Tree Planting Density and Canopy Position Affect ‘Cerasuola’ and ‘Koroneiki’ Olive Oil Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Olive Harvest
2.3. Fruit Measurements
2.4. Oil Quality Traits
2.5. Phenolic Compounds
2.6. Fatty Acid Profile
2.7. Sensory Evaluation
2.8. Volatile Profile
2.9. Statistical Analysis
3. Results and Discussion
3.1. Production and Fruit Quality
3.2. Oil Quality and Minor Compound Composition
3.3. Oil Sensory Attributes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caruso, T.; Cartabellotta, D.; Motisi, A.; Campisi, G.; Occorso, G.; Bivona, G.; Cappello, A.; Pane, G.; Pennino, G.; Ricciardo, G.; et al. Cultivar di Olivo Siciliane. Identificazione Validazione, Caratterizzazione Morfologica e Molecolare e Qualità Degli Oli. Contiene Manuale per la Caratterizzazione Primaria di Cultivar di Olivo Siciliane, 1st ed.; Regione Siciliana–Assessorato Agricolturae Foreste: Palermo, Italy, 2007. [Google Scholar]
- Marino, G.; Macaluso, L.; Grilo, F.; Marra, F.P.; Caruso, T. Toward the valorization of olive (Olea europaea var. europaea L.) biodiversity: Horticultural performance of seven Sicilian cultivars in a hedgerow planting system. Sci. Hortic. 2019, 256, 108583. [Google Scholar] [CrossRef]
- Grilo, F.; Novara, M.E.; D’Oca, M.C.; Rubino, S.; Lo Bianco, R.; Di Stefano, V. Quality evaluation of extra-virgin olive oils from Sicilian genotypes grown in a high-density system. Int. J. Food Sci. Nutr. 2020, 71, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Kandylis, P.; Vekiari, A.S.; Kanellaki, M.; Grati Kamoun, N.; Msallem, M.; Kourkoutas, Y. Comparative study of extra virgin olive oil flavor profile of Koroneiki variety (Olea europaea var. Microcarpa alba) cultivated in Greece and Tunisia during one period of harvesting. LWT Food Sci. Technol. 2011, 44, 1333–1341. [Google Scholar] [CrossRef]
- Kiritsakis, A.; Shahidi, F. Olives and Olive Oil as Functional Foods: Bioactivity, Chemistry and Processing; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Lazzez, A.; Perri, E.; Caravita, M.A.; Khlif, M.; Cossentini, M. Influence of olive maturity stage and geographical origin on some minor components in virgin olive oil of the chemLali variety. J. Agric. Food Chem. 2008, 56, 982–988. [Google Scholar] [CrossRef]
- García, J.M.; Seller, S.; Pérez-Camino, M.C. Influence of fruit ripening on olive oil quality. J. Agric. Food Chem. 1996, 44, 3516–3520. [Google Scholar] [CrossRef]
- Rotondi, A.; Bendini, A.; Cerretani, L.; Mari, M.; Lercker, G.; Gallina Toschi, T. Effect of olive ripening degree on the oxidative stability and organoleptic properties of cv. Nostrana di Brisighella extra virgin olive oil. J. Agric. Food Chem. 2004, 52, 3649–3654. [Google Scholar] [CrossRef]
- Zamora, R.; Alaiz, M.; Hidalgo, F.J. Influence of cultivar and fruit ripening on olive (Olea europaea) fruit protein content, composition, and antioxidant activity. J. Agric. Food Chem. 2001, 49, 4267–4270. [Google Scholar] [CrossRef]
- Trapani, S.; Migliorini, M.; Cherubini, C.; Cecchi, L.; Canuti, V.; Fia, G.; Zanoni, B. Direct quantitative indices for ripening of olive oil fruits to predict harvest time. Eur. J. Lipid Sci. Technol. 2015, 117. [Google Scholar] [CrossRef]
- Zipori, I.; Bustan, A.; Kerem, Z.; Dag, A.; Dag, A. Olive paste oil content on a dry weight basis (OPDW): An indicator for optimal harvesting time in modern olive orchards. Int. J. Fats Oils 2016, 67. [Google Scholar] [CrossRef] [Green Version]
- Grilo, F.; Caruso, T.; Wang, S.C. Influence of fruit canopy position and maturity on yield determinants and chemical composition of virgin olive oil. J. Sci. Food Agric. 2019, 99, 4319–4330. [Google Scholar] [CrossRef]
- Trentacoste, E.R.; Puertas, C.M.; Sadras, V.O. Modelling the intraspecific variation in the dynamics of fruit growth, oil and water concentration in olive (Olea europaea L.). Eur. J. Agron. 2012, 38, 83–93. [Google Scholar] [CrossRef]
- Polari, J.J.; Mori, M.; Wang, S.C. Olive oil from “Sikitita” under super-high-density planting system in California: Impact of harvest time and crop season. J. Am. Oil Chem. Soc. 2020, 97, 1179–1190. [Google Scholar] [CrossRef]
- Vossen, P. Olive oil: History, production, and characteristics of the world’s classic oils. HortScience 2007, 42, 1093–1100. [Google Scholar] [CrossRef] [Green Version]
- Sibbet, G.S.; Martin, G.C. Olive Production Manual; Ferguson, L., Ed.; University of California, Division of Agriculture and Natural Resources: Oakland, CA, USA, 1994. [Google Scholar]
- Jackson, J.E. Light interception and utilization by orchard systems. In Horticultural Reviews; Janick, J., Ed.; John Wiley & Sons, Inc.: Westport, CT, USA, 2017; Volume 45, pp. 208–267. ISBN 9781119431077. [Google Scholar]
- Lauri, P.É.; Costes, E.; Regnard, J.L.; Brun, L.; Simon, S.; Monney, P.; Sinoquet, H. Does knowledge on fruit tree architecture and its implications for orchard management improve horticultural sustainability? An overview of recent advances in the apple. Acta Hortic. 2009, 817, 243–250. [Google Scholar] [CrossRef]
- Tombesi, A.; Boco, M.; Pilli, M. Influence of light exposure on olive fruit growth and composition. Acta Hortic. 1999, 474, 255–259. [Google Scholar] [CrossRef]
- Trentacoste, E.R.; Gómez-del-Campo, M.; Rapoport, H.F. Olive fruit growth, tissue development and composition as affected by irradiance received in different hedgerow positions and orientations. Sci. Hortic. 2016, 198, 284–293. [Google Scholar] [CrossRef]
- Lanza, B.; Ninfali, P. Antioxidants in extra virgin olive oil and table olives: Connections between agriculture and processing for health choices. Antioxidants 2020, 9, 41. [Google Scholar] [CrossRef] [Green Version]
- Mariscal, M.J.; Orgaz, F.; Villalobos, F.J. Radiation-use efficiency and dry matter partioning of a young olive (Olea europea) orchard. Tree Physiol. 2000, 20, 65–72. [Google Scholar] [CrossRef]
- Morandi, B.; Zibordi, M.; Losciale, P.; Manfrini, L.; Pierpaoli, E.; Grappadelli, L.C. Shading decreases the growth rate of young apple fruit by reducing their phloem import. Sci. Hortic. 2010, 127, 347–352. [Google Scholar] [CrossRef]
- Villalobos, F.J.; Testi, L.; Hidalgo, J.; Pastor, M.; Orgaz, F. Modelling potential growth and yield of olive (Olea europaea L.) canopies. Eur. J. Agron. 2006, 24, 296–303. [Google Scholar] [CrossRef]
- Willaume, M.; Lauri, P.É.; Sinoquet, H. Light interception in apple trees influenced by canopy architecture manipulation. Trees Struct. Funct. 2004, 18, 705–713. [Google Scholar] [CrossRef]
- Gómez-del-Campo, M.; García, J.M. Canopy fruit location can affect olive oil quality in “Arbequina” hedgerow orchards. JAOCS J. Am. Oil Chem. Soc. 2012, 89, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Uceda, M.; Frias, L. Harvest dates. Evolution of the fruit oil content, oil composition and oil quality. Proc. Segundo Semin. Oleic. Int. Cordoba Spain 1975, 6, 125–130. [Google Scholar]
- Farina, V.; Lo Bianco, R.; Mazzaglia, A. Evaluation of late-maturing peach and nectarine fruit quality by chemical, physical, and sensory determinations. Agriculture 2019, 9, 189. [Google Scholar] [CrossRef] [Green Version]
- IOC. Guide for the Determination of the Characteristics of Oil-Olives; International Olive Council: Madrid, Spain, 2011. [Google Scholar]
- Mineo, V.; Planeta, D.; Finoli, C.; Giuliano, S. Fatty acids, sterols and antioxidant compounds of minor and neglected cultivar of Sicilian virgin olive oils. Prog. Nutr. 2007, 17, 259–263. [Google Scholar]
- Sacchi, R.; Caporaso, N.; Squadrilli, G.A.; Paduano, A.; Ambrosino, M.L.; Cavella, S.; Genovese, A. Sensory profile, biophenolic and volatile compounds of an artisanal ice cream (‘gelato’) functionalised using extra virgin olive oil. Int. J. Gastron. Food Sci. 2019, 18, 100173. [Google Scholar] [CrossRef]
- Gómez-del-Campo, M.; Trentacoste, E.R.; Connor, D.J. Long-term effects of row spacing on radiation interception, fruit characteristics and production of hedgerow olive orchard (cv. Arbequina). Sci. Hortic. 2020, 272, 109583. [Google Scholar] [CrossRef]
- Castillo-Ruiz, F.J.; Jiménez-Jiménez, F.; Blanco-Roldán, G.L.; Sola-Guirado, R.R.; Agüera-Vega, J.; Castro-Garcia, S. Analysis of fruit and oil quantity and quality distribution in high-density olive trees in order to improve the mechanical harvesting process. Spanish J. Agric. Res. 2015, 13, e0209. [Google Scholar] [CrossRef]
- Proietti, P.; Nasini, L.; Famiani, F. Effect of different leaf-to-fruit ratios on photosynthesis and fruit growth in olive (Olea europaea L.). Photosynthetica 2006, 44, 275–285. [Google Scholar] [CrossRef]
- Trentacoste, E.R.; Connor, D.J.; Gómez-del-Campo, M. Effect of olive hedgerow orientation on vegetative growth, fruit characteristics and productivity. Sci. Hortic. 2015, 192, 60–69. [Google Scholar] [CrossRef]
- Grilo, F.S.; Di Stefano, V.; Lo Bianco, R. Deficit irrigation and maturation stage influence quality and flavonoid composition of ‘Valencia’ orange fruit. J. Sci. Food Agric. 2017, 97, 1904–1909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianco, R.; Lo Farina, V.; Avellone, G.; Filizzola, F.; Agozzino, P. Fruit quality and volatile fraction of ‘Pink Lady’ apple trees in response to rootstock vigor and partial rootzone drying. J. Sci. Food Agric. 2008, 88, 1325–1334. [Google Scholar] [CrossRef]
- Polari, J.J.; Wang, S.C. Comparative effect of hammer mill screen size and cell wall-degrading enzymes during olive oil extraction. ACS Omega 2020, 5, 6074–6081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartolini, S.; Leccese, A.; Andreini, L. Influence of canopy fruit location on morphological, histochemical and biochemical changes in two oil olive cultivars. Plant Biosyst. 2014, 148, 1221–1230. [Google Scholar] [CrossRef]
- Roca, M.; Mínguez-Mosquera, M.I. Changes in chloroplast pigments of olive varieties during fruit ripening. J. Agric. Food Chem. 2001, 49, 832–839. [Google Scholar] [CrossRef]
- Giuliani, A.; Cerretani, L.; CICHELLI, A. Chlorophylls in olive and in olive oil: Chemistry and occurrences. Crit. Rev. Food Sci. Nutr. 2011, 51, 678–690. [Google Scholar] [CrossRef]
- Al-Bachir, M.; Sahloul, H. Fatty acid profile of olive oil extracted from irradiated and non-irradiated olive fruits. Int. J. Food Prop. 2017, 20, 2550–2558. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Rodrigo, C.; Aranceta, J. Olive oil: Its role in the diet. Encycl. Food Health 2015, 158–166. [Google Scholar] [CrossRef]
- Piroddi, M.; Albini, A.; Fabiani, R.; Giovannelli, L.; Luceri, C.; Natella, F.; Rosignoli, P.; Rossi, T.; Taticchi, A.; Servili, M.; et al. Nutrigenomics of extra-virgin olive oil: A review. Int. Union Biochem. Mol. Biol. 2017, 43, 17–41. [Google Scholar] [CrossRef]
- Caruso, G.; Gucci, R.; Sifola, M.I.; Selvaggini, R.; Urbani, S.; Esposto, S.; Taticchi, A.; Servili, M. Irrigation and fruit canopy position modify oil quality of olive trees (cv. Frantoio). J. Sci. Food Agric. 2017, 97, 3530–3539. [Google Scholar] [CrossRef] [Green Version]
- Servili, M.; Selvaggini, R.; Esposto, S.; Taticchi, A.; Montedoro, G.F.; Morozzi, G. Health and sensory properties of virgin olive oil hydrophilic phenols: Agronomic and technological aspects of production that affect their occurrence in the oil. J. Chromatogr. A 2004, 1054, 113–127. [Google Scholar] [CrossRef]
- Romero-Segura, C.; García-Rodríguez, R.; Sánchez-Ortiz, A.; Sanz, C.; Pérez, A.G. The role of olive β-glucosidase in shaping the phenolic profile of virgin olive oil. Food Res. Int. 2012, 45, 191–196. [Google Scholar] [CrossRef]
- Hachicha Hbaieb, R.; Kotti, F.; García-Rodríguez, R.; Gargouri, M.; Sanz, C.; Pérez, A.G. Monitoring endogenous enzymes during olive fruit ripening and storage: Correlation with virgin olive oil phenolic profiles. Food Chem. 2015, 174, 240–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aparicio, R.; Morales, M.T. Characterization of olive ripeness by green aroma compounds of virgin olive oil. J. Agric. Food Chem. 1998, 46, 1116–1122. [Google Scholar] [CrossRef]
- Clodoveo, M.L.; Hbaieb, R.H.; Kotti, F.; Mugnozza, G.S.; Gargouri, M. Mechanical strategies to increase nutritional and sensory quality of virgin olive oil by modulating the endogenous enzyme activities. Compr. Rev. Food Sci. Food Saf. 2014, 13, 135–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrewes, P.; Busch, J.L.H.C.; De Joode, T.; Groenewegen, A.; Alexandre, H. Sensory properties of virgin olive oil polyphenols: Identification of deacetoxy-ligstroside aglycon as a key contributor to pungency. J. Agric. Food Chem. 2003, 51, 1415–1420. [Google Scholar] [CrossRef]
- Caporale, G.; Policastro, S.; Monteleone, E. Bitterness enhancement induced by cut grass odorant (cis-3-hexen-1-ol) in a model olive oil. Food Qual. Prefer. 2004, 15, 219–227. [Google Scholar] [CrossRef]
- Angerosa, F.; Mostallino, R.; Basti, C.; Vito, R. Virgin olive oil odour notes: Their relationships with volatile compounds from the lipoxygenase pathway and secoiridoid compounds. Food Chem. 2000, 68, 283–287. [Google Scholar] [CrossRef]
- Angerosa, F.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G. Volatile compounds in virgin olive oil: Occurrence and their relationship with the quality. J. Chromatogr. A 2004, 1054, 17–31. [Google Scholar] [CrossRef]
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Essid, F.; Sifi, S.; Beltrán, G.; Sánchez, S.; Raïes, A. Sensory and volatile profiles of monovarietal north Tunisian extra virgin olive oils from “Chétoui” cultivar. J. Oleo Sci. 2016, 65, 533–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Main Quality Traits | Limits Described in | Mean ± SD |
---|---|---|
IOOC/T.15/NC No 3/Rev. 11 | ||
Free acidity (%m/m expressed in oleic acid) | ≤0.8 | 0.4 ± 0.18 |
Peroxide value (in milleq. O2 per kg/oil) | ≤20 | 7.0 ± 3.8 |
K232 | ≤2.50 | 1.35 ± 0.18 |
K270 | ≤0.22 | 0.10 ± 0.02 |
∆K | ≤0.01 | 0.001 ± 0.0013 |
Cultivar | ‘Cerasuola’ | ‘Koroneiki’ | ||||||
---|---|---|---|---|---|---|---|---|
Planting Density | HD | MD | HD | MD | ||||
Canopy Layer | Upper | Lower | Upper | Lower | Upper | Lower | Upper | Lower |
Fruit yield | 6.82 ab z | 8.03 a | 4.40 b | 9.23 a | ||||
Yield efficiency | 0.23 ab | 0.26 a | 0.16 b | 0.28 a | ||||
Yield | 6.82 a | 4.02 b | 4.40 b | 4.62 b | ||||
% fruit production | 60.7 a | 39.3 c | 61.6 a | 38.4 c | 58.4 ab | 41.6 bc | 52.5 abc | 47.5 abc |
Fruit weight | 1.35 a | 1.35 a | 1.35 a | 1.38 a | 0.87 b | 0.82 b | 0.77 b | 0.79 b |
Maturity index | 2.56 c | 2.15 d | 3.06 ab | 2.79 bc | 3.18 a | 2.69 bc | 2.68 bc | 2.54 cd |
% black peel | 87.3 ab | 62.7 c | 95.8 a | 79.6 ab | 87.7 ab | 72.6 bc | 65.9 bc | 71.6 bc |
Oil yield y | 15.7 | 15.4 | 18.5 | 14.9 | 21.2 | 15.6 | 17.3 | 13.1 |
Moisture content | 49.5 c | 53.7 a | 51.4 bc | 52.5 ab | 49.5 c | 50.5 bc | 49.9 c | 51.7 abc |
Fat content | 27.4 a | 24.8 d | 27.1 a | 25.5 cd | 27.6 a | 25.8 bcd | 26.9 ab | 26.4 abc |
Cultivar | ‘Cerasuola’ | ‘Koroneiki’ | ||||||
---|---|---|---|---|---|---|---|---|
Planting Density | HD | MD | HD | MD | ||||
Canopy Layer | Upper | Lower | Upper | Lower | Upper | Lower | Upper | Lower |
Chlorophyll | 13.1 b * | 17.3 a | 9.52 b | 20.0 a | 10.2 b | 14.1 a | 13.0 b | 18.0 a |
Carotenoids | 10.2 b | 12.5 a | 8.03 b | 14.2 a | 7.75 b | 10.7 a | 9.89 b | 13.2 a |
UFA/SFA | 5.67 b | 6.26 a | 4.70 d | 6.15 a | 4.97 cd | 5.20 c | 5.21 c | 5.68 b |
MUFA/PUFA | 5.40 d | 5.45 d | 5.18 d | 5.63 d | 8.05 ab | 7.11 bc | 8.35 a | 6.73 c |
3,4 DHPEA-EA | 368 b | 187 d | 248 c | 169 d | 434 a | 383 b | 462 a | 185 d |
3,4 DHPEA-EDA | 75.1 a | 70.3 b | 66.9 b | 59.0 c | 21.6 e | 20.8 e | 25.9 d | 12.3 f |
p-HPEA-EDA | 23.8 | 23.8 | 23.5 | 23.6 | 23.8 | 23.7 | 23.7 | 23.7 |
p-HPEA-EA | 116 d | 137 bc | 127 cd | 112 d | 165 a | 117 d | 148 b | 87.4 e |
Hydroxytyrosol | 9.68 e | 9.80 e | 15.0 d | 7.46 f | 6.69 g | 21.7 b | 16.1 c | 29.2 a |
Tyrosol | 30.5 b | 25.2 bc | 22.3 c | 25.8 c | 27.0 bc | 39.9 a | 38.2 a | 30.5 b |
Σ phenols | 734 c | 564 e | 626 d | 507 f | 776 b | 705 c | 816 a | 467 g |
Σ C5 | 0.62 a | 0.22 b | 0.59 a | 0.74 a | 0.34 b | 0.25 b | 0.32 b | 0.10 b |
Σ C6 | 21.2 b | 13.5 bc | 43.1 a | 12.8 bc | 10.4 bc | 7.86bc | 10.7 bc | 3.13 c |
Cultivar | ‘Cerasuola’ | ‘Koroneiki’ | ||||||
---|---|---|---|---|---|---|---|---|
Planting Density | HD | MD | HD | MD | ||||
Canopy Layer | Upper | Lower | Upper | Lower | Upper | Lower | Upper | Lower |
Fruity | 5 | 6 | 5 | 5.5 | 3 | 3 | 3 | 2.8 |
Bitter | 5 | 6 | 5.5 | 5 | 5 | 5 | 5 | 4 |
Pungent | 6 | 5.5 | 6 | 5 | 5 | 4 | 4 | 3 |
Artichoke | 3 | 3.5 | 3 | 3.5 | 2 | nd z | 2 | nd |
Almond | 2 | 2 | 2.5 | nd | 1 | nd | 1 | nd |
Grass | 2.5 | 3 | nd | 3 | nd | nd | nd | nd |
Green tomato | 2.5 | 3 | nd | 3.5 | nd | 1 | nd | nd |
Banana | nd | nd | nd | nd | 2 | nd | 1 | 1 |
Oregano | nd | 1 | nd | 2 | nd | nd | nd | nd |
Chicory | nd | 1 | 1 | 1 | nd | nd | nd | nd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grilo, F.; Sedaghat, S.; Di Stefano, V.; Sacchi, R.; Caruso, T.; Lo Bianco, R. Tree Planting Density and Canopy Position Affect ‘Cerasuola’ and ‘Koroneiki’ Olive Oil Quality. Horticulturae 2021, 7, 11. https://doi.org/10.3390/horticulturae7020011
Grilo F, Sedaghat S, Di Stefano V, Sacchi R, Caruso T, Lo Bianco R. Tree Planting Density and Canopy Position Affect ‘Cerasuola’ and ‘Koroneiki’ Olive Oil Quality. Horticulturae. 2021; 7(2):11. https://doi.org/10.3390/horticulturae7020011
Chicago/Turabian StyleGrilo, Filipa, Sahar Sedaghat, Vita Di Stefano, Raffaele Sacchi, Tiziano Caruso, and Riccardo Lo Bianco. 2021. "Tree Planting Density and Canopy Position Affect ‘Cerasuola’ and ‘Koroneiki’ Olive Oil Quality" Horticulturae 7, no. 2: 11. https://doi.org/10.3390/horticulturae7020011
APA StyleGrilo, F., Sedaghat, S., Di Stefano, V., Sacchi, R., Caruso, T., & Lo Bianco, R. (2021). Tree Planting Density and Canopy Position Affect ‘Cerasuola’ and ‘Koroneiki’ Olive Oil Quality. Horticulturae, 7(2), 11. https://doi.org/10.3390/horticulturae7020011