sci. 2011, 1, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Tonu, N.N.; Doullah, A.-U.; Shimizu, M.; Karim, M.; Kawanabe, T.; Fujimoto, R.; Okazaki, K. Comparison of Positions of QTLs Conferring Resistance to Xanthomonas campestris pv. campestris in Brassica oleracea. Am. J. Plant Sci. 2013, 4, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H.; Hong, J.K. Differential defence responses of susceptible and resistant kimchi cabbage cultivars to anthracnose, black spot and black rot diseases. Plant Pathol. 2014, 64, 406–415. [Google Scholar] [CrossRef]
- Iglesias-Bernabé, L.; Madloo, P.; Rodríguez, V.M.; Francisco, M.; Soengas, P. Dissecting quantitative resistance to Xanthomonas campestris pv. campestris in leaves of Brassica oleracea by QTL analysis. Sci. Rep. 2019, 9, 2015. [Google Scholar] [CrossRef] [PubMed]
- Frerigmann, H.; Gigolashvili, T. MYB34, MYB51, and MYB122 Distinctly Regulate Indolic Glucosinolate Biosynthesis in Arabidopsis thaliana. Mol. Plant 2014, 7, 814–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Yang, R.; Gu, Z. Cloning of genes related to aliphatic glucosinolate metabolism and the mechanism of sulforaphane accumulation in broccoli sprouts under jasmonic acid treatment. J. Sci. Food Agric. 2016, 96, 4329–4336. [Google Scholar] [CrossRef]
- Li, G.; Riaz, A.; Goyal, S.; Abel, S.; Quiros, C. Inheritance of Three Major Genes Involved in the Synthesis of Aliphatic Glucosinolates in Brassica oleracea. J. Am. Soc. Hortic. Sci. 2001, 126, 427–431. [Google Scholar] [CrossRef] [Green Version]
- Traka, M.H.; Saha, S.; Huseby, S.; Kopriva, S.; Walley, P.G.; Barker, G.C.; Moore, J.; Mero, G.; van den Bosch, F.; Constant, H.; et al. Genetic regulation of glucoraphanin accumulation in Beneforte® broccoli. New Phytol. 2013, 198, 1085–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, R.; Kong, W.W.; Peng, Y.F.; Zhang, K.X.; Li, R.; Li, J. Identification and expression pattern analysis of the glucosinolate biosynthetic gene BoCYP83B1 from broccoli. Biol. Plant. 2018, 62, 521–533. [Google Scholar] [CrossRef]
- Yu, Q.; Hao, G.; Zhou, J.; Wang, J.; Evivie, E.R.; Li, J. Identification and expression pattern analysis of BoMYB51 involved in indolic glucosinolate biosynthesis from broccoli (Brassica oleracea var. italica). Biochem. Biophys. Res. Commun. 2018, 501, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Rahim, A.; Afrin, K.S.; Jung, H.-J.; Kim, H.-T.; Park, J.-I.; Hur, Y.; Nou, I.S. Molecular analysis of anthocyanin biosynthesis-related genes reveal BoTT8 associated with purple hypocotyl of broccoli (Brassica oleracea var. italica L.). Genome 2019, 62, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Sotelo, T.; Soengas, P.; Velasco, P.; Rodríguez, V.M.; Cartea, M.E. Identification of Metabolic QTLs and Candidate Genes for Glucosinolate Synthesis in Brassica oleracea Leaves, Seeds and Flower Buds. PLoS ONE 2014, 9, e91428. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.F.; Yousef, G.G.; Reid, R.W.; Chebrolu, K.K.; Thomas, A.; Krueger, C.; Jeffery, E.; Jackson, E.; Juvik, J.A. Genetic analysis of glucosinolate variability in broccoli florets using genome-anchored single nucleotide polymorphisms. Theor. Appl. Genet. 2015, 128, 1431–1447. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Yuan, S.; Han, F.; Fang, Z.; Yang, L.; Zhuang, M.; Zhang, Y.; Lv, H.; Wang, Y.; et al. Fine mapping of the major QTLs for biochemical variation of sulforaphane in broccoli florets using a DH population. Sci. Rep. 2021, 11, 9004. [Google Scholar] [CrossRef]
- Brown, A.F.; Yousef, G.G.; Chebrolu, K.K.; Byrd, R.W.; Everhart, K.W.; Thomas, A.; Reid, R.; Parkin, I.A.P.; Sharpe, A.G.; Oliver, R.; et al. High-density single nucleotide polymorphism (SNP) array mapping in Brassica oleracea: Identification of QTL associated with carotenoid variation in broccoli florets. Theor. Appl. Genet. 2014, 127, 2051–2064. [Google Scholar] [CrossRef]
- Gardner, A.M.; Brown, A.F.; Juvik, J.A. QTL analysis for the identification of candidate genes controlling phenolic compound accumulation in broccoli (Brassica oleracea L. var. italica). Mol. Breed. 2016, 36, 81. [Google Scholar] [CrossRef]
- Francisco, M.; Ali, M.A.A.; Ferreres, F.; Moreno-Fernández, D.; Ángel; Velasco, P.; Soengas, P. Organ-Specific Quantitative Genetics and Candidate Genes of Phenylpropanoid Metabolism in Brassica oleracea. Front. Plant Sci. 2016, 6, 1240. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Yu, X.; Ma, F.; Li, J. RNA-Seq Analysis of Transcriptome and Glucosinolate Metabolism in Seeds and Sprouts of Broccoli (Brassica oleracea var. italic). PLoS ONE 2014, 9, e88804. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Ku, K.-M.; Becker, T.M.; Juvik, J.A. Chemopreventive glucosinolate accumulation in various broccoli and collard tissues: Microfluidic-based targeted transcriptomics for by-product valorization. PLoS ONE 2017, 12, e0185112. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, Y.; Li, L.; Fang, Z.; Yang, L.; Zhuang, M.; Zhang, Y.; Lv, H. Transcriptome reveals the gene expression patterns of sulforaphane metabolism in broccoli florets. PLoS ONE 2019, 14, e0213902. [Google Scholar] [CrossRef]
- Parkin, I.A.P.; Koh, C.; Tang, H.; Robinson, S.J.; Kagale, S.; Clarke, W.E.; Town, C.D.; Nixon, J.; Krishnakumar, V.; Bidwell, S.L.; et al. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol. 2014, 15, R77. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Liu, Y.; Yang, X.; Tong, C.; Edwards, D.; Parkin, I.A.P.; Zhao, M.; Perumal, S.; Yu, J.; Huang, S.; et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat. Commun. 2014, 5, 3930. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wang, J.; Shaw, R.K.; Yu, H.; Sheng, X.; Zhao, Z.; Li, S.; Gu, H. Development of GBTS and KASP Panels for Genetic Diversity, Population Structure, and Fingerprinting of a Large Collection of Broccoli (Brassica oleracea L. var. italica) in China. Front. Plant Sci. 2021, 12, 655254. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Liu, Y.; Han, F.; Fang, Z.; Yang, L.; Zhuang, M.; Zhang, Y.; Lv, H.; Wang, Y.; Jialei, J.; et al. Genetic Diversity and Population Structure Analysis of 161 Broccoli Cultivars Based on SNP Markers. Hortic. Plant J. 2021. [Google Scholar] [CrossRef]
- Silva, G.; Poirot, L.; Galetto, R.; Smith, J.; Montoya, G.; Duchateau, P.; Paques, F. Meganucleases and Other Tools for Targeted Genome Engineering: Perspectives and Challenges for Gene Therapy. Curr. Gene Ther. 2011, 11, 11–27. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.G.; Cha, J.; Chandrasegaran, S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 1996, 93, 1156. [Google Scholar] [CrossRef] [Green Version]
- Christian, M.; Cermak, T.; Doyle, E.L.; Schmidt, C.; Zhang, F.; Hummel, A.; Bogdanove, A.J.; Voytas, D.F. Targeting DNA Double-Strand Breaks with TAL Effector Nucleases. Genetics 2010, 186, 757–761. [Google Scholar] [CrossRef] [Green Version]
- Mali, P.; Esvelt, K.M.; Church, G. Cas9 as a versatile tool for engineering biology. Nat. Methods 2013, 10, 957–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Zhang, X.; Liu, H.; Li, Z. Highly efficient DNA-free plant genome editing using virally delivered CRISPR–Cas9. Nat. Plants 2020, 6, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, S.; Xu, J.; Sui, C.; Wei, J. Application of CRISPR/Cas9 in plant biology. Acta Pharm. Sin. B 2017, 7, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Zhu, C.; Zheng, M.; Liu, M.; Zhang, D.; Liu, B.; Li, Q.; Si, J.; Ren, X.; Song, H. CRISPR/Cas9-mediated multiple gene editing in Brassica oleracea var. capitata using the endogenous tRNA-processing system. Hortic. Res. 2019, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Jiang, M.; Zheng, H.; Jian, Y.; Huang, W.-L.; Yuan, Q.; Zheng, A.-H.; Chen, Q.; Zhang, Y.-T.; Lin, Y.-X.; et al. Color-related chlorophyll and carotenoid concentrations of Chinese kale can be altered through CRISPR/Cas9 targeted editing of the carotenoid isomerase gene BoaCRTISO. Hortic. Res. 2020, 7, 161. [Google Scholar] [CrossRef] [PubMed]
- Lawrenson, T.; Shorinola, O.; Stacey, N.; Li, C.; Østergaard, L.; Patron, N.; Uauy, C.; Harwood, W. Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol. 2015, 16, 258. [Google Scholar] [CrossRef] [Green Version]
- Sparrow, P.A.C.H.N.; Irwin, J.A. Brassica oleracea and B. napus. In Methods in Molecular Biology; Springer: Berlin/Heidelberg, Germany, 2014; Volume 1223, pp. 287–297. [Google Scholar]
- Metz, T.D.; Dixit, R.; Earle, E.D. Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var. italica) and cabbage (B. oleracea var. capitata). Plant Cell Rep. 1995, 15, 287–292. [Google Scholar] [CrossRef]
- Jiang, M.; Jiang, J.; He, C.; Guan, M. Broccoli plants over-expressing a cytosolic ascorbate peroxidase gene increase resistance to downy mildew and heat stress. J. Plant Pathol. 2016, 98, 413–420. [Google Scholar]
- Jiang, M.; Liu, Q.-E.; Liu, Z.-N.; Li, J.-Z.; He, C.-M. Over-expression of a WRKY transcription factor gene BoWRKY6 enhances resistance to downy mildew in transgenic broccoli plants. Australas. Plant Pathol. 2016, 45, 327–334. [Google Scholar] [CrossRef]
- Li, S.; Zhang, L.; Wang, Y.; Xu, F.; Liu, M.; Lin, P.; Ren, S.; Ma, R.; Guo, Y.-D. Knockdown of a cellulose synthase gene BoiCesA affects the leaf anatomy, cellulose content and salt tolerance in broccoli. Sci. Rep. 2017, 7, 41397. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Jiang, J.-J.; Miao, L.-X.; He, C.-M. Over-expression of a C3H-type zinc finger gene contributes to salt stress tolerance in transgenic broccoli plants. Plant Cell Tissue Organ Cult. (PCTOC) 2017, 130, 239–254. [Google Scholar] [CrossRef]
- Jiang, M.; Miao, L.; Zhang, H.; Zhu, X. Over-Expression of a Transcription Factor Gene BoC3H4 Enhances Salt Stress Tolerance but Reduces Sclerotinia Stem Rot Disease Resistance in Broccoli. J. Plant Growth Regul. 2019, 39, 1162–1176. [Google Scholar] [CrossRef]
- Jiang, M.; Ye, Z.-H.; Zhang, H.-J.; Miao, L.-X. Broccoli Plants Over-expressing an ERF Transcription Factor Gene BoERF1 Facilitates Both Salt Stress and Sclerotinia Stem Rot Resistance. J. Plant Growth Regul. 2018, 38, 1–13. [Google Scholar] [CrossRef]
- Kumar, P.; Gambhir, G.; Gaur, A.; Sharma, K.C.; Thakur, A.K.; Srivastava, D.K. Development of transgenic broccoli with cryIAa gene for resistance against diamondback moth (Plutella xylostella). 3 Biotech 2018, 8, 299. [Google Scholar] [CrossRef]
- Zuluaga, D.L.; Graham, N.S.; Klinder, A.; Kloeke, A.E.E.V.O.; Marcotrigiano, A.R.; Wagstaff, C.; Verkerk, R.; Sonnante, G.; Aarts, M.G.M. Overexpression of the MYB29 transcription factor affects aliphatic glucosinolate synthesis in Brassica oleracea. Plant Mol. Biol. 2019, 101, 65–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Jiang, J.; Jia, S.; Zhu, X.; Su, H.; Li, J. Overexpressing broccoli tryptophan biosynthetic genes BoTSB1 and BoTSB2 promotes biosynthesis of IAA and indole glucosinolates. Physiol. Plant. 2019, 168, 174–187. [Google Scholar] [CrossRef]
- Kim, Y.-C.; Cha, A.; Hussain, M.; Lee, K.; Lee, S. Impact of Agrobacterium-infiltration and transient overexpression of BroMYB28 on glucoraphanin biosynthesis in broccoli leaves. Plant Biotechnol. Rep. 2020, 14, 373–380. [Google Scholar] [CrossRef]
- Cao, H.; Liu, R.; Zhang, J.; Liu, Z.; Fan, S.; Yang, G.; Jin, Z.; Pei, Y. Improving sulforaphane content in transgenic broccoli plants by overexpressing MAM1, FMOGS–OX2, and Myrosinase. Plant Cell Tissue Organ Cult. (PCTOC) 2021, 146, 461–471. [Google Scholar] [CrossRef]
- Chen, G.J.; Cao, B.H.; Xu, F.; Lei, J.J. Development of adjustable male sterile plant in broccoli by antisense DAD1 fragment transformation. Afr. J. Biotechnol. 2010, 9, 4534–4541. [Google Scholar]
- Li, H.; Zhang, Q.L.; Li, L.H.; Yuan, J.Y.; Wang, Y.; Wu, M.; Han, Z.P.; Liu, M.; Chen, C.B.; Song, W.Q.; et al. Ectopic overexpression of bol-mir171b increases chlorophyll content and results in sterility in broccoli (Brassica oleracea L. var. italica). J. Agric. Food Chem. 2018, 66, 9588–9597. [Google Scholar] [CrossRef] [PubMed]
- Baskar, V.; Park, S.W. Molecular characterization of BrMYB28 and BrMYB29 paralogous transcription factors involved in the regulation of aliphatic glucosinolate profiles in Brassica rapa ssp. pekinensis. Comptes Rendus Biol. 2015, 338, 434–442. [Google Scholar] [CrossRef] [PubMed]
Gene Transferred | Origin | Recipient Plant | Performance | References |
---|---|---|---|---|
BoAPX | broccoli | broccoli | enhanced resistance to downy mildew enhanced tolerance to heat stress | [139] |
BoWRKY6 | broccoli | broccoli | enhanced resistance to downy mildew | [140] |
BoiCesA (RNAi) | broccoli | broccoli | enhanced salt tolerance; dwarf and smaller leaves | [141] |
BoC3H | broccoli | broccoli | enhanced salt stress tolerance | [142] |
BoC3H4 | broccoli | broccoli | enhanced salt stress tolerance; more susceptible to S. sclerotiorum | [143] |
BoERF1 | broccoli | broccoli | enhanced salt stress tolerance; enhanced resistance to Sclerotinia stem rot | [144] |
cryIAa | Bacillus thuringiensis | broccoli | resistance to diamondback moth | [145] |
BoMYB29 | wild B. oleracea | DH line AG1012, (partial broccoli background) | increased glucosinolate content | [146] |
BoTSB1, BoTSB2 | broccoli | Arabidopsis | increased glucosinolate content | [147] |
BroMYB28 (transient overexpression) | broccoli | broccoli | increased glucoraphanin content | [148] |
MAM1 | broccoli | broccoli | increased sulforaphane content | [149] |
FMOGS–OX2 | broccoli | broccoli | increased sulforaphane content | [149] |
Myrosinase | broccoli | broccoli | increased sulforaphane content | [149] |
BoiDAD1F (RNAi) | broccoli | broccoli | recoverable male sterility | [150] |
bol-miR171b | broccoli | broccoli | nearly completely male sterile and increased the chlorophyll content | [151] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, F.; Liu, Y.; Fang, Z.; Yang, L.; Zhuang, M.; Zhang, Y.; Lv, H.; Wang, Y.; Ji, J.; Li, Z. Advances in Genetics and Molecular Breeding of Broccoli. Horticulturae 2021, 7, 280. https://doi.org/10.3390/horticulturae7090280
Han F, Liu Y, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H, Wang Y, Ji J, Li Z. Advances in Genetics and Molecular Breeding of Broccoli. Horticulturae. 2021; 7(9):280. https://doi.org/10.3390/horticulturae7090280
Chicago/Turabian StyleHan, Fengqing, Yumei Liu, Zhiyuan Fang, Limei Yang, Mu Zhuang, Yangyong Zhang, Honghao Lv, Yong Wang, Jialei Ji, and Zhansheng Li. 2021. "Advances in Genetics and Molecular Breeding of Broccoli" Horticulturae 7, no. 9: 280. https://doi.org/10.3390/horticulturae7090280
APA StyleHan, F., Liu, Y., Fang, Z., Yang, L., Zhuang, M., Zhang, Y., Lv, H., Wang, Y., Ji, J., & Li, Z. (2021). Advances in Genetics and Molecular Breeding of Broccoli. Horticulturae, 7(9), 280. https://doi.org/10.3390/horticulturae7090280