Energy and Water Related Parameters in Tomato and Cucumber Greenhouse Crops in Semiarid Mediterranean Regions. A Review, Part I: Increasing Energy Efficiency
Abstract
:1. Introduction
2. Greenhouse Environment
2.1. Energy Conditions
2.1.1. Climate
2.1.2. Renewable Energy
2.1.3. Shading and Light Conditions
2.2. Microclimatic Conditions
3. Energy-Efficient Measures
- •
- An East–West greenhouse orientation may be the optimum orientation in the Mediterranean in relation to energy needs, as it can reduce the annual cost of air-conditioning of greenhouses compared to the North–South orientation [94]. Nevertheless, the above recommendation is related to the prevailing wind direction, and it may not be the case for areas where the north wind direction prevails. In addition, although an East–West orientation of the greenhouse may be optimum for energy saving purposes, it may not be the optimum in relation to the maximization of the incoming solar radiation.
- •
- A pad and fan cooling system has high efficiency in dry ambient conditions but not in humid conditions. The recommended area of the pad in semi-arid and arid regions, should be 1 m2 for every 20–30 m2 of greenhouse ground cover area, with a pad thickness higher than 150 mm. The pad-to-fan distance should be less than 40–48 m with an airflow rate of 120–150 m3 m−2 h−1 of the greenhouse area [13].
- •
- Fog and mist systems present higher cooling uniformity within the crop canopy as opposed to pad- and fan-cooled greenhouses. High-pressure fog systems are more effective for controlling the greenhouse climate as opposed to low pressure. However, during the operation of the fog system, a vent opening of 20% of the maximum aperture should be maintained [13,95].
- •
- Side-wall openings of natural ventilation should be located in line with the prevailing wind direction. In the case of low external air velocity wind, natural ventilation could create a cooler and more humid environment around the crop canopy than that produced by forced-air ventilation systems.
- •
- The forced air ventilation system should develop a capacity of about 30 Pa static pressure, with the distance between the two fans being less than 10 m. The opposite side opening should be at least 1.25 times the fan area. Air speed should not exceed 0.5 m s−1, as it induces stress to plants [13].
- •
- •
- Low-pressure inexpensive fogging systems, used for a constant reduction in VPD, could be applied in low-technology greenhouses. Care should be taken in regard to the droplet size of the fog so that leaves remain dry [56].
- •
- The total ventilator area should not be more than 30% of floor area. It should be located at the ridge, on the sidewalls and the gable. When solar radiation values exceed 900 W m−2, a ventilation rate of 0.06 m3 s−1 m−2 for a greenhouse with a mean height of 3 m is recommended to maintain the difference in the internal–external air temperature of about 4 °C [13].
- •
- Near-infrared-reflecting plastic films seem to be the most suitable, low-cost and simple cover for greenhouses under arid conditions. The use of anti-drop covering materials is an alternative method for greenhouse dehumidification. The use of inflated cover is very scarce, as greenhouses should be properly isolated. In addition, inflated cover reduces available light [13].
- •
- Heating pipes under the plants is better than heating them on top of the greenhouse, where in combination with greenhouse fans, the heat from the greenhouse ceiling can circulate to the floor, preventing plants from becoming wet by condensation. In any case, the use of a mixed heating system (air heater and heating pipes) has proved to be more suitable for heating a greenhouse tunnel. Despite increased energy consumption, the use of a mixed heating system improves the control of both air temperature and humidity, particularly by keeping the inside air’s dew point temperature lower than the cover temperature and preventing the occurrence of condensation on the plastic films [96].
- •
- •
- Flexible climate control system cases are frequency drive (VFD) controllers. These may be used as energy-saving tools [14].
- •
- Shading screens and whitewashing of greenhouse roofs for periods with high radiation reduce the cooling requirements. Thermal screens can decrease the use of fossil fuels for heating greenhouses and air humidity levels; therefore, it is recommended to open them before the operation of the forced-air ventilation system [36].
- •
- Greenhouse semitransparent photovoltaic modules can supply around 16 and 44% of the total electrical annual demand and the yearly air conditioning electrical needs, respectively. The use of greenhouse photovoltaic panels in the greenhouse roof gutter with a shading intensity of no more than 15–20% is a promising technique [100].
- •
- The economic analysis in terms of investment and energy saving of an active solar heating system indicates that it is cost effective for plastic greenhouses [101].
- •
- The use of mulching contributes to a reduction in air humidity and minimizes water evaporation from the soil surface. However, mulching with white plastic film is not recommended in unheated greenhouses when the soil temperature can be a limiting factor for plant growing.
- •
- Biodegradable mulch is a competitive alternative to plastic mulch from the perspective of sustainable development [102].
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Franco, A.; Valera, D.; Peña, A. Energy Efficiency in Greenhouse Evaporative Cooling Techniques: Cooling Boxes versus Cellulose Pads. Energies 2014, 7, 1427–1447. [Google Scholar] [CrossRef]
- Sánchez, J.A.; Reca, J.; Martínez, J. Water productivity in a mediterranean semi-arid greenhouse district. Water Resour. Manag. 2015, 29, 5395–5411. [Google Scholar] [CrossRef] [Green Version]
- Gázquez, J.C.; López, J.C.; Pérez-Parra, J.J.; Baeza, E.J.; Saéz, M.; Parra, A. Greenhouse Cooling Strategies for Mediterranean Climate Areas. Acta Hortic. 2008, 801, 425–432. [Google Scholar] [CrossRef]
- Abdel-Ghany, A.M.; Al-Helal, I.M.; Alzahrani, S.M.; Alsadon, A.A.; Ali, I.M.; Elleithy, R.M. Covering Materials Incorporating Radiation-Preventing Techniques to Meet Greenhouse Cooling Challenges in Arid Regions. Sci. World J. 2012, 2012, 906360. [Google Scholar] [CrossRef] [PubMed]
- Granadosa, M.R.; Bonachela, S.; Hernández, J.; López, J.C.; Magán, J.J.; Baeza, E.J.; Gázquez, J.C.; Pérez-Parra, J.J. Soil temperatures in a mediterranean greenhouse with different solarization strategies. Acta Hortic. 2012, 927, 747–754. [Google Scholar] [CrossRef]
- Teitel, M.; Baeza, E.J.; Montero, J.I. Greenhouse design: Concepts and trends. Acta Hortic. 2012, 952, 605–620. [Google Scholar] [CrossRef]
- Maraveas, C. Environmental sustainability of greenhouse covering materials. Sustainability 2019, 11, 6129. [Google Scholar] [CrossRef] [Green Version]
- Roble, C. Only 9% of greenhouse acreage worldwide is covered with glass. Hortidaily 2020. Available online: https://www.hortidaily.com/article/6041956/only-9-of-greenhouse-acreage-worldwide-is-covered-with-glass/ (accessed on 17 June 2021).
- Pardossi, A.; Tognoni, F.; Incrocci, L. Mediterranean Greenhouse Technology. Chron. Hortic. 2004, 44, 28–34. [Google Scholar]
- Abdalla, N.; Taha, N.; El-Ramady, H.; Bayoumi, Y. Management of Heat Stress in Tomato Seedlings under Arid and Semi-Arid Regions: A Review. Environ. Biodivers. Soil Secur. 2020, 4, 47–58. [Google Scholar] [CrossRef]
- Iddio, E.; Wang, L.; Thomas, Y.; McMorrow, G.; Denzer, A. Energy efficient operation and modeling for greenhouses: A literature review. Renew. Sustain. Energy Rev. 2020, 117, 109480. [Google Scholar] [CrossRef]
- Enoch, H.Z. A Theroy for Optimalization of Primary Production in Protected Cultivation: Influence of Aerial Environment Upon Primary Plant Production. Acta Hortic. 1997, 76, 31–44. [Google Scholar]
- Papasolomontos, A.; Baudoin, W.; Lutaladio, N.; Castilla, N. 2013 Greenhouse climate control and energy use. In Good Agricultural Practices for Greenhouse Vegetable Crops. Principles for Mediterranean Climate Areas; Baudoin, W., Nono-Womdim, R., Lutaladio, N., Hodder, A., Castilla, N., Leonardi, C., De Pascale, S., Qaryouti, M., Duffy, R., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; pp. 63–97. [Google Scholar]
- Villarreal-Guerrero, F.; Pinedo-Alvarez, A.; Flores-Velázquez, J. Control of greenhouse-air energy and vapor pressure deficit with heating, variable fogging rates and variable vent configurations: Simulated effectiveness under varied outside climates. Comput. Electron. Agric. 2020, 174, 105515. [Google Scholar] [CrossRef]
- Weldegiorgis, L.G.; Mezgebo, G.K.; Gebremariam, H.G.E.; Kahsay, Z.A. Resources Use Efficiency of Irrigated Tomato Production of Small-scale Farmers. Int. J. Veg. Sci. 2018, 24, 456–465. [Google Scholar] [CrossRef]
- Perry, C. Learning from Water Footprints: Who loses, who wins, and who cares? Policy Q. 2019, 15, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Hassanien, R.; Hassanien, E.; Li, M.; Dong, W. Advanced applications of solar energy in agricultural greenhouses. Renew. Sustain. Energy Rev. 2016, 54, 989–1001. [Google Scholar] [CrossRef]
- Ahamed, M.S.; Guo, H.; Tanino, K. Energy saving techniques for reducing the heating cost of conventional greenhouses. Biosyst. Eng. 2019, 178, 9–33. [Google Scholar] [CrossRef]
- Stanghellini, C.; Baptista, F.; Eriksson, E.; Gilli, C.; Giuffrida, F.; Kempkes, F.; Muñoz, P.; Stepowska, A.; Montero, J.I. Sensible Use of Primary Energy in Organic Greenhouse Production; BioGreenhouse COST Action FA 1105; COST: Brussels, Belgium, 2016; ISBN 9789462575356. [Google Scholar]
- IPCC Global warming of 1.5 °C: An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels, Geneva. 2018. Ipcc - Sr15 (p. 32). Available online: https://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf%0Ahttp://www.ipcc.ch/report/sr15/ (accessed on 20 November 2021).
- Mohamed, E.S.; Markou, G.; Balafoutis, T.; Papadakis, G.; Michael, P.; Janssen, R. Energy Savings Potential in Cyprus. Floriculture and Vegetables in Greenhouses. Current Situation and Energy Saving Measures in Combination with RES.; WIP GmbH & Co Planungs KG: Muenchen, Germany, 2017. [Google Scholar]
- Yildirim, N.; Bilir, L. Evaluation of a hybrid system for a nearly zero energy greenhouse. Energy Convers. Manag. 2017, 148, 1278–1290. [Google Scholar] [CrossRef]
- European Union. Directive 2009/28/EC—Renewable Energy Directive. Available online: http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009L0028 (accessed on 11 November 2021).
- Rastegarpour, S.; Scattolini, R.F.L. Performance improvement of an air-to-water heat pump through linear time-varying MPC with adaptive COP predictor. J. Process Control 2021, 99, 69–78. [Google Scholar] [CrossRef]
- Le, A.T.; Wang, L.; Wang, Y.; Li, D. Measurement investigation on the feasibility of shallow geothermal energy for heating and cooling applied in agricultural greenhouses of Shouguang City:Ground temperature profiles and geothermal potential. Inf. Process. Agric. 2021, 8, 251–269. [Google Scholar]
- Adapt Agricultural Production to Climate Change and Limited Water Supply. Available online: https://www.adapt2change.org/en/home (accessed on 16 June 2021).
- Florides, G.; Kalogirou, S.; Theophilou, K.; Evangelos, E. Analysis of the typical meteorological year (TMY) of Cyprus. In Proceedings of the Eighth International IBPSA Conference, Eindhoven, The Netherlands, 11–14 August 2003; pp. 339–346. [Google Scholar]
- Montero, J.I.; Short, T.H. A comparison of solar heated greenhouses in Wooster, Ohio, USA, and Malaga (Southern Spain). Acta Hortic. 1984, 148, 805–814. [Google Scholar] [CrossRef]
- Polycarpou, P. Optimization of nocturnal climate management in PE greenhouses in Cyprus. Acta Hortic. 2004, 691, 815–820. [Google Scholar] [CrossRef]
- Aroca-Delgado, R.; Pérez-Alonso, J.; Callejón-Ferre, Á.J.; Velázquez-Martí, B. Compatibility between crops and solar panels: An overview from shading systems. Sustainability 2018, 10, 743. [Google Scholar] [CrossRef] [Green Version]
- Ureña-Sánchez, R.; Callejón-Ferre, Á.J.; Pérez-Alonso, J.; Carreño-Ortega, Á. Greenhouse tomato production with electricity generation by roof-mounted flexible solar panels. Sci. Agric. 2012, 69, 233–239. [Google Scholar] [CrossRef]
- La Notte, L.; Giordano, L.; Calabrò, E.; Bedini, R.; Colla, G.; Puglisi, G.; Reale, A. Hybrid and organic photovoltaics for greenhouse applications. Appl. Energy 2020, 278, 115582. [Google Scholar] [CrossRef]
- Ezzaeri, K.; Fatnassi, H.; Wifaya, A.; Bazgaou, A.; Aharoune, A.; Poncet, C.; Bekkaoui, A.; Bouirden, L. Performance of photovoltaic canarian greenhouse: A comparison study between summer and winter seasons. Sol. Energy 2020, 198, 275–282. [Google Scholar] [CrossRef]
- López, J.C.; Fernandéz, M.D.; Abad, D.M.M.; Magán, J.J.; González, M.; Montero, J.I.; Anton, Á.; Stanghellini, C.; Kempkes, F.L.K. DSS for Optimum Ventilation, Thermal Storage & CO2 Management for Different Climates & Available Sustainable Energy Sources; European Commission: Brussels, Belgium, 2012; Available online: http://www.wageningenur.nl/en/Research-Results/Projects-and-programmes/Euphoros-1/Reports.htm (accessed on 16 June 2021).
- Cuce, E.; Harjunowibowo, D.; Cuce, P.M. Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 64, 34–59. [Google Scholar] [CrossRef]
- Taki, M.; Yildizhan, H. Evaluation the sustainable energy applications for fruit and vegetable productions processes; case study: Greenhouse cucumber production. J. Clean. Prod. 2018, 199, 164–172. [Google Scholar] [CrossRef]
- Gorjian, S.; Calise, F.; Kant, K.; Ahamed, M.S.; Copertaro, B.; Najafi, G.; Zhang, X.; Aghaei, M.; Shamshiri, R.R. A review on opportunities for implementation of solar energy technologies in agricultural greenhouses. J. Clean. Prod. 2021, 285, 124807. [Google Scholar] [CrossRef]
- Omar, M.N.; Taha, A.T.; Samak, A.A.; Keshek, M.H.; Gomaa, E.M.; Elsisi, S.F. Simulation and validation model of cooling greenhouse by solar energy (P V) integrated with painting its cover and its effect on the cucumber production. Renew. Energy 2021, 172, 1154–1173. [Google Scholar] [CrossRef]
- Ahemd, H.A.; Al-faraj, A.A.; Abdel-ghany, A.M. Scientia Horticulturae Shading greenhouses to improve the microclimate, energy and water saving in hot regions: A review. Sci. Hortic. 2016, 201, 36–45. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Dynamic assessment of whitewash shading and evaporative cooling on the greenhouse microclimate and cucumber growth in a Mediterranean climate. Ital. J. Agrometeorol. 2018, 2, 15–26. [Google Scholar] [CrossRef]
- Kitta, E.; Katsoulas, N. Effect of shading on photosynthesis of greenhouse hydroponic cucumber crops. Ital. J. Agrometeorol. 2020, 2020, 41–48. [Google Scholar] [CrossRef]
- Kläring, H.P.; Klopotek, Y.; Schmidt, U.; Tantau, H.-J. Screening a cucumber crop during leaf area development reduces yield. Ann. Appl. Biol. 2012, 161, 161–168. [Google Scholar] [CrossRef]
- Development of Greenhouse Foils and Additives to Optimize Plant Growth and Disease Inhibition through the Control of Photomorphogenesis. Available online: https://cordis.europa.eu/project/id/QLK5-CT-2001-70496 (accessed on 25 November 2021).
- Kittas, C.; Tchamitchian, M.; Katsoulas, N.; Karaiskou, P.; Papaioannou, C. Effect of two UV-absorbing greenhouse-covering films on growth and yield of an eggplant soilless crop. Sci. Hortic. 2006, 110, 30–37. [Google Scholar] [CrossRef]
- Dáder, B.; Gwynn-Jones, D.; Moreno, A.; Winters, A.; Fereres, A. Impact of UV-A radiation on the performance of aphids and whiteflies and on the leaf chemistry of their host plants. J. Photochem. Photobiol. B Biol. 2014, 138, 307–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luthria, D.L.; Mukhopadhyay, S.; Krizek, D.T. Content of total phenolics and phenolic acids in tomato (Lycopersicon esculentum Mill.) fruits as influenced by cultivar and solar UV radiation. J. Food Compos. Anal. 2006, 19, 771–777. [Google Scholar] [CrossRef]
- Abd El-Aal, H.A.; Rizk, A.M.; Mousa, I.E. Evaluation of new greenhouse covers with modified light regime to control cotton aphid and cucumber (Cucumis sativus L.) productivity. Crop Prot. 2018, 107, 64–70. [Google Scholar] [CrossRef]
- Qian, M.; Rosenqvist, E.; Flygare, A.M.; Kalbina, I.; Teng, Y.; Jansen, M.A.K.; Strid, Å. UV-A light induces a robust and dwarfed phenotype in cucumber plants (Cucumis sativus L.) without affecting fruit yield. Sci. Hortic. 2020, 263, 109110. [Google Scholar] [CrossRef]
- Palmitessa, O.D.; Paciello, P.; Santamaria, P. Supplemental LED increases tomato yield in mediterranean semi-closed greenhouse. Agronomy 2020, 10, 1353. [Google Scholar] [CrossRef]
- Bruggink, G.T.; Heuvelink, E. Influence of light on the growth of young tomato, cucumber and sweet pepper plants in the greenhouse: Effects on relative growth rate, net assimilation rate and leaf area ratio. Sci. Hortic. 1987, 31, 161–174. [Google Scholar] [CrossRef]
- Katsoulas, N.; Kittas, C. Impact of Greenhouse Microclimate on Plant Growth and Development with Special Reference to the Solanaceae. Eur. J. Plant Sci. Biotechnol. 2008, 2, 31–44. [Google Scholar]
- Shamshiri, R.R.; Jones, J.W.; Thorp, K.R.; Ahmad, D.; Man, H.C.; Taheri, S. Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: A review. Int. Agrophys. 2018, 32, 287–302. [Google Scholar] [CrossRef]
- Taha, N.; Abdalla, N.; Bayoumi, Y.; El-Ramady, H. Management of Greenhouse Cucumber Production under Arid Environments: A Review. Environ. Biodivers. Soil Secur. 2020, 4, 123–126. [Google Scholar] [CrossRef]
- Huang, S.; Yan, H.; Zhang, C.; Wang, G.; Acquah, S.J.; Yu, J.; Li, L.; Ma, J.; Darko, R.O. Modeling evapotranspiration for cucumber plants based on the Shuttleworth-Wallace model in a Venlo-type greenhouse. Agric. Water Manag. 2020, 228, 105861. [Google Scholar] [CrossRef]
- Ruiz-Nieves, J.M.; Ayala-Garay, O.J.; Serra, V.; Dumont, D.; Vercambre, G.; Génard, M.; Gautier, H. The effects of diurnal temperature rise on tomato fruit quality. Can the management of the greenhouse climate mitigate such effects? Sci. Hortic. 2020, 278, 109836. [Google Scholar] [CrossRef]
- Castilla, N.; Hernández, J.; Abou-Hadid, A.F. Strategic crop and greenhouse management in mild winter climate areas. Acta Hortic. 2004, 633, 183–196. [Google Scholar] [CrossRef]
- Ozkan, B.; Kurklu, A.; Akcaoz, H. An input-output energy analysis in greenhouse vegetable production: A case study for Antalya region of Turkey. Biomass Bioenergy 2004, 26, 89–95. [Google Scholar] [CrossRef]
- Van de Vooren, J.; de Lint, P.J.A.L. Challa, H. Influence of varying night temperatures on a cucumber crop. Acta Hortic. 1978, 87, 249–256. [Google Scholar] [CrossRef]
- Toki, T.; Ogiwara, S.; Aoki, H. Effect of varying night temperature on the growth and yields in cucumber. Acta Hortic. 1978, 87, 233–238. [Google Scholar] [CrossRef]
- Bita, C.E.; Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 2013, 4, 273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harel, D.; Fadida, H.; Slepoy, A.; Gantz, S.; Shilo, K. The Effect of Mean Daily Temperature and Relative Humidity on Pollen, Fruit Set and Yield of Tomato Grown in Commercial Protected Cultivation. Agronomy 2014, 4, 167–177. [Google Scholar] [CrossRef]
- Seginer, I. Transpirational cooling of a greenhouse crop with partial ground cover. Agric. For. Meteorol. 1994, 71, 265–281. [Google Scholar] [CrossRef]
- Papadopoulos, A.P.; Hao, X. Effects of day and night air temperature on growth, productivity and energy use of long English cucumber. Can. J. Plant Sci. 2000, 80, 143–150. [Google Scholar] [CrossRef]
- Abdelmageed, A.H.A.; Gruda, N. Influence of high temperatures on gas exchange rate and growth of eight tomato cultivars under controlled heat stress conditions. Eur. J. Hortic. Sci. 2009, 74, 152–159. [Google Scholar]
- White, B.B.; White, J.W. Tomato growth as affected by root-zone temperature and the addition of gibberellic acid and kinetin to nutrient solutions. J. Am. Soc. Hortic. Sci. Am. Soc. Hortic. Sci. 1984, 109, 121–125. [Google Scholar]
- Bonachela, S.; López, J.C.; Granados, M.R.; Magán, J.J.; Hernández, J.; Baille, A. Effects of gravel mulch on surface energy balance and soil thermal regime in an unheated plastic greenhouse. Biosyst. Eng. 2020, 192, 1–13. [Google Scholar] [CrossRef]
- Kawasaki, Y.; Matsuo, S.; Suzuki, K.; Kanayama, Y.; Kanahama, K. Root-zone cooling at high air temperatures enhances physiological activities and internal structures of roots in young tomato plants. J. Jpn. Soc. Hortic. Sci. 2013, 82, 322–327. [Google Scholar] [CrossRef] [Green Version]
- Al-Rawahy, M.S.; Al-Rawahy, S.A.; Al-Mulla, Y.A.; Nadaf, S.K. Effect of Cooling Root-Zone Temperature on Growth, Yield and Nutrient Uptake in Cucumber Grown in Hydroponic System During Summer Season in Cooled Greenhouse. J. Agric. Sci. 2018, 11, 47. [Google Scholar] [CrossRef]
- Yan, Q.; Duan, Z.; Mao, J.; Li, X.; Dong, F. Effects of root-zone temperature and N, P, and K supplies on nutrient uptake of cucumber (Cucumis sativus L.) seedlings in hydroponics. Soil Sci. Plant Nutr. 2012, 58, 707–717. [Google Scholar] [CrossRef] [Green Version]
- Ghani, S.; Bakochristou, F.; ElBialy, E.M.A.A.; Gamaledin, S.M.A.; Rashwan, M.M.; Abdelhalim, A.M.; Ismail, S.M. Design challenges of agricultural greenhouses in hot and arid environments—A review. Eng. Agric. Environ. Food 2019, 12, 48–70. [Google Scholar] [CrossRef]
- Amani, M.; Foroushani, S.; Sultan, M.; Bahrami, M. Comprehensive review on dehumidification strategies for agricultural greenhouse applications. Appl. Therm. Eng. 2020, 181, 115979. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, J.; Teng, Y. Adaptive effectiveness of irrigated area expansion in mitigating the impacts of climate change on crop yields in northern China. Sustainability 2017, 9, 851. [Google Scholar] [CrossRef] [Green Version]
- Konopacki, P.J.; Treder, W.; Klamkowski, K. Comparison of vapour pressure deficit patterns during cucumber cultivation in a traditional high PE tunnel greenhouse and a tunnel greenhouse equipped with a heat accumulator. Span. J. Agric. Res. 2018, 16, 4. [Google Scholar] [CrossRef]
- Lu, N.; Nukaya, T.; Kamimura, T.; Zhang, D.; Kurimoto, I.; Takagaki, M.; Maruo, T.; Kozai, T.; Yamori, W. Control of vapor pressure deficit (VPD) in greenhouse enhanced tomato growth and productivity during the winter season. Sci. Hortic. 2015, 197, 17–23. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Effects of cooling systems on greenhouse microclimate and cucumber growth under mediterranean climatic conditions. Agronomy 2019, 9, 300. [Google Scholar] [CrossRef] [Green Version]
- Shibuya, T.; Sugimoto, A.; Kitaya, Y.; Kiyota, M.; Nagasaka, Y.; Kawaguchi, S. Measurement of leaf vapor conductance of cucumber transplants in the greenhouse with minimal invasion. HortScience 2010, 45, 460–462. [Google Scholar] [CrossRef] [Green Version]
- Romero-Aranda, R.; Soria, T.; Cuartero, J. Greenhouse mist improves yield of tomato plants grown under saline conditions. J. Am. Soc. Hortic. Sci. 2002, 127, 644–648. [Google Scholar] [CrossRef] [Green Version]
- Triguii, M.; Barringtoni, S.F.; Gauthier, L. Effects of humidity on tomato. Can. Agric. Eng. 1999, 41, 135–140. [Google Scholar]
- Karim, M.F.; Hao, P.; Nordin, N.H.B.; Qiu, C.; Zeeshan, M.; Khan, A.A.; Shamsi, I.H. Effects of CO2 enrichment by fermentation of CRAM on growth, yield and physiological traits of cherry tomato. Saudi J. Biol. Sci. 2020, 27, 1041–1048. [Google Scholar] [CrossRef]
- Kläring, H.P.; Hauschild, C.; Heißner, A.; Bar-Yosef, B. Model-based control of CO2 concentration in greenhouses at ambient levels increases cucumber yield. Agric. For. Meteorol. 2007, 143, 208–216. [Google Scholar] [CrossRef]
- Song, H.; Li, Y.; Xu, X.; Zhang, J.; Zheng, S.; Hou, L.; Xing, G.; Li, M. Analysis of genes related to chlorophyll metabolism under elevated CO2 in cucumber (Cucumis sativus L.). Sci. Hortic. 2020, 261, 108988. [Google Scholar] [CrossRef]
- Stanghellini, C.; Incrocci, L.; Gázquez, J.C.; Dimauro, B. Carbon dioxide concentration in Mediterranean greenhouses: How much lost production? Acta Hortic. 2008, 801, 1541–1549. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Guerrero, M.C.; Lorenzo, P.; Medrano, E.; Baille, A.; Castilla, N. Effects of EC-based irrigation scheduling and CO2 enrichment on water use efficiency of a greenhouse cucumber crop. Agric. Water Manag. 2009, 96, 429–436. [Google Scholar] [CrossRef]
- Nelson, P.V. Greenhouse Operation and Management, 7th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2014; pp. 159–169. [Google Scholar]
- Yang, X.; Zhang, P.; Wei, Z.; Liu, J.; Hu, X.; Liu, F. Effects of CO2 fertilization on tomato fruit quality under reduced irrigation. Agric. Water Manag. 2020, 230, 105985. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, Y.; Zhao, H.; Wang, Y.; Chow, D.; Fang, Y. Methodologies of control strategies for improving energy efficiency in agricultural greenhouses. J. Clean. Prod. 2020, 274, 122695. [Google Scholar] [CrossRef]
- Ikeda, T.; Ishigami, Y.; Goto, E. The effect of CO2 enrichment in a closed greenhouse equipped with NIR-reflecting film and EHP cooling on the yield and quality of tomato fruits during the summer season. J. Agric. Meteorol. 2020, 76, 104–110. [Google Scholar] [CrossRef]
- Bartzanas, T.B.T.K.C.; Boulard, T.; Kittas, C. Effect of vent arrangement on windward ventilation of a tunnel greenhouse. Biosyst. Eng. 2004, 88, 479–490. [Google Scholar] [CrossRef]
- Katsoulas, N.; Nikolaou, G.; Neocleous, D.; Kittas, C. Microclimate and cucumber crop transpiration in a greenhouse cooled by pad and fan system. Acta Hortic. 2020, 1271, 235–240. [Google Scholar] [CrossRef]
- Katsoulas, N.; Savvas, D.; Kitta, E.; Bartzanas, T.; Kittas, C. Extension and evaluation of a model for automatic drainage solution management in tomato crops grown in semi-closed hydroponic systems. Comput. Electron. Agric. 2015, 113, 61–71. [Google Scholar] [CrossRef]
- Thongbai, P.; Kozai, T.; Ohyama, K. CO2 and air circulation effects on photosynthesis and transpiration of tomato seedlings. Sci. Hortic. 2010, 126, 338–344. [Google Scholar] [CrossRef]
- Elings, A.; De Visser, P.H.B.; Marcelis, L.F.M.; Heinen, M.; van Den Boogaard, H.A.G.M.; Gieling, T.H.; Werner, B.E. Feed-Forward Control of Water and Nutrient Supply in Greenhouse Horticulture: Development of a System. Acta Hortic. 2004, 654, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Ghoulem, M.; El Moueddeb, K.; Nehdi, E.; Zhong, F.; Calautit, J. Analysis of passive downdraught evaporative cooling windcatcher for greenhouses in hot climatic conditions: Parametric study and impact of neighbouring structures. Biosyst. Eng. 2020, 197, 105–121. [Google Scholar] [CrossRef]
- Choab, N.; Allouhi, A.; El Maakoul, A.; Kousksou, T. Effect of Greenhouse Design Parameters on the Heating and Cooling Requirement of Greenhouses in Moroccan Climatic Conditions. IEEE Access 2020, 9, 2986–3003. [Google Scholar] [CrossRef]
- Ghoulem, M.; El Moueddeb, K.; Nehdi, E.; Boukhanouf, R.; Calautit, J.K. Greenhouse design and cooling technologies for sustainable food cultivation in hot climates: Review of current practice and future status. Biosyst. Eng. 2019, 183, 121–150. [Google Scholar] [CrossRef]
- Bartzanas, T.; Tchamitchian, M.; Kittas, C. Influence of the heating method on greenhouse microclimate and energy consumption. Biosyst. Eng. 2005, 91, 487–499. [Google Scholar] [CrossRef]
- Gourdo, L.; Fatnassi, H.; Bouharroud, R.; Ezzaeri, K.; Bazgaou, A.; Wifaya, A.; Demrati, H.; Bekkaoui, A.; Aharoune, A.; Poncet, C.; et al. Heating canarian greenhouse with a passive solar water–sleeve system: Effect on microclimate and tomato crop yield. Sol. Energy 2019, 188, 1349–1359. [Google Scholar] [CrossRef]
- Rheinlaender, J. Fossil and Solar Heating of Greenhouses for Vegetable Production in Cyprus. Report on the 2nd Year of Activities of the ARI/GTZ Project at Athalassa (Nicosia); Agricultural Research Institute and German Agency for Technical Cooperation: Nicosia, Cyprus, 1983. [Google Scholar]
- Rheinlaender, J. Conventional and Solar Heating of Greenhouses for Vegetable Production in Cyprus. Report on the Research Work of the ARI/ GTZ Project at Athalassa and Zyghi; Agricultural Research Institute and German Agency for Technical Cooperation: Nicosia, Cyprus, 1984. [Google Scholar]
- Chahidi, L.O.; Fossa, M.; Priarone, A.; Mechaqrane, A. Energy saving strategies in sustainable greenhouse cultivation in the mediterranean climate—A case study. Appl. Energy 2021, 282, 116156. [Google Scholar] [CrossRef]
- Bazgaou, A.; Fatnassi, H.; Bouharroud, R.; Ezzaeri, K.; Gourdo, L.; Wifaya, A.; Demrati, H.; Elame, F.; Carreño-Ortega, A.; Bekkaoui, A.; et al. Effect of active solar heating system on microclimate, development, yield and fruit quality in greenhouse tomato production. Renew. Energy 2021, 165, 237–250. [Google Scholar] [CrossRef]
- Jia, H.; Wang, Z.; Zhang, J.; Li, W.; Ren, Z.; Jia, Z.; Wang, Q. Effects of biodegradable mulch on soil water and heat conditions, yield and quality of processing tomatoes by drip irrigation. J. Arid. Land 2020, 12, 819–836. [Google Scholar] [CrossRef]
Equipment | J | F | M | A | M | J | J | A | S | O | N | D |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Heating | 6 | 5 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4 |
Cooling | 0 | 0 | 3 | 6 | 8 | 10 | 14 | 20 | 18 | 9 | 0 | 0 |
Cooling panel pumps | 0 | 0 | 2 | 5 | 7 | 10 | 13 | 18 | 16 | 8 | 0 | 0 |
Irrigation pumps | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 3 | 2 | 2 | 2 |
Circulation fans | 6 | 5 | 3 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
Windows motor | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Thermal screen motor | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 |
Crops | J | F | M | A | M | J | J | A | S | O | N | D | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cucumber heating | 2281 | 2040 | 1632 | 1037 | 0 | 0 | 0 | 0 | 0 | 798 | 1678 | 2439 | 11,905 |
Tomato heating | 1213 | 1110 | 779 | 352 | 0 | 0 | 0 | 0 | 0 | 190 | 791 | 1294 | 5729 |
Cucumber cooling | 0 | 0 | 0 | 0 | 3087 | 4087 | 0 | 0 | 4374 | 0 | 0 | 0 | 11,548 |
Tomato cooling | 0 | 0 | 0 | 0 | 4309 | 5481 | 0 | 0 | 5612 | 0 | 0 | 0 | 15,402 |
Parameter | Value |
---|---|
Initial investment | EUR 142,330 |
Installed power | 50 kW |
Load energy consumption | 62 MWh y−1 |
Energy delivered by photovoltaics | 55.38 MWh y−1 |
Internal rate of return | 11.9% |
Net present value | EUR 7792 |
Payback period | 8 years |
Processes/Input | Spain | Belgium | Greece | Turkey |
---|---|---|---|---|
Heating + CO2 fertilization | - | 35.0% | - | - |
Labor cost | 46.0% | 43.4% | 12.0% | 5.9% |
Plant material | 8.5% | 8.0% | 3% | 18.2% |
Pesticides and fertilizers | 32.5% | 5.4% | 18.1% | 30.5% |
Water | 6.5% | - | 1.0% | 0.4% |
Electricity | - | - | 14.2% | 12.4% |
Fossil fuels | - | - | 51.7% | 32.6% |
Other | 6.5% | 8.2% | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolaou, G.; Neocleous, D.; Christou, A.; Polycarpou, P.; Kitta, E.; Katsoulas, N. Energy and Water Related Parameters in Tomato and Cucumber Greenhouse Crops in Semiarid Mediterranean Regions. A Review, Part I: Increasing Energy Efficiency. Horticulturae 2021, 7, 521. https://doi.org/10.3390/horticulturae7120521
Nikolaou G, Neocleous D, Christou A, Polycarpou P, Kitta E, Katsoulas N. Energy and Water Related Parameters in Tomato and Cucumber Greenhouse Crops in Semiarid Mediterranean Regions. A Review, Part I: Increasing Energy Efficiency. Horticulturae. 2021; 7(12):521. https://doi.org/10.3390/horticulturae7120521
Chicago/Turabian StyleNikolaou, Georgios, Damianos Neocleous, Anastasis Christou, Polycarpos Polycarpou, Evangelini Kitta, and Nikolaos Katsoulas. 2021. "Energy and Water Related Parameters in Tomato and Cucumber Greenhouse Crops in Semiarid Mediterranean Regions. A Review, Part I: Increasing Energy Efficiency" Horticulturae 7, no. 12: 521. https://doi.org/10.3390/horticulturae7120521
APA StyleNikolaou, G., Neocleous, D., Christou, A., Polycarpou, P., Kitta, E., & Katsoulas, N. (2021). Energy and Water Related Parameters in Tomato and Cucumber Greenhouse Crops in Semiarid Mediterranean Regions. A Review, Part I: Increasing Energy Efficiency. Horticulturae, 7(12), 521. https://doi.org/10.3390/horticulturae7120521