Genetic Analyses of Resistance to Fusarium Basal Rot in Onion
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Sources of FBR Resistance
3.2. Genetic Analysis and Mapping of FBR Resistance
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Disclaimer
References
- Entwistle, A.R. Root diseases. In Onion and Allied Crops, Vol II. Agronomy, Biotic Interactions Pathology and Crop Protection; Rabinowitch, H.D., Brewster, J.L., Eds.; CRC Press: Boca Raton, FL, USA, 1990; pp. 103–154. [Google Scholar]
- Vivero, G.A.G. Resistance to Fusarium Basal Rot and Response to Arbuscular Mycorrhizal Fungi. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2009. [Google Scholar]
- Havey, M.J. Onion breeding. In Genetic Improvement of Vegetable Crops; Kalloo, G., Berg, B., Eds.; Pergamon Press: Oxford, UK, 1993; pp. 35–49. [Google Scholar]
- Walker, J.C.; Tims, E.C. A fusarium bulb rot of onion and the relation of environment to its development. J. Agric. Res. 1924, 28, 683–694. [Google Scholar]
- Cramer, C.S. Breeding and genetics of Fusarium basal rot resistance in onion. Euphytica 2000, 115, 159–166. [Google Scholar] [CrossRef]
- Kehr, A.E.; O’Brien, J.; Davis, E.W. Pathogenicity of Fusarium oxysporum f. sp. cepae. and its interaction with Pyenochaeta terrestris on onion. Euphytica 1962, 11, 197–208. [Google Scholar]
- Lacy, M.L.; Roberts, D.L. Yields of onion cultivars in Midwestern organic soils infested with Fusarium oxysporum f. sp. cepae and Pyrenochaeta terrestris. Plant Dis. 1982, 66, 1003–1006. [Google Scholar] [CrossRef]
- Taylor, A.; Vagany, V.; Barbara, D.J.; Thomas, B.; Pink, D.; Jones, J.E.; Clarkson, J.P. Identification of differential resistance to six Fusarium oxysporum f. sp. cepae isolates in commercial onion cultivars through the development of a rapid seedling assay. Plant Path. 2013, 62, 103–111. [Google Scholar]
- Abawi, G.S.; Lorbeer, J.W. Several aspects of the ecology and pathology of Fusarium oxysporum f. sp. cepae. Phytopathology 1972, 62, 870–876. [Google Scholar] [CrossRef]
- Brayford, D. Fusarium oxysporum f. sp. cepae. Mycopathologia 1996, 133, 39–40. [Google Scholar]
- Gei, P.; Valdez, J.; Piccolo, R.; Galmarini, C.R. Influence of Fusarium spp. isolate and inoculum density on resistance screening tests in onion. Trop. Plant Path. 2014, 39, 19–27. [Google Scholar]
- Rabiei-Motlagh, E.; Falahati-Rastegar, M.; Rouhani, H.; Jafarpour, B.; Jahanbaksh, V. Root diseases of onion caused by some root colonizing fungi in Northeast Iran. Amer. Eurasian J. Agric. Environ. Sci. 2010, 7, 484–491. [Google Scholar]
- Everts, K.L. Effects of Maggots and Wounding on Occurrence of Fusarium Basal Rot of Onions in Colorado. Plant Dis. 1985, 69, 878–882. [Google Scholar] [CrossRef]
- Krueger, S. Resistance to Fusarium Basal Rot in Onions. Master’s Thesis, University of Wisconsin-Madison, Madison, WI, USA, 1986. [Google Scholar]
- Özer, N.; Köycü, N.D.; Chilosi, G.; Magro, P. Resistance to Fusarium basal rot in greenhouse and field and associated expression of antifungal compounds. Phytoparasitica 2004, 32, 388–394. [Google Scholar] [CrossRef]
- Retig, N.; Kust, A.F.; Gabelman, W.H. Greenhouse and field tests for determining the resistance of onion fines to Fusarium basal rot. J. Am. Soc. Hort. Sci. 1970, 95, 422–424. [Google Scholar]
- Saxena, A.; Cramer, C.S. Screening of onion seedlings for resistance against New Mexico isolates of Fusarium oxysporum f. sp. cepae. J. Plant Path. 2009, 91, 199–202. [Google Scholar]
- Tsutsui, K. Inheritance of Resistance to Fusarium Basal Rot in Onion. Master’s Thesis, University of Wisconsin-Madison, Madison, WI, USA, 1991. [Google Scholar]
- Galvan, G.A.; Koning-Boucoiran, C.; Koopman, W.; Burger-Meijer, K.; Gonzalez, P.; Waaljik, C.; Kik, C.; Scholten, O.E. Genetic variation among Fusarium isolates from onion, and resistance to Fusarium basal rot in related Allium species. Eur. J. Plant Path. 2008, 121, 499–512. [Google Scholar] [CrossRef]
- Gutierrez, J.A.; Cramer, C.S. Screening Short-day Onion Cultivars for Resistance to Fusarium Basal Rot. HortScience 2005, 40, 157–160. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, J.A.; Molina-Bravo, R.; Cramer, C.S. Screening winter-sown intermediate-day onion cultivars for resistance to Fusarium basal rot. HortTechnology 2006, 16, 177–181. [Google Scholar] [CrossRef]
- Holz, G.; Knox-Davies, P.S. Resistance of onion selections to Fusarium oxysporum f. sp. cepae. Phytophylactica 1974, 6, 153–156. [Google Scholar]
- Bacher, J.W. Inheritance of Resistance to Fusarium oxysporum f. sp. cepae in Cultivated Onions. Master’s Thesis, Michigan State University, East Lansing, MI, USA, 1989. [Google Scholar]
- Krueger, S.; Weiman, A.; Gabelman, W.H. Combining ability among inbred onions for resistance to Fusarium basal rot. HortScience 1989, 24, 1021–2023. [Google Scholar]
- Vu, H.Q.; El-Sayed, M.; Ito, S.; Yamauchi, N.; Shigyo, M. Discovery of new source of resistance to Fusarium oysporum, cause of Fusarium wilt in Allium fistulosum, located on chromosome 2 of Allium cepa aggregatum group. Genome 2012, 55, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahman, M.; El-Sayed, M.; Sato, S.; Hirakawa, H.; Ito, S.-I.; Tanaka, K.; Mine, Y.; Sugiyama, N.; Suzuki, M.; Yamauchi, N.; et al. RNA-sequencing-based transcriptome and biochemical analyses of steroidal saponin pathway in a complete set of Allium fistulosum—A. cepa monosomic addition lines. PLoS ONE 2017, 12, e0181784. [Google Scholar] [CrossRef] [Green Version]
- Dhingra, O.D.; Sinclair, J.B. Basic Plant Pathology Methods, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1985. [Google Scholar]
- Özer, N.; Koycü, N.D. Evaluation of seed treatments for controlling Aspergillus niger and Fusarium oxysporum on onion seed. Phytopath. Medditerranea 1998, 37, 33–40. [Google Scholar]
- Goldman, I. A List of Germplasm Releases from the University of Wisconsin Onion Breeding Program, 1957–1993. HortScience 1996, 31, 878–879. [Google Scholar] [CrossRef] [Green Version]
- Goldman, I.L.; Schroeck, G.; Havey, M.J. History of public onion breeding programs and pedigree of public onion germplasm releases in the United States. Plant Breed. Rev. 2001, 20, 67–103. [Google Scholar]
- Van Kampen, J. Shortening the breeding cycle in onions. Mededelingen proefstation voor de groenteteelt in de Vollegrond in Nederland 1970, 51, 72. [Google Scholar]
- Damon, S.J.; Havey, M.J. Quantitative trait loci controlling amounts and types of epicuticular waxes in onion. J. Am. Soc. Hort. Sci. 2014, 139, 597. [Google Scholar] [CrossRef] [Green Version]
- Duangjit, J.; Bohanec, B.; Chan, A.P.; Town, C.D.; Havey, M.J. Transcriptome sequencing to produce SNP-based genetic maps of onion. Theor. Appl. Genet. 2013, 126, 2093–2101. [Google Scholar] [CrossRef]
- Van Ooijen, J.W. JoinMap 4, Software for the Calculation of Genetic Linkage Maps in Experimental Populations; Kyazma, B.V.: Wageningen, The Netherlands, 2006. [Google Scholar]
- Broman, K.W.; Sen, S. A guide to QTL Mapping with R/qtl; Springer: New York, NY, USA, 2009. [Google Scholar]
- Broman, K.W.; Wu, H.; Sen, Ś.; Churchill, G.A. R/qtl: QTL mapping in experimental crosses. Comput. Appl. Biosci. 2003, 19, 889–890. [Google Scholar] [CrossRef] [Green Version]
- Cramer, C.S. Onion Trait Heritability and Response from Selection. J. Am. Soc. Hortic. Sci. 2006, 131, 646–650. [Google Scholar] [CrossRef] [Green Version]
- Beavis, W.D. QTL analyses: Power, precision, and accuracy. In Molecular Dissection of Complex Traits; Paterson, A.H., Ed.; CRC Press: Boca Raton, FL, USA, 1998; pp. 145–162. [Google Scholar]
- Black, L.; Chan, E.K.F.; Colcol, J.F.; Jones, R.; Kramer, C.; Xiang, W. Disease Resistance Loci in Onion. U.S. Patent 20150150155, 28 May 2015. [Google Scholar]
- Marzu, J.C.; Straley, E.; Havey, M.J. Genetic Analyses and Mapping of Pink-Root Resistance in Onion. J. Am. Soc. Hortic. Sci. 2018, 143, 503–507. [Google Scholar] [CrossRef] [Green Version]
- Taylor, A.; Teakle, G.R.; Walley, P.G.; Finch-Savage, W.; Jackson, A.C.; Jones, J.E.; Hand, P.; Thomas, B.; Havey, M.J.; Pink, D.; et al. Identification of resistance to Fusarium basal rot and improved seedling vigour through the creation and characterisation of a novel onion diversity set. Theor. Appl. Genet. 2019, 132, 3245–3264. [Google Scholar] [CrossRef] [Green Version]
- Southwood, M.J.; Viljoen, A.; Mostert, L.; Rose, L.J.; McLeod, A. Phylogenetic and biological characterisation of Fusarium oxysporum isolates associated with onion in South Africa. Plant Dis. 2012, 96, 1250–1261. [Google Scholar] [CrossRef] [PubMed]
Accession | Mean % FBR Survival ± SD | Level of Significance z | |
---|---|---|---|
Original | Selection | ||
PI 171473 | 44.0 ± 13.4 | 64.5 ± 1.8 | * |
PI 249539 | 3.8 ± 2.5 | 76.0 ± 5.5 | *** |
PI 264326 | 7.1 ± 5.4 | 48.7 ± 14.3 | *** |
PI 354088 | 36.0 ± 22.5 | 54.4 ± 23.8 | * |
PI 368359 | 6.6 ± 5.4 | 44.0 ± 14.1 | *** |
W440 | 66.2 ± 16.3 | 76.1 ± 15.3 | ns |
S y | 5.0 ± 4.9 | - |
Pedigree | % FBR Survival ± SD z |
---|---|
Ski-A × W440 | 66.9 ± 12.4 a |
FBR-selected W440 | 60.9 ± 12.5 a |
B2113A × W440 | 46.2 ± 9.7 b |
(MSU611-1AxMSU611B) × W440 | 37.8 ± 4.5 bc |
MSU611-1AxMSU611B | 38.7 ± 9.9 b c |
Ski-A | 32.0 ± 7.2 c |
B2113A | 2.4 ± 3.0 d |
S y | 4.9 ± 2.5 d |
Chrom z | Most Significant SNP | SNP Flanking 1.5 LOD Confidence Interval | LOD Score | LOD Threshold | Additive Effect y | Dominance Effect y | % Variation Explained |
---|---|---|---|---|---|---|---|
2B | isotig38484_281 | isotig36256_344 to isotig32786_424 | 7.6 | 3.6 | 20.7 | 0.8 | 41.1 |
4A | isotig44683_192 | isotig33399_1211 to isotig35268_1082 | 8.0 | 3.6 | 17.2 | 19.4 | 44.2 |
4C | isotig31106_505 | isotig45610_340 to isotig31106_505 | 5.6 | 3.6 | −14.9 | −10.3 | 25.3 |
F3 | Genotypes at SNP z | F4 Families | Mean % | ||
---|---|---|---|---|---|
Family | Isotig 38484_281 | Isotig 44683_192 | Isotig 31106_505 | Evaluated | Survival ± SD y |
24,602 | H | A | H | 17 | 28.7 ± 20.0 a |
24,622 | H | H | H | 10 | 44.2 ± 32.9 a |
24,620 | H | H | A | 11 | 51.6 ± 29.3 ab |
24,648 | B | H | A | 17 | 77.1 ± 16.5 bc |
24,628 | B | B | H | 36 | 78.2 ± 21.6 c |
Chrom | Most Significant SNP y | LOD Score | LOD Threshold | Additive Effect z | Dominance Effect z | % Variation Explained |
---|---|---|---|---|---|---|
2B | isotig30461_1472 | 3.26 | 2.35 | 16.9 | 9.1 | 14.1 |
4C | isotig31106_505 | 2.88 | 2.35 | −3.7 | −23.7 | 12.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Straley, E.; Colcol Marzu, J.; Havey, M.J. Genetic Analyses of Resistance to Fusarium Basal Rot in Onion. Horticulturae 2021, 7, 538. https://doi.org/10.3390/horticulturae7120538
Straley E, Colcol Marzu J, Havey MJ. Genetic Analyses of Resistance to Fusarium Basal Rot in Onion. Horticulturae. 2021; 7(12):538. https://doi.org/10.3390/horticulturae7120538
Chicago/Turabian StyleStraley, Elizabeth, Jen Colcol Marzu, and Michael J. Havey. 2021. "Genetic Analyses of Resistance to Fusarium Basal Rot in Onion" Horticulturae 7, no. 12: 538. https://doi.org/10.3390/horticulturae7120538
APA StyleStraley, E., Colcol Marzu, J., & Havey, M. J. (2021). Genetic Analyses of Resistance to Fusarium Basal Rot in Onion. Horticulturae, 7(12), 538. https://doi.org/10.3390/horticulturae7120538