Adaptive Management Lessons for Serianthes nelsonii Conservation
Abstract
:1. Background
2. Review Methods
3. Historical Literature Established the Foundation
4. Management Can Be Based on Sound Science
4.1. Nursery Production Not a Limitation
4.2. In Situ Regeneration Not a Limitation
4.3. The Leaf
4.4. The Structural Organs
4.5. Ecology
4.6. Summary of Horticultural Management Recommendations
5. Research and Conservation Recommendations
5.1. Add Adaptive Management Research to All Funded Projects
5.2. Stop the Mortality
5.3. Clone the Global Population
5.4. Allow International Experts to Assess Species Recovery
5.5. Nurturing the Transition from Juvenile to Adult
5.6. Graft All Dislodged Stems Following Tropical Cyclones
5.7. Give Different Teams a Chance
5.8. Ensure Healthy Restoration Sites Are Available
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Merrill, E.D. Additions to the flora of Guam. Philipp. J. Sci. 1919, 15, 539–544. [Google Scholar]
- United States Fish and Wildlife Service. Determination of endangered status for Serianthes nelsonii Merr. (Hayun lagu or Tronkon Guafi). Fed. Regist. 1987, 52, 4907–4910. [Google Scholar]
- IUCN Red List. More than 35,500 Species Are Threatened with Extinction. Available online: https://www.iucnredlist.org/ (accessed on 1 March 2021).
- United States Fish and Wildlife Service. Recovery Plan for Serianthes nelsonii; USFWS: Portland, OR, USA, 1994. [Google Scholar]
- Marler, T.E. Perennial trees associating with nitrogen-fixing symbionts differ in leaf after-life nitrogen and carbon release. Nitrogen 2020, 1, 10. [Google Scholar] [CrossRef]
- Marler, T.E. Military ecology more fitting than warfare ecology. Environ. Conserv. 2013, 40, 207–208. [Google Scholar] [CrossRef]
- Marler, T.E. The intersection of a military culture and indigenous peoples in conservation issues. Commun. Integr. Biol. 2013, 6, e26665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutz, C. Bureaucratic weaponry and the production of ignorance in military operations on Guam. Curr. Anthropol. 2019, 60, 108–121. [Google Scholar] [CrossRef]
- Bevacqua, M.L.; Bowman, E.U.C. Guam. Contemp. Pac. 2018, 30, 136–144. [Google Scholar] [CrossRef]
- Frain, S.C. A defence democracy ‘in’ the United States: Gender and politics in the unincorporated territory of Guam. Small States Territ. 2020, 3, 319–338. [Google Scholar]
- United States Fish and Wildlife Service. Endangered Species. Available online: www.fws.gov (accessed on 24 February 2021).
- Sutherland, W.J.; Pullin, A.S.; Dolman, P.M.; Knight, T.M. The need for evidence-based conservation. Trends Ecol. Evol. 2004, 19, 305–308. [Google Scholar] [CrossRef]
- Wiles, G.J.; Aguon, C.F.; Davis, G.W.; Grout, D.J. The status and distribution of endangered animals and plants in northern Guam. Micronesica 1995, 28, 31–49. [Google Scholar]
- Wiles, G.J.; Schreiner, I.H.; Nafus, D.; Jurgensen, L.K.; Manglona, J.C. The status, biology, and conservation of Serianthes nelsonii (Fabaceae), an endangered Micronesian tree. Biol. Conserv. 1996, 76, 229–239. [Google Scholar] [CrossRef]
- Richardson, J.; Marutani, M. Effect of pre-treatments on seed germination of Serianthes nelsonii Merrill (Fabaceae). Micronesica 1997, 30, 439–440. [Google Scholar]
- Marler, T.E.; Cascasan, A.N.; Lawrence, J.H. Threatened native trees in Guam: Short-term seed storage and shade conditions influence emergence and growth of seedlings. HortScience 2015, 50, 1049–1054. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.E. Temperature and imbibition influence Serianthes seed germination. Plants 2019, 8, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marler, T.E. Serianthes nelsonii seed germination and seedling behavior are minimally influenced by chemical and light treatment. Horticulturae 2019, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.E. Asexual reproduction to propel recovery efforts of the critically endangered Håyun Lågu tree (Serianthes nelsonii Merr.). Trop. Conserv. Sci. 2017, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.E. Horticultural research crucial for plant conservation and ecosystem restoration. HortScience 2017, 52, 1648–1649. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.E.; Cascasan, A.N. Number of emerged seedlings and seedling longevity of the non-recruiting, critically endangered Håyun lågu tree Serianthes nelsonii Merr. (Fabales: Leguminosae) are influenced by month of emergence. J. Threat. Taxa 2015, 7, 8221–8225. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.E.; Cruz, G.N. Extreme wind events influence seed rain and seedling dynamics of Guam’s Serianthes nelsonii Merr. Trop. Conserv. Sci. 2019, 12, 1–6. [Google Scholar] [CrossRef]
- Wiles, G.J. Decline of a population of wild seeded breadfruit (Artocarpus mariannensis) on Guam, Mariana Islands. Pac. Sci. 2005, 59, 509–522. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.E. Diurnal Serianthes nelsonii Merr. leaflet paraheliotropism reduces leaflet temperature, relieves photoinhibition, and alters nyctinastic behavior. J. Threat. Taxa 2019, 11, 14112–14118. [Google Scholar] [CrossRef]
- Deloso, B.E.; Marler, T.E. Bi-pinnate compound Serianthes nelsonii leaf-level plasticity magnifies leaflet-level plasticity. Biology 2020, 9, 333. [Google Scholar] [CrossRef]
- Popma, J.; Bongers, F.; Werger, M.J.A. Gap-dependence and leaf characteristics of trees in a tropical lowland rain forest in Mexico. Oikos 1992, 63, 207–214. [Google Scholar] [CrossRef]
- Thomas, S.C.; Bazzaz, F.A. Asymptotic height as a predictor of photosynthetic characteristics in Malaysian rain forest trees. Ecology 1999, 80, 1607–1622. [Google Scholar] [CrossRef]
- Poorter, L.; Bongers, F.; Sterck, F.J.; Wöll, H. Beyond the regeneration phase: Differentiation of height–light trajectories among tropical tree species. J. Ecol. 2005, 93, 256–267. [Google Scholar] [CrossRef]
- Wright, I.; Reich, P.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornilessen, J.H.C.; Deimer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- Marler, T.E. Tropical cyclones and perennial species in the Mariana Islands. HortScience 2001, 36, 264–268. [Google Scholar] [CrossRef]
- Marler, T.E. Thigmomorphogenesis and biomechanical responses of shade-grown Serianthes nelsonii plants to stem flexure. Plant Signal. Behav. 2019, 14, e1601953. [Google Scholar] [CrossRef] [PubMed]
- Marler, T.E. Repetitive pruning of Serianthes nursery plants improves transplant quality and post-transplant survival. Plant Signal. Behav. 2019, 14, e1621246. [Google Scholar] [CrossRef]
- Sasidharan, R.; Voesenek, L.A.C.J.; Perata, P. Plant performance and food security in a wetter world. New Phytol. 2021, 229, 5–7. [Google Scholar] [CrossRef]
- Loreti, E.; Striker, G.G. Plant responses to hypoxia: Signaling and adaptation. Plants 2020, 9, 1704. [Google Scholar] [CrossRef]
- Sasidharan, R.; Bailey-Serres, J.; Ashikari, M.; Atwell, B.J.; Colmer, T.D.; Fagerstedt, K.; Fukao, T.; Geigenberger, P.; Hebelstrup, K.H.; Hill, R.D.; et al. Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytol. 2017, 214, 1403–1407. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.E. Diel root extension patterns of three Serianthes species are modulated by plant size. Plant Signal. Behav. 2017, 12, e1327496. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.; Musser, C. Chemical and air pruning of roots influence post-transplant root traits of the critically endangered Serianthes nelsonii. Plant Root 2016, 10, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Janzen, D.H. Herbivores and the number of tree species in tropical forests. Am. Nat. 1970, 104, 501–528. [Google Scholar] [CrossRef]
- Connell, J.H. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In Dynamics of Populations; den Boer, P.J., Gradwell, G.R., Eds.; Centre for Agricultural Publishing and Documentation: Wageningen, The Netherlands, 1971; pp. 298–312. [Google Scholar]
- Marler, T.; Musser, C. Potential stressors leading to seedling mortality in the endemic Håyun lågu tree (Serianthes nelsonii Merr.) in the island of Guam. Trop. Conserv. Sci 2015, 8, 738–744. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.E. Late successional tree species in Guam create biogeochemical niches. Commun. Integr. Biol. 2019, 12, 86–90. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Detto, M.; Fang, S.; Chazdon, R.L.; Li, Y.; Hau, B.C.H.; Fischer, G.A.; Weiblen, G.D.; Hogan, J.A.; Zimmerman, J.K.; et al. Soil nitrogen concentration mediates the relationship between leguminous trees and neighbor diversity in tropical forests. Commun. Biol. 2020, 3, 317. [Google Scholar] [CrossRef]
- United States Fish and Wildlife Service. Five-Year Status Review for Serianthes nelsonii; 2020. Available online: http://ecos.fws.gov/ecp/ (accessed on 24 February 2021).
- NAVFAC Marianas. Request for Statements of Interest. Serianthes nelsonii Outplanting and Monitoring on Guam at Andersen Air Force Base; Joint Region Marianas: Piti, Guam, 2020. [Google Scholar]
- Brummitt, N.A.; Bachman, S.P.; Griffiths-Lee, J.; Lutz, M.; Moat, J.F.; Farjon, A.; Donaldson, J.S.; Hilton-Taylor, C.; Meagher, T.R.; Albuquerque, S.; et al. Green plants in the red: A baseline global assessment for the IUCN sampled red list index for plants. PLoS ONE 2015, 10, e0135152. [Google Scholar] [CrossRef] [Green Version]
- Humphreys, A.M.; Govaerts, R.; Ficinski, S.Z.; Nic Lughadha, E.; Vorontsova, M.S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 2019, 3, 1043–1047. [Google Scholar] [CrossRef]
- Yang, J.; Cai, L.; Liu, D.; Chen, G.; Gratzfeld, J.; Sun, W. China’s conservation program on plant species with extremely small populations (PSESP): Progress and perspectives. Biol. Conserv. 2020, 244, 108535. [Google Scholar] [CrossRef]
- Werden, L.K.; Sugii, N.C.; Weisenberger, L.; Keir, M.J.; Koob, G.; Zahawi, R.A. Ex situ conservation of threatened plant species in island biodiversity hotspots: A case study from Hawai’i. Biol. Conserv. 2020, 243, 108435. [Google Scholar] [CrossRef]
- Machinski, J.; Albrecht, M.A. Center for Plant Conservation’s best practice guidelines for the reintroduction of rare plants. Plant Divers. 2017, 39, 390–395. [Google Scholar] [CrossRef]
- Djenontin, I.N.S.; Meadow, A.M. The art of co-production of knowledge in environmental sciences and management: Lessons from international practice. Environ. Manag. 2018, 61, 885–903. [Google Scholar] [CrossRef] [Green Version]
- Efroymson, R.; Jager, H.; Dale, V.; Westervelt, J. A framework for developing management goals for species at risk with examples from military installations in the United States. Environ. Manag. 2009, 44, 1163–1179. [Google Scholar] [CrossRef] [PubMed]
- Setter, T.L.; Munns, R.; Stefanova, K.; Shabala, S. What makes a plant science manuscript successful for publication? Funct. Plant Biol. 2020, 47, 1138–1146. [Google Scholar] [CrossRef]
- Sutherland, W.J.; Alvarez-Castañeda, S.T.; Amano, T.; Ambrosini, R.; Atkinson, P.; Baxter, J.M.; Bond, A.L.; Boon, P.J.; Buchanan, K.L.; Barlow, J.; et al. Ensuring tests of conservation interventions build on existing literature. Conserv. Biol. 2020, 34, 781–783. [Google Scholar] [CrossRef]
- Griffith, M.P.; Clase, T.; Toribio, P.; Piñeyro, Y.E.; Jimenez, F.; Gratacos, X.; Sanchez, V.; Meerow, A.; Meyer, A.; Andrea Kramer, A.; et al. Can a botanic garden metacollection better conserve wild plant diversity? A case study comparing pooled collections with an ideal sampling model. Int. J. Plant Sci. 2020, 181, 485–496. [Google Scholar] [CrossRef]
- Larsen, C.S. Genetics in Silviculture; Oliver & Boyd: Edinburgh, UK, 1956; p. 224. [Google Scholar]
- Lewis, W.J.; Alexander, D.M. Grafting and Budding, 2nd ed.; Landlinks Press: Collingwood, Australia, 2008; p. 93. [Google Scholar]
- United States Fish and Wildlife Service. Five-Year Status Review for Serianthes nelsonii; 2016. Available online: http://ecos.fws.gov/ecp/ (accessed on 24 February 2021).
- Longman, K.A. Some experimental approaches to the problem of phase change in forest trees. Acta Hortic. 1976, 56, 81–90. [Google Scholar] [CrossRef]
- Chalupka, W.; Cecich, R.A. Control of the first flowering in forest trees. Scand. J. Res. 1997, 12, 102–111. [Google Scholar] [CrossRef]
- Brewer, L.R.; Alspach, P.; Morgan, C. Manipulation of pear seedlings to reduce juvenility. Acta Hortic. 2008, 800, 289–296. [Google Scholar] [CrossRef]
- Abeli, T.; Dixon, K. Translocation ecology: The role of ecological sciences in plant translocation. Plant Ecol. 2016, 217, 123–125. [Google Scholar] [CrossRef] [Green Version]
- Weidlich, E.W.A.; Nelson, C.R.; Maron, J.L.; Callaway, R.M.; Delory, B.M.; Temperton, V.M. Priority effects and ecological restoration. Restor. Ecol. 2021, 29, e13317. [Google Scholar] [CrossRef]
- Heinen, R.; Biere, A.; Bezemer, T.M. Plant traits shape soil legacy effects on individual plant–insect interactions. Oikos 2020, 129, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Gann, G.D.; McDonald, T.; Walder, B.; Aronson, J.; Nelson, C.R.; Jonson, J.; Hallett, J.G.; Eisenberg, C.; Guariguata, M.R.; Liu, J.; et al. International principles and standards for the practice of ecological restoration. Restor. Ecol. 2019, 27, 1–46. [Google Scholar] [CrossRef] [Green Version]
- Prach, K.; Šebelíková, L.; Řehounková, K.; del Moral, R. Possibilities and limitations of passive restoration of heavily disturbed sites. Landsc. Res. 2020, 45, 247–253. [Google Scholar] [CrossRef]
- Marler, T.E. Three invasive tree species change soil chemistry in Guam forests. Forests 2020, 11, 279. [Google Scholar] [CrossRef] [Green Version]
- Bilas, R.D.; Bretman, A.; Bennett, T. Friends, neighbours and enemies: An overview of the communal and social biology of plants. Plant Cell Environ. 2020. [Google Scholar] [CrossRef]
- Sharifi, R.; Ryu, C.-M. Social networking in crop plants: Wired and wireless cross-plant communications. Plant Cell Environ. 2020. [Google Scholar] [CrossRef]
- Faucon, M.-P. Plant–soil interactions as drivers of the structure and functions of plant communities. Diversity 2020, 12, 452. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marler, T.E.; Musser, C.; Cascasan, A.N.J.; Cruz, G.N.; Deloso, B.E. Adaptive Management Lessons for Serianthes nelsonii Conservation. Horticulturae 2021, 7, 43. https://doi.org/10.3390/horticulturae7030043
Marler TE, Musser C, Cascasan ANJ, Cruz GN, Deloso BE. Adaptive Management Lessons for Serianthes nelsonii Conservation. Horticulturae. 2021; 7(3):43. https://doi.org/10.3390/horticulturae7030043
Chicago/Turabian StyleMarler, Thomas E., Cameron Musser, April N. J. Cascasan, Gil N. Cruz, and Benjamin E. Deloso. 2021. "Adaptive Management Lessons for Serianthes nelsonii Conservation" Horticulturae 7, no. 3: 43. https://doi.org/10.3390/horticulturae7030043
APA StyleMarler, T. E., Musser, C., Cascasan, A. N. J., Cruz, G. N., & Deloso, B. E. (2021). Adaptive Management Lessons for Serianthes nelsonii Conservation. Horticulturae, 7(3), 43. https://doi.org/10.3390/horticulturae7030043