Thermo Condition Determines the Uptake of Autumn and Winter Applied Nitrogen and Subsequent Utilization in Spring Tea (Camellia sinensis L.)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Thermal Condition at Two Sites
3.2. 15N in Fibrous Roots and Mature Leaves
3.3. 15N in Young Spring Shoots
4. Discussion
4.1. Temperature and the Short-Term Autumn 15N Absorption and Upward Transport
4.2. Thermo Condition and the Accumulation of 15N Reserves during Winter Dormancy
4.3. Thermo Condition and 15N Utilization in the following Young Spring Shoot
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Ruan, J.Y. Tea: Analysis and Tasting. In The Encyclopedia of Food and Health; Caballero, B., Finglas, P., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; Volume 5, pp. 256–267. [Google Scholar]
- Xu, W.; Song, Q.; Li, D.; Wan, X. Discrimination of the production season of Chinese green tea by chemical analysis in combination with supervised pattern recognition. J. Agric. Food Chem. 2012, 60, 7064–7070. [Google Scholar] [CrossRef]
- Dai, W.; Qi, D.; Yang, T.; Lv, H.; Guo, L.; Zhang, Y.; Zhu, Y.; Peng, Q.; Xie, D.; Tan, J.; et al. Nontargeted analysis using ultraperformance liquid chromatography–quadrupole time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (Camellia sinensis L.). J. Agric. Food Chem. 2015, 63, 9869–9878. [Google Scholar] [CrossRef]
- Liu, J.W.; Zhang, Q.F.; Liu, M.Y.; Ma, L.F.; Shi, Y.Z.; Ruan, J.Y. Metabolomic analyses reveal distinct change of metabolites and quality of green tea during the short duration of a single spring season. J. Agric. Food Chem. 2016, 64, 3302–3309. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Yang, J.; Xie, X.; Lin, C. Over-supply of tea in China—A marketing analysis. Acta Tea Sin 2017, 58, 75–79. [Google Scholar]
- Millard, P.; Grelet, G.A. Nitrogen storage and remobilization by trees: Ecophysiological relevance in a changing world. Tree Physiol. 2010, 30, 1083–1095. [Google Scholar] [CrossRef] [Green Version]
- Bazot, S.; Fresneau, C.; Damesin, C.; Barthes, L. Contribution of previous year’s leaf N and soil N uptake to current year’s leaf growth in sessile oak. Biogeosciences 2016, 13, 3475–3484. [Google Scholar] [CrossRef] [Green Version]
- Ueda, M.U.; Mizumachi, E.; Tokuchi, N. Foliage nitrogen turnover: Differences among nitrogen absorbed at different times by Quercus serrata saplings. Ann. Bot. 2011, 108, 169–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Sun, M.; Qi, Y.; Liu, S. Remobilization of storage nitrogen in young pear trees grafted onto vigorous rootstocks (Pyrus betulifolia). Horticulturae 2021, 7, 148. [Google Scholar] [CrossRef]
- Ueda, M.; Tokuchi, N.; Hiura, T. Soil nitrogen pools and plant uptake at sub-zero soil temperature in a cool temperate forest soil: A field experiment using 15N labeling. Plant Soil 2015, 392, 205–214. [Google Scholar] [CrossRef]
- Fife, D.N.; Nambiar, E.K.S.; Saur, E. Retranslocation of foliar nutrients in evergreen tree species planted in a Mediterranean environment. Tree Physiol. 2008, 28, 187–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legaz, F.; Serna, M.D.; Primo-Millo, E. Mobilization of the reserve N in citrus. Plant Soil 1995, 173, 205–210. [Google Scholar] [CrossRef]
- Uscola, M.; Villar-Salvador, P.; Gross, P.; Maillard, P. Fast growth involves high dependence on stored resources in seedlings of Mediterranean evergreen trees. Ann. Bot. 2015, 115, 1001–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.-H.; Li, K.-T. Dormant season fertigation promotes photosynthesis, growth, and flowering of ‘Blueshower’ rabbiteye blueberry in warm climates. Hortic. Environ. Biotechnol. 2015, 56, 756–761. [Google Scholar] [CrossRef]
- Pescie, M.A.; Borda, M.P.; Ortiz, D.P.; Landriscini, M.R.; Lavado, R.S. Absorption, distribution and accumulation of nitrogen applied at different phenological stages in southern highbush blueberry (Vaccinium corymbosum interspecific hybrid). Sci. Hortic. 2018, 230, 11–17. [Google Scholar] [CrossRef] [Green Version]
- De Angelis, V.; Sánchez, E.; Tognetti, J. Timing of nitrogen fertilization influences color and anthocyanin content of apple (Malus domestica Borkh. cv ‘Royal Gala’) fruits. Int. J. Fruit Sci. 2011, 11, 364–375. [Google Scholar] [CrossRef]
- Jordan, M.O.; Wendler, R.; Millard, P. Autumnal N storage determines the spring growth, N uptake and N internal cycling of young peach trees. Trees 2012, 26, 393–404. [Google Scholar] [CrossRef]
- Kato, T. Nitrogen metabolism and utilization in citrus. In Horticultural Reviews Volume 8; Conover, C.A., Van Wann, E., Zimmerman, R.H., Eds.; AVI Publishing Company INC.: Westport, CT, USA, 2011; pp. 181–216. [Google Scholar]
- Dong, S.; Cheng, L.; Scagel, C.F.; Fuchigami, L.H. Timing of urea application affects leaf and root N uptake in young Fuji/M.9 apple trees. J. Hortic. Sci. Biotechnol. 2005, 80, 116–120. [Google Scholar] [CrossRef]
- Martinez-Alcantara, B.; Quinones, A.; Primo-Millo, E.; Legaz, F. Seasonal changes in nitrate uptake efficiency in young potted citrus trees. J. Agric. Sci. 2012, 4, 11–19. [Google Scholar] [CrossRef]
- Khemira, H.; Righetti, T.L.; Azarenko, A.N. Nitrogen partitioning in apple as affected by timing and tree growth habit. J. Hortic. Sci. Biotechnol. 1998, 73, 217–223. [Google Scholar] [CrossRef]
- Martínez-Alcántara, B.; Quiñones, A.; Legaz, F.; Primo-Millo, E. Nitrogen-use efficiency of young citrus trees as influenced by the timing of fertilizer application. J. Plant Nutr. Soil Sci. 2012, 175, 282–292. [Google Scholar] [CrossRef]
- San-Martino, L.; Sozzi, G.O.; San-Martino, S.; Lavado, R.S. Isotopically-labelled nitrogen uptake and partitioning in sweet cherry as influenced by timing of fertilizer application. Sci. Hortic. 2010, 126, 42–49. [Google Scholar] [CrossRef]
- Rivera, R.; Bañados, P.; Ayala, M. Distribution of 15N applied to the soil in the ‘Bing’/‘Gisela®6′ sweet cherry (Prunus avium L.) combination. Sci. Hortic. 2016, 210, 242–249. [Google Scholar] [CrossRef]
- Quartieri, M.; Millard, P.; Tagliavini, M. Storage and remobilisation of nitrogen by pear (Pyrus communis L.) trees as affected by timing of N supply. Eur. J. Agron. 2002, 17, 105–110. [Google Scholar] [CrossRef]
- Niederholzer, F.J.A.; DeJong, T.M.; Saenz, J.L.; Muraoka, T.T.; Weinbaum, S.A. Effectiveness of fall versus spring soil fertilization of field-grown peach trees. J. Am. Soc. Hortic. Sci. 2001, 126, 644–648. [Google Scholar] [CrossRef]
- Roccuzzo, G.; Scandellari, F.; Allegra, M.; Torrisi, B.; Stagno, F.; Mimmo, T.; Zanotelli, D.; Gioacchini, P.; Millard, P.; Tagliavini, M. Seasonal dynamics of root uptake and spring remobilisation of nitrogen in field grown orange trees. Sci. Hortic. 2017, 226, 223–230. [Google Scholar] [CrossRef]
- Okano, K.; Matsuo, K. Seasonal changes in uptake, distribution and redistribution of 15N-nitrogen in young tea (Camellia sinensis L.) plants. Jpn. J. Crop Sci. 1996, 65, 707–713. [Google Scholar] [CrossRef]
- Watanabe, I. Effect of nitrogen fertilizer application at different stages on the quality of green tea. Soil Sci. Plant Nutr. 1995, 41, 763–768. [Google Scholar] [CrossRef]
- Ma, L.F.; Shi, Y.Z.; Ruan, J.Y. Nitrogen absorption by field-grown tea plants (Camellia sinensis) in winter dormancy and utilization in spring shoots. Plant Soil 2019, 442, 127–140. [Google Scholar] [CrossRef]
- Ruan, J.Y.; Haerdter, R.; Gerendas, J. Impact of nitrogen supply on carbon/nitrogen allocation: A case study on amino acids and catechins in green tea [Camellia sinensis (L.) O. Kuntze] plants. Plant Biol. 2010, 12, 724–734. [Google Scholar] [CrossRef]
- Ni, K.; Liao, W.; Yi, X.; Niu, S.; Ma, L.F.; Shi, Y.Z.; Zhang, Q.; Liu, M.Y.; Ruan, J.Y. Fertilization status and reduction potential in tea gardens of China. J. Plant Nutr. Fert. 2019, 25, 421–432. [Google Scholar]
- Ma, L.; Yang, X.; Shi, Y.; Yi, X.; Ji, L.; Cheng, Y.; Ni, K.; Ruan, J. Response of tea yield, quality and soil bacterial characteristics to long-term nitrogen fertilization in an eleven-year field experiment. Appl. Soil Ecol. 2021, 166, 103976. [Google Scholar] [CrossRef]
- Liu, M.Y.; Burgos, A.; Ma, L.; Zhang, Q.; Tang, D.; Ruan, J. Lipidomics analysis unravels the effect of nitrogen fertilization on lipid metabolism in tea plant (Camellia sinensis L.). BMC Plant Biol. 2017, 17, 165. [Google Scholar] [CrossRef] [Green Version]
- Carranca, C.; Brunetto, G.; Tagliavini, M. Nitrogen nutrition of fruit trees to reconcile productivity and environmental concerns. Plants 2018, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Sulas, L.; Mercenaro, L.; Campesi, G.; Nieddu, G. Different cover crops affect nitrogen fluxes in Mediterranean vineyard. Agron. J. 2017, 109, 2579–2585. [Google Scholar] [CrossRef]
- Johnson, I.R.; Thornley, J.H.M. Temperature dependence of plant and crop process. Ann. Bot. 1985, 55, 1–24. [Google Scholar] [CrossRef]
- Pregitzer, K.S.; King, J.S. Effects of Soil Temperature on Nutrient Uptake. In Nutrient Acquisition by Plants. An Ecological Perspective; BassiriRad, H., Ed.; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 2005; pp. 290–323. [Google Scholar]
- Lloyd, D.T.; Soldat, D.J.; Stier, J.C. Low-temperature nitrogen uptake and use of three cool-season turfgrasses under controlled environments. HortScience 2011, 46, 1545–1549. [Google Scholar] [CrossRef] [Green Version]
- Wan, X.; Landhäusser, S.M.; Zwiazek, J.J.; Lieffers, V.J. Root water flow and growth of aspen (Populus tremuloides) at low root temperatures. Tree Physiol. 1999, 19, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Engels, C.; Marschner, H. Effect of root zone temperature and shoot demand on nitrogen translocation from the roots to the shoot in maize supplied with nitrate or ammonium. Plant Physiol. Biochem. 1996, 34, 144–157. [Google Scholar]
- Lamaze, T.; Pasche, F.; Pornon, A. Uncoupling nitrogen requirements for spring growth from root uptake in a young evergreen shrub (Rhododendron ferrugineum). New Phytol. 2003, 159, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Lim, C.S.; Kang, S.M.; Cho, J.L. Root storage of nitrogen applied in autumn and its remobilization to new growth in spring of persimmon trees (Diospyros kaki cv. Fuyu). Sci. Hortic. 2009, 119, 193–196. [Google Scholar] [CrossRef]
- Dong, S.; Scagel, C.F.; Cheng, L.; Fuchigami, L.H.; Rygiewicz, P.T. Soil temperature and plant growth stage influence nitrogen uptake and amino acid concentration of apple during early spring growth. Tree Physiol. 2001, 21, 541–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholberg, J.M.S.; Parsons, L.R.; Wheaton, T.A.; McNeal, B.L.; Morgan, K.T. Soil temperature, nitrogen concentration, and residence time affect nitrogen uptake efficiency in citrus. J. Environ. Qual. 2002, 31, 759–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neilsen, D.; Millard, P.; Herbert, L.C.; Neilsen, G.H.; Hogue, E.J.; Parchomchuk, P.; Zebarth, B.J. Remobilization and uptake of N by newly planted apple (Malus domestica) trees in response to irrigation method and timing of N application. Tree Physiol. 2001, 21, 513–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Site | ||
---|---|---|---|
Yongchuan | Xingyang | ||
pH | 3.85 | 4.34 | |
Organic matter | (mg g−1) | 14.1 | 19.0 |
Total N | (mg g−1) | 1.3 | 1.1 |
Available K | (mg kg−1) | 62.6 | 50.0 |
Available P | (mg kg−1) | 24.1 | 7.2 |
Available Mg | (mg kg−1) | 45.2 | 205 |
Site | Fertilization Date | DAA15 | DFH | DPH |
---|---|---|---|---|
Yongchuan | October 21 | 0.030 | 0.25 b 1 | 0.91 |
November 25 | 0.045 | 0.19 ab | 1.01 | |
December 25 | 0.045 | 0.25 b | 0.92 | |
January 14 | 0.105 | 0.09 a | 0.71 | |
February 1 | 0.041 | 0.09 a | 1.03 | |
October 21 + January 14 | 0.049 | 0.29 b | 1.19 | |
Xingyang | October 24 | 0.042 bc | 0.19 | 0.27 |
November 25 | 0.015 ab | 0.23 | 0.22 | |
December 25 | 0.003 a | 0.14 | 0.26 | |
January 14 | 0.015 ab | 0.22 | 0.27 | |
February 20 | 0.053 c | 0.22 | 0.37 | |
October 24 + January 14 | 0.049 c | 0.17 | 0.33 |
Site | Harvest Date | N Concentration (mg g−1) | Ndff % (%) |
---|---|---|---|
Yongchuan | March 16 | 57.7 c 1 | 10.9 a |
March 20–28 | 53.3 b | 12.6 b | |
April 1 | 47.7 a | 11.8 ab | |
April 29 | 46.3 a | 15.3 c | |
Xingyang | April 8 | 64.4 b | 18.2 ab |
April 13 | 61.0 a | 17.4 a | |
April 26 | 61.1 a | 19.6 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Jiang, S.; Deng, M.; Lv, L.; Xu, Z.; Ruan, J. Thermo Condition Determines the Uptake of Autumn and Winter Applied Nitrogen and Subsequent Utilization in Spring Tea (Camellia sinensis L.). Horticulturae 2021, 7, 544. https://doi.org/10.3390/horticulturae7120544
Ma L, Jiang S, Deng M, Lv L, Xu Z, Ruan J. Thermo Condition Determines the Uptake of Autumn and Winter Applied Nitrogen and Subsequent Utilization in Spring Tea (Camellia sinensis L.). Horticulturae. 2021; 7(12):544. https://doi.org/10.3390/horticulturae7120544
Chicago/Turabian StyleMa, Lifeng, Shuangfeng Jiang, Min Deng, Lize Lv, Ze Xu, and Jianyun Ruan. 2021. "Thermo Condition Determines the Uptake of Autumn and Winter Applied Nitrogen and Subsequent Utilization in Spring Tea (Camellia sinensis L.)" Horticulturae 7, no. 12: 544. https://doi.org/10.3390/horticulturae7120544
APA StyleMa, L., Jiang, S., Deng, M., Lv, L., Xu, Z., & Ruan, J. (2021). Thermo Condition Determines the Uptake of Autumn and Winter Applied Nitrogen and Subsequent Utilization in Spring Tea (Camellia sinensis L.). Horticulturae, 7(12), 544. https://doi.org/10.3390/horticulturae7120544