Phytochemical Profile and Antioxidant Properties of Italian Green Tea, a New High Quality Niche Product
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Site Characteristics
2.2. Tea Harvest and Preparation
2.3. Tea Extract Preparation
2.4. Bioactive Compounds
2.4.1. Total Polyphenols
2.4.2. Antioxidant Activity
FRAP Assay
DPPH Assay
ABTS Assay
2.4.3. Identification and Quantification of Bioactive Compounds by HPLC
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Komes, D.; Horžić, D.; Belščak, A.; Ganić, K.K.; Vulić, I. Green tea preparation and its influence on the content of bioactive compounds. Food Res. Int. 2010, 43, 167–176. [Google Scholar] [CrossRef]
- Ori, F.; Ma, J.; Gori, M.; Lenzi, A.; Chen, L.; Giordani, E. DNA-based diversity of tea plants grown in Italy. Genet. Resour. Crop Evol. 2017, 64, 1905–1915. [Google Scholar] [CrossRef]
- Sirichaiwetchakoon, K.; Lowe, G.M.; Eumkeb, G. The Free Radical Scavenging and Anti-Isolated Human LDL Oxidation Activities of Pluchea indica (L.) Less. Tea Compared to Green Tea (Camellia sinensis). Biomed. Res. Int. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Koo, S.I.; Noh, S.K. Green tea as inhibitor of the intestinal absorption of lipids: Potential mechanism for its lipid-lowering effect. J. Nutr. Biochem. 2007, 18, 179–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, L.; Zhang, H.; Qi, R.; Tsao, R.; Mine, Y. Recent Advances in the Understanding of the Health Benefits and Molecular Mechanisms Associated with Green Tea Polyphenols. J. Agric. Food Chem. 2019, 67, 1029–1043. [Google Scholar] [CrossRef] [PubMed]
- Sharangi, A.B. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.)—A review. Food Res. Int. 2009, 42, 529–535. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, Y.; Li, W.; Zhao, L.; Meng, F.; Wang, Y.; Tan, H.; Yang, H.; Wei, C.; Wan, X.; et al. Tissue-Specific, Development-Dependent Phenolic Compounds Accumulation Profile and Gene Expression Pattern in Tea Plant [Camellia sinensis]. PLoS ONE 2013, 8, e62315. [Google Scholar] [CrossRef] [PubMed]
- Pérez-burillo, S.; Giménez, R.; Ru, J.A.; Pastoriza, S. Effect of brewing time and temperature on antioxidant capacity and phenols of white tea: Relationship with sensory properties. Food Chem. 2018, 248, 111–118. [Google Scholar] [CrossRef]
- Li, K.; Shi, X.; Yang, X.; Wang, Y.; Ye, C.; Yang, Z. Antioxidative activities and the chemical constituents of two Chinese teas, Camellia kucha and C. ptilophylla. Int. J. Food Sci. Technol. 2012, 47, 1063–1071. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Current Market Situation and Medium Term Outlook. In Proceedings of the Twenty-Third Session of the Intergovernmental Group on Tea, Hangzhou, China, 17–20 May 2018; pp. 13–16. [Google Scholar]
- FAO. Emerging Trends in Tea Consumption: Informing a Generic Promotion Process. In Proceedings of the Twenty-Third Session of the Intergovernmental Group on Tea, Hangzhou, China, 17–20 May 2018; pp. 1–9. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Developing futures and swap markets for tea. In Proceedings of the Twenty-Third Session of the Intergovernmental Group on Tea, Hangzhou, China, 17–20 May 2018; pp. 1–6. [Google Scholar]
- Bhardwaj, P.; Kumar, R.; Sharma, H.; Tewari, R.; Ahuja, P.S.; Sharma, R.K. Development and utilization of genomic and genic microsatellite markers in Assam tea (Camellia assamica ssp. assamica) and related Camellia species. Plant Breed. 2013, 132, 748–763. [Google Scholar] [CrossRef]
- Khan, N.; Mukhtar, H. Tea polyphenols for health promotion. Life Sci. 2007, 81, 519–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Q.; Li, W.; Zhang, H.; Gao, X.; Tan, S. Optimizing synchronous extraction and antioxidant activity evaluation of polyphenols and polysaccharides from Ya’an Tibetan tea (Camellia sinensis). Food Sci. Nutr. 2019, 8, 489–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heber, D.; Zhang, Y.; Yang, J.; Ma, J.E.; Henning, S.M.; Li, Z. Green tea, black tea, and oolong tea polyphenols reduce visceral fat and inflammation in mice fed high-fat, high-sucrose obesogenic diets. J. Nutr. 2014, 144, 1385–1393. [Google Scholar] [CrossRef] [Green Version]
- Senanayake, S.P.J.N. Green tea extract: Chemistry, antioxidant properties and food applications—A review. J. Funct. Foods 2013, 5, 1529–1541. [Google Scholar] [CrossRef]
- Karori, S.M.; Wachira, F.N.; Wanyoko, J.K.; Ngure, R.M. Antioxidant capacity of different types of tea products. African J. Biotechnol. 2007, 6, 2287–2296. [Google Scholar] [CrossRef] [Green Version]
- Afzal, M.; Safer, A.M.; Menon, M. Green tea polyphenols and their potential role in health and disease. Inflammopharmacology 2015, 23, 151–161. [Google Scholar] [CrossRef]
- Hayakawa, S.; Ohishi, T.; Miyoshi, N.; Oishi, Y.; Nakamura, Y.; Isemura, M. Anti-Cancer Effects of Green Tea Epigallocatchin-3-Gallate and Coffee Chlorogenic Acid. Molecules 2020, 25, 4553. [Google Scholar] [CrossRef]
- Tenore, G.C.; Daglia, M.; Ciampaglia, R.; Novellino, E. Exploring the Nutraceutical Potential of Polyphenols from Black, Green and Exploring the Nutraceutical Potential of Polyphenols from Black, Green and White Tea Infusions—An Overview. Curr. Pharm. Biotechnol. 2015, 16, 265–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huo, C.; Dou, Q.P.; Chan, T.H. Synthesis of phosphates and phosphates-acetates hybrids of green tea polyphenol (-)-epigallocatechine-3-gallate (EGCG) and its G ring deoxy analogs as potential anticancer prodrugs. Tetrahedron Lett. 2011, 52, 5478–5483. [Google Scholar] [CrossRef]
- Kellogg, J.J.; Graf, T.N.; Paine, M.F.; McCune, J.S.; Kvalheim, O.M.; Oberlies, N.H.; Cech, N.B. Comparison of Metabolomics Approaches for Evaluating the Variability of Complex Botanical Preparations: Green Tea (Camellia sinensis) as a Case Study. J. Nat. Prod. 2017, 80, 1457–1466. [Google Scholar] [CrossRef] [Green Version]
- Bramel, P.J.; Chen, L. A Global Strategy for the Conservation and Use of Tea Genetic Resources; Crop Trust: Bonn, Germany, 2019. [Google Scholar]
- Hyun, D.Y.; Gi, G.Y.; Sebastin, R.; Cho, G.T.; Kim, S.H.; Yoo, E.; Lee, S.; Son, D.M.; Lee, K.J. Utilization of phytochemical and molecular diversity to develop a target-oriented core collection in tea germplasm. Agronomy 2020, 10, 1667. [Google Scholar] [CrossRef]
- Camangi, F.; Stefani, A.; Bracci, T.; Minnocci, A.; Sebastiani, L.; Lippi, A.; Cattolica, G.; Santoro, A.M. Antiche Camelie Della Lucchesia; Sant’Anna, S.S., Ed.; ETS: Pisa, Italy, 2012; ISBN 978884673128-9. [Google Scholar]
- Caser, M.; Berruti, A.; National, I.; Bianciotto, V.; National, I.; Devecchi, M. Floriculture and territory—The protection of the traditional Italian tipicity: The case of “La Camelia del Lago Maggiore (PGI)”. Acta Hortic. 2018. [Google Scholar] [CrossRef]
- Corneo, A.; Remotti, D. Camelie Dell’ottocento Nel Verbano; Regione Piemonte: Torino, Italy, 2000. [Google Scholar]
- Freda, R.; Borrello, M.; Cembalo, L. Innovation in Floriculture When Environmental and Economics criteria are conflicting. Calitatea 2015, 16, 110–118. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin- Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.P.; Leong, L.P.; William Koh, J.H. Antioxidant activities of aqueous extracts of selected plants. Food Chem. 2006, 99, 775–783. [Google Scholar] [CrossRef]
- Urbani, E.; Blasi, F.; Stella, M.; Claudia, S.; Cossignani, L. Investigation on secondary metabolite content and antioxidant activity of commercial saffron powder. Eur. Food Res. Technol. 2016, 242, 987–993. [Google Scholar] [CrossRef]
- Caser, M.; Demasi, S.; Stelluti, S.; Donno, D.; Scariot, V.; Crocus sativus, L. Cultivation in Alpine Environments: Stigmas and Tepals as Source of Bioactive Compounds. Agronomy 2020, 10, 1473. [Google Scholar] [CrossRef]
- Caser, M.; Demasi, S.; Victorino, M.M.I.; Donno, D.; Faccio, A.; Lumini, E.; Bianciotto, V.; Scariot, V. Arbuscular Mycorrhizal Fungi Modulate the Crop Performance and Metabolic Profile of Saffron in Soilless Cultivation. Agronomy 2019, 9, 232. [Google Scholar] [CrossRef] [Green Version]
- Donno, D.; Mellano, M.G.; Riondato, I.; De Biaggi, M.; Andriamaniraka, H.; Gamba, G.; Beccaro, G.L. Traditional and Unconventional Dried Fruit Snacks as a Source of Health-Promoting Compounds. Antioxidants 2019, 8, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef] [PubMed]
- Mildner-Szkudlarz, S.; Zawirska-Wojtasiak, R.; Obuchowskij, W.; Goslinski, M. Evaluation of Antioxidant Activity of Green Tea Extract and Its Effect on the Biscuits Lipid Fraction Oxidative Stability. Sens. Food Qual. 2009, 74, 362–370. [Google Scholar] [CrossRef]
- Zielinski, A.A.F.; Haminiuk, C.W.I.; Beta, T. Multi-response optimization of phenolic antioxidants from white tea (Camellia sinensis L. Kuntze) and their identification by LC-DAD-Q-TOF-MS/MS. LWT Food Sci. Technol. 2016, 65, 897–907. [Google Scholar] [CrossRef] [Green Version]
- Lv, H.; Zhang, Y.; Shi, J.; Lin, Z. Phytochemical profiles and antioxidant activities of Chinese dark teas obtained by different processing technologies. Food Res. Int. 2017, 100, 486–493. [Google Scholar] [CrossRef]
- Ananingsih, V.K.; Sharma, A.; Zhou, W. Green tea catechins during food processing and storage: A review on stability and detection. FRIN 2013, 50, 469–479. [Google Scholar] [CrossRef]
- Demasi, S.; Caser, M.; Donno, D.; Enri, S.R.; Lonati, M.; Scariot, V. Exploring wild edible flowers as a source of bioactive compounds: New perspectives in horticulture. Folia Hortic. 2021, 33, 1–22. [Google Scholar] [CrossRef]
- Xue, Z.; Wang, J.; Chen, Z.; Ma, Q.; Guo, Q.; Gao, X.; Chen, H. Antioxidant, antihypertensive, and anticancer activities of the flavonoid fractions from green, oolong, and black tea infusion waste. J. Food Biochem. 2018, 42. [Google Scholar] [CrossRef]
- Cui, P.; Zhong, W.; Qin, Y.; Tao, F.; Wang, W.; Zhan, J. Characterization of two new aromatic amino acid lyases from actinomycetes for highly efficient production of p—Coumaric acid. Bioprocess Biosyst. Eng. 2020, 43, 1287–1298. [Google Scholar] [CrossRef]
- Gorjanović, S.; Komes, D.; Pastor, F.T.; Belşçak-Cvitanović, A.; Pezo, L.; Heçimović, I.; Suz̧njević, D. Antioxidant capacity of teas and herbal infusions: Polarographic assessment. J. Agric. Food Chem. 2012, 60, 9573–9580. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.K.; Kim, H.-W.; Lee, S.-H.; Kim, Y.J.; Asamenew, G.; Choi, J.; Lee, J.-W.; Jung, H.-A.; Yoo, S.M.; Kim, J.-B. Characterization of catechins, theaflavins, and flavonols by leaf processing step in green and black teas (Camellia sinensis) using UPLC-DAD-QToF/MS. Eur. Food Res. Technol. 2019, 245, 997–1010. [Google Scholar] [CrossRef] [Green Version]
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Chlorogenic Acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 2017, 22, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Method | Classes of Interest | Stationary Phase | Mobile Phase | Wavelength (nm) |
---|---|---|---|---|
A | Cinnamic acids Flavonols | KINETEX-C18 column (4.6 × 150 mm, 5 µm) | A: 10 mM KH2PO4/H3PO4 pH = 2.8 B: CH3CN | 330 |
B | Benzoic acids Catechins | KINETEX-C18 column (4.6 × 150 mm, 5 µm) | A: H2O/CH3OH/HCOOH (5:95:0.1 v/v/v), pH = 2.5 B: CH3OH/HCOOH (100:0.1 v/v) | 280 |
Tea Type | Total Polyphenols (mg GAE/100 g DW) | Antioxidant Activity | ||||
---|---|---|---|---|---|---|
FRAP (mmol Fe2+/kg) | DPPH | ABTS | ||||
(µmol TE/g DW) | Inhibition % | (µmol TE/g DW) | Inhibition % | |||
TCL | 8540.42 ± 105.38 | 25796.61 ± 951.83 | 302.35 ± 10.4 | 46.9 | 623.44 ± 4.64 | 94.3 |
TCO | 14918.91 ± 222.31 | 42758.86 ± 933.85 | 532.37 ± 5.95 | 61.2 | 881.08 ± 1.81 | 99.8 |
p | ** | *** | *** | *** |
Tea type | Flavonols | ||||
Hyperoside | Isoquercitrin | Quercetin | Quercitrin | Rutin | |
TCL | 25.37 ± 4.39 | 35.46 ± 2.60 | - | 242.38 ± 10.11 | 44.66 ± 3.93 |
TCO | 28.24 ± 4.30 | 35.31 ± 4.38 | 388.28 ± 95.47 | 113.11 ± 14.75 | 42.32 ± 4.19 |
p | ns | ns | *** | ns | |
Tea type | Cinnamic acids | ||||
Caffeic acid | Chlorogenic acid | Coumaric acid | Ferulic acid | ||
TCL | 42.57 ± 6.67 | - | - | - | |
TCO | 43.36 ± 1.72 | 612.25 ± 37.58 | 204.62 ± 16.47 | 57.85 ± 13.32 | |
p | ns | ||||
Tea type | Benzoic acids | Catechins | |||
Ellagic acid | Gallic acid | Catechin | Epicatechin | ||
TCL | 59.06 ± 2.33 | 42.39 ± 2.37 | 122.06 ± 10.86 | 770.39 ± 21.06 | |
TCO | 86.85 ± 5.17 | 803.88 ± 56.99 | 478.98 ± 27.53 | 735.84 ± 89.76 | |
p | ** | *** | *** | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falla, N.M.; Demasi, S.; Caser, M.; Scariot, V. Phytochemical Profile and Antioxidant Properties of Italian Green Tea, a New High Quality Niche Product. Horticulturae 2021, 7, 91. https://doi.org/10.3390/horticulturae7050091
Falla NM, Demasi S, Caser M, Scariot V. Phytochemical Profile and Antioxidant Properties of Italian Green Tea, a New High Quality Niche Product. Horticulturae. 2021; 7(5):91. https://doi.org/10.3390/horticulturae7050091
Chicago/Turabian StyleFalla, Nicole Mélanie, Sonia Demasi, Matteo Caser, and Valentina Scariot. 2021. "Phytochemical Profile and Antioxidant Properties of Italian Green Tea, a New High Quality Niche Product" Horticulturae 7, no. 5: 91. https://doi.org/10.3390/horticulturae7050091
APA StyleFalla, N. M., Demasi, S., Caser, M., & Scariot, V. (2021). Phytochemical Profile and Antioxidant Properties of Italian Green Tea, a New High Quality Niche Product. Horticulturae, 7(5), 91. https://doi.org/10.3390/horticulturae7050091