Phytochemical Properties and Diverse Beneficial Roles of Eucalyptus globulus Labill.: A Review
Abstract
:1. Introduction
2. Bioactive Components
3. Factors Influencing the Essential Oil Composition of Plants
4. Antioxidant Activity of E. globulus Labill.
5. Antimicrobial Activity
5.1. Antibacterial Activity
5.2. Antifungal Activity
6. Eco-Friendly Approaches for Application of E. globulus
7. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goldbeck, J.C.; Do Nascimento, J.E.; Jacob, R.G.; Fiorentini, M.Â.; Da Silva, W.P. Bioactivity of essential oils from Eucalyptus globulus and Eucalyptus urograndis against planktonic cells and biofilms of Streptococcus mutans. Ind. Crops Prod. 2014, 60, 304–309. [Google Scholar] [CrossRef]
- Pereira, V.; Dias, C.; Vasconcelos, M.C.; Rosa, E.; Saavedra, M.J. Antibacterial activity and synergistic effects between Eucalyptus globulus leaf residues (essential oils and extracts) and antibiotics against several isolates of respiratory tract infections (Pseudomonas aeruginosa). Ind. Crops Prod. 2014, 52, 1–7. [Google Scholar] [CrossRef]
- Mulyaningsih, S.; Sporer, F.; Reichling, J.; Wink, M. Antibacterial activity of essential oils from Eucalyptus and of selected components against multidrug-resistant bacterial pathogens. Pharm. Biol. 2011, 49, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Sharma, A.; Bachheti, R.K.; Pandey, D.P. A comparative study of the chemical composition of the essential oil from Eucalyptus globulus growing in Dehradun (India) and around the world. Orient. J. Chem. 2016, 32, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Boukhatem, M.N.; Amine, F.M.; Kameli, A.; Saidi, F.; Walid, K.; Mohamed, S.B. Quality assessment of the Essential oil from Eucalyptus globulus Labill of Blida (Algeria) origin. Int. Lett. Chem. Phys. Astron. 2014, 17, 303–315. [Google Scholar] [CrossRef]
- Topiar, M.; Sajfrtova, M.; Pavela, R.; Machalova, Z. Comparison of fractionation techniques of CO2 extracts from Eucalyptus globulus—Composition and insecticidal activity. J. Supercrit. Fluids 2015, 97, 202–210. [Google Scholar] [CrossRef]
- Fabiyi, O.A.; Atolani, O.; Olatunji, G.A. Toxicity effect of Eucalyptus globulus on Pratylenchus spp. of Zea mays. Sarhad J. Agric. 2020, 36, 1244–1253. [Google Scholar]
- Derwich, E.; Benziane, Z.; Chabir, R.; Bouseta, A. Antifungal activity and gas chromatography coupled with mass spectrometry (GC-MS) leaf oil analysis of essential oils extracted from Eucalyptus globulus (Myrtaceae) of north centre region of Morocco. Afr. J. Pharm. Pharmacol. 2013, 7, 1157–1162. [Google Scholar] [CrossRef]
- Damjanović-Vratnica, B.; Dakov, T.; Šuković, D.; Damjanović, J. Antimicrobial effect of essential oil isolated from Eucalyptus globulus Labill. from Montenegro. Czech J. Food Sci. 2011, 29, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Göger, G.; Karaca, N.; Altınbaşak, B.B.; Demirc, B.; Demirci, F. In vitro antimicrobial, antioxidant and anti-inflammatory evaluation of Eucalyptus globulus essential oil. Nat. Volatiles Essent. Oils 2020, 7, 1–11. [Google Scholar]
- Abdossi, V.; Moghaddam, E.Y.; Hadipanah, A. Chemical Composition of Eucalyptus globulus grown in Iran. Biol. Forum 2015, 7, 322–324. [Google Scholar]
- Quatrin, P.M.; Verdi, C.M.; de Souza, M.E.; de Godoi, S.N.; Klein, B.; Gundel, A.; Wagner, R.; de Almeida Vaucher, R.; Ourique, A.F.; Santos, R.C.V. Antimicrobial and antibiofilm activities of nanoemulsions containing Eucalyptus globulus oil against Pseudomonas aeruginosa and Candida spp. Microb. Pathog. 2017, 112, 230–242. [Google Scholar] [CrossRef]
- Luís, Â.; Duarte, A.; Gominho, J.; Domingues, F.; Duarte, A.P. Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Ind. Crops Prod. 2016, 79, 274–282. [Google Scholar] [CrossRef]
- Mekonnen, A.; Yitayew, B.; Tesema, A.; Taddese, S. In vitro antimicrobial activity of essential oil of Thymus schimperi, Matricaria chamomilla, Eucalyptus globulus and Rosmarinus officinalis. Int. J. Microbiol. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachheti, R.K. Chemical composition and antibacterial activity of the essential oil from the leaves of Eucalyptus globulus collected from Haramaya University, Ethiopia. Der Pharma Chem. 2015, 7, 209–214. [Google Scholar]
- Bogavac, M.; Tešanović, K.; Marić, J.; Jovanović, M.; Karaman, M. Antimicrobial activity and toxicity of Eucalyptus globulus Labill. essential oil against vaginal microorganisms. Trends Phytochem. Res. 2019, 3, 201–206. [Google Scholar]
- Reboredo, F.H.; Pelica, J.; Lidon, F.C.; Pessoa, M.F.; Silva, M.M.; Guerra, M.; Leitão, R.; Ramalho, J.C. The tolerance of Eucalyptus globulus to soil contamination with arsenic. Plants 2021, 10, 627. [Google Scholar] [CrossRef] [PubMed]
- Troncoso, C.; Becerra, J.; Bittner, M.; Perez, C.; Sáez, K.; Sánchez-Olate, M.; Ríos, D. Chemical defense responses in Eucalyptus globulus (Labill) plants. J. Chil. Chem. Soc. 2011, 56, 768–770. [Google Scholar] [CrossRef] [Green Version]
- Ishnava, K.B.; Chauhan, J.B.; Barad, M.B. Anticariogenic and phytochemical evaluation of Eucalyptus globules Labill. Saudi J. Biol. Sci. 2013, 20, 69–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harkat-Madouri, L.; Asma, B.; Madani, K.; Said, Z.B.-O.S.; Rigou, P.; Grenier, D.; Allalou, H.; Remini, H.; Adjaoud, A.; Boulekbache-Makhlouf, L. Chemical composition, antibacterial and antioxidant activities of essential oil of Eucalyptus globulus from Algeria. Ind. Crops Prod. 2015, 78, 148–153. [Google Scholar] [CrossRef]
- Pino, J.A.; Moncayo-molina, L.; Spengler, I.; Pérez, J.C. Chemical composition and antibacterial activity of the leaf essential oil of Eucalyptus globulus Labill. from two highs of the canton Cañar, Ecuador. Rev. CENIC Ciencias Químicas 2021, 52, 26–33. [Google Scholar]
- Almas, I.; Innocent, E.; Machumi, F.; Kisinza, W. Chemical composition of essential oils from Eucalyptus globulus and Eucalyptus maculata grown in Tanzania. Sci. Afr. 2021, 12, e00758. [Google Scholar]
- Tomazoni, E.Z.; Pauletti, G.F.; da Silva Ribeiro, R.T.; Moura, S.; Schwambach, J. In vitro and in vivo activity of essential oils extracted from Eucalyptus staigeriana, Eucalyptus globulus and Cinnamomum camphora against Alternaria solani Sorauer causing early blight in tomato. Sci. Hortic. 2017, 223, 72–77. [Google Scholar] [CrossRef]
- Kassahun, A.; Feleke, G. Chemical composition and physico-chemical analysis of Eucalyptus globulus leave and oil. Sci. J. Chem. 2019, 7, 36–38. [Google Scholar] [CrossRef]
- Ait-ouazzou, A.; Conchello, P. Chemical composition and antimicrobial activity of essential oils of Thymus algeriensis, Eucalyptus globulus and Rosmarinus officinalis from Morocco. J. Sci. Food Agric. 2011, 91, 2643–2651. [Google Scholar] [CrossRef]
- Benabdesslem, Y.; Hachem, K.; Mébarki, M. Chemical composition of the essential oil from the leaves of Eucalyptus globulus Labill. growing in southwest Algeria. J. Essent. Oil-Bearing Plants 2020, 23, 1154–1160. [Google Scholar] [CrossRef]
- Akolade, J.O.; Olajide, O.O.; Afolayan, M.O.; Akande, S.A.; Idowu, D.I.; Orishadipe, A.T. Chemical composition, antioxidant and cytotoxic effects of Eucalyptus globulus grown in north-central Nigeria. J. Nat. Prod. Plant Resour. 2012, 2, 1–8. [Google Scholar]
- Dixit, A.; Rohilla, A.; Dixit, J.; Singh, V. Antimicrobail activity of volatile oil of Eucalyptus globulus Labill. Int. J. Adv. Pharm. Biol. Chem. 2014, 3, 384–387. [Google Scholar]
- Dohare, S.; Dubey, S.D.; Kalia, M.; Verma, P.; Pandey, H.; Singh, N.K.; Agarwal, V. Anti-biofilm activity of Eucalyptus globulus oil encapsulated silica nanoparticles against E. coli biofilm. Int. J. Pharm. Sci. Res. 2014, 5, 5011–5016. [Google Scholar]
- Jamil, K.; Asmuddin, M.; Ranawat, B.; Rao, C. Estimation of antibacterial activity of plants extracts from Phyllanthus emblica, Terminalia chebula and Eucalyptus globulus against oral pathogens. Int. J. Dent. Oral Heal 2017, 3, 100–104. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.D.; Farmaha, M.; Kaur, I.; Singh, N. Phytochemical analysis using GC-FID, FPLC fingerprinting, antioxidant, antimicrobial, anti- inflammatory activities analysis of traditionally used Eucalyptus globulus essential oil. Drug Anal. Res. 2021, 5, 26–38. [Google Scholar] [CrossRef]
- Noumi, E.; Snoussi, M.; Bakhrouf, A. In vitro effect of Melaleuca alternifolia and Eucalyptus globulus essential oils on mycelia formation by oral Candida albicans strains. Afr. J. Microbiol. Res. 2010, 4, 1332–1336. [Google Scholar]
- Obeizi, Z.; Benbouzid, H.; Ouchenane, S.; Yılmaz, D.; Culha, M.; Bououdina, M. Biosynthesis of Zinc oxide nanoparticles from essential oil of Eucalyptus globulus with antimicrobial and anti-biofilm activities. Mater. Today Commun. 2020, 25, 101553. [Google Scholar] [CrossRef]
- Usman, L.A.; Oguntoye, O.S.; Ismaeel, R.O. Effect of seasonal variation on chemical composition, antidiabetic and antioxidant potentials of leaf essential oil of Eucalyptus globulus L. J. Essent. Oil Bear. Plants 2020, 23, 1314–1323. [Google Scholar] [CrossRef]
- Jerbi, A.; Derbali, A.; Elfeki, A.; Kammoun, M. Essential oil composition and biological activities of Eucalyptus globulus leaves extracts from Tunisia. J. Essent. Oil-Bearing Plants 2017, 20, 438–448. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Safaralizadeh, M.H.; Pourmirza, A.A.; Ghosta, Y. Contact and fumigant toxicity of essential oils of Lavandula stoechas L. and Eucalyptus globulus Labill grown in Iran against Lasioderma serricorne F. Biharean Biol. 2010, 4, 31–36. [Google Scholar]
- Elzayyat, E.; Elleboudy, N.; Moustafa, A.; Ammar, A. Insecticidal, oxidative, and genotoxic activities of Syzygium aromaticum and Eucalyptus globulus on Culex pipiens adults and larvae. Turk. Parazitol. Derg 2018, 42, 213–222. [Google Scholar] [CrossRef]
- Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Compositional analysis and insecticidal activity of Eucalyptus globulus (family: Myrtaceae) essential oil against housefly (Musca domestica). Acta Trop. 2012, 122, 212–218. [Google Scholar] [CrossRef]
- Madreseh-ghahfarokhi, S.; Pirali, Y.; Dehghani-samani, A.; Dehghani-samani, A. The insecticidal and repellent activity of ginger (Zingiber officinale) and eucalyptus (Eucalyptus globulus) essential oils against Culex theileri Theobald, 1903 (Diptera: Culicidae). Ann. Parasitol. 2018, 64, 351–360. [Google Scholar] [PubMed]
- Dehghani-Samani, A.; Madreseh-Ghahfarokhi, S.; Dehghani-Samani, A.; Pirali-Kheirabadi, K. Acaricidal and repellent activities of essential oil of Eucalyptus globulus against Dermanyssus gallinae (Acari: Mesostigmata). J. HerbMed Pharmacol. 2015, 4, 81–84. [Google Scholar]
- Taur, D.J.; Kulkarni, V.B.; Patil, R.Y. Chromatographic evaluation and anthelmintic activity of Eucalyptus globulus oil. Pharmacogn. Res. 2010, 2, 125–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vigo, E.; Cepeda, A.; Perez-Fernandez, R.; Gualillo, O. In-vitro anti-inflammatory effect of Eucalyptus globulus and Thymus vulgaris: Nitric oxide inhibition in J774A. 1 murine macrophages. J. Pharm. Pharmacol. 2004, 56, 257–263. [Google Scholar] [CrossRef]
- Mulyaningsih, S.; Sporer, F.; Zimmermann, S.; Reichling, J.; Wink, M. Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine 2010, 17, 1061–1066. [Google Scholar] [CrossRef]
- Bey-Ould Si Said, Z.; Haddadi-Guemghar, H.; Boulekbache-Makhlouf, L.; Rigou, P.; Remini, H.; Adjaoud, A.; Khoudja, N.K.; Madani, K. Essential oils composition, antibacterial and antioxidant activities of hydrodistillated extract of Eucalyptus globulus fruits. Ind. Crops Prod. 2016, 89, 167–175. [Google Scholar] [CrossRef]
- Ferreira, C.d.S.; Pereyra, A.; Patriarca, A.; Mazzobre, M.F.; Polak, T.; Abram, V.; Buera, M.P.; Ulrih, N.P. Phenolic compounds in extracts from Eucalyptus globulus leaves and Calendula officinalis flowers. J. Nat. Prod. Resour. 2016, 2, 53–57. [Google Scholar]
- Nile, S.H.; Keum, Y.S. Chemical composition, antioxidant, anti-inflammatory and antitumor activities of Eucalyptus globulus Labill. Indian J. Exp. Biol. 2018, 56, 734–742. [Google Scholar]
- Ita, B.N. Antioxidant activity of Eucalyptus globulus Labill root extracts. J. Pharmacogn. Phytochem. 2020, 9, 190–194. [Google Scholar]
- Tola, A.T.; Egigu, M.C.; Egdu, B.H. Bio-efficacy of crude leaf extracts of Eucalyptus globulus against in vitro and in vivo growth of chocolate spot (Botrytis fabae Sard.) of Faba bean (Vicia faba L.). Plant 2016, 4, 37–44. [Google Scholar] [CrossRef]
- Dejam, M.; Khaleghi, S.K.; Ataollahi, R. Allelopathic effects of Eucalyptus globulus Labill. on seed germination and seedling growth of eggplant (Solanum melongena L.). Int. J. Farming Allied Sci. 2014, 3, 81–86. [Google Scholar]
- El-Rokiek, K.G.; Saad El-Din, S.A. Allelopathic activity of Eucalyptus globulus leaf water extract on Pisum sativum growth, yield and associated weeds. Middle East J. Appl. Sci. 2017, 07, 907–913. [Google Scholar]
- Morsi, M.M.; Abdelmigid, H.M. Allelopathic activity of Eucalyptus globulus leaf aqueous extract on Hordeum vulgare growth and cytogenetic behaviour. Aust. J. Crop Sci. 2016, 10, 1551–1556. [Google Scholar] [CrossRef]
- Ajilore, B.S.; Oluwadairo, T.O.; Olorunnisola, O.S.; Fadahunsi, O.S.; Adegbola, P.I. GC–MS analysis, toxicological and oral glucose tolerance assessments of methanolic leaf extract of Eucalyptus globulus. Futur. J. Pharm. Sci. 2021, 7, 162. [Google Scholar] [CrossRef]
- Narasimha, V.R.; Latha, T.S.; Pallu, R.; Panati, K.; Narala, V.R. Anticancer activities of biogenic silver nanoparticles targeting apoptosis and inflammatory pathways in colon cancer cells. J. Clust. Sci. 2021. [Google Scholar] [CrossRef]
- Gullón, B.; Gullón, P.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Optimization of solvent extraction of antioxidants from Eucalyptus globulus leaves by response surface methodology: Characterization and assessment of their bioactive properties. Ind. Crops Prod. 2017, 108, 649–659. [Google Scholar] [CrossRef]
- Bencheikh, D.; Gueddah, A.; Soualat, K.; Ben-aissi, H.; Benslama, A.; Harrar, A.; Khennouf, S. Polyphenolic contents, antioxidant and antibacterial activities of aqueous extracts of Eucalyptus globulus L. and Trigonella foenum-greacum L. J. Appl. Biol. Sci. 2021, 15, 53–63. [Google Scholar]
- González-Burgos, E.; Liaudanskas, M.; Viškelis, J.; Žvikas, V.; Janulis, V.; Gómez-Serranillos, M.P. Antioxidant activity, neuroprotective properties and bioactive constituents analysis of varying polarity extracts from Eucalyptus globulus leaves. J. Food Drug Anal. 2018, 26, 1293–1302. [Google Scholar] [CrossRef]
- Luís, A.; Neiva, D.; Pereira, H.; Gominho, J.; Domingues, F.; Duarte, A.P. Stumps of Eucalyptus globulus as a source of antioxidant and antimicrobial polyphenols. Molecules 2014, 19, 16428–16446. [Google Scholar] [CrossRef] [Green Version]
- Djenane, D.; Yangüela, J.; Amrouche, T.; Boubrit, S.; Boussad, N.; Roncalés, P. Chemical composition and antimicrobial effects of essential oils of Eucalyptus globulus, Myrtus communis and Satureja hortensis against Escherichia coli O157:H7 and Staphylococcus aureus in minced beef. Food Sci. Technol. Int. 2011, 17, 505–515. [Google Scholar] [CrossRef]
- Hafsa, J.; ali Smach, M.; Ben Khedher, M.R.; Charfeddine, B.; Limem, K.; Majdoub, H.; Rouatbi, S. Physical, antioxidant and antimicrobial properties of chitosan films containing Eucalyptus globulus essential oil. LWT Food Sci. Technol. 2016, 68, 356–364. [Google Scholar] [CrossRef]
- Obiorah, S.; Eze, E.; Obiorah, D.; Orji, N.; Umedum, C. Phytochemical and antimicrobial studies on the extracts from leaves of Cajanus cajan and Eucalyptus globulus. In Proceedings of the International Conference on Environment, Chemistry and Biology, Singapore, 17–18 March 2012; Volume 49, pp. 192–197. [Google Scholar]
- Boulekbache-makhlouf, L.; Slimani, S.; Madani, K. Antioxidant effects and phytochemical analysis of crude and chromatographic fractions obtained from Eucalyptus globulus bark. Afr. J. Biotechnol. 2012, 11, 10048–10055. [Google Scholar] [CrossRef]
- Rodrigues, V.H.; de Melo, M.M.R.; Portugal, I.; Silva, C.M. Extraction of Eucalyptus leaves using solvents of distinct polarity. Cluster analysis and extracts characterization. J. Supercrit. Fluids 2018, 135, 263–274. [Google Scholar] [CrossRef]
- De Melo, M.M.R.; Oliveira, E.L.G.; Silvestre, A.J.D.; Silva, C.M. Supercritical fluid extraction of triterpenic acids from Eucalyptus globulus bark. J. Supercrit. Fluids 2012, 70, 137–145. [Google Scholar] [CrossRef]
- Domingues, R.M.A.; Sousa, G.D.A.; Freire, C.S.R.; Silvestre, A.J.D.; Neto, C.P. Eucalyptus globulus biomass residues from pulping industry as a source of high value triterpenic compounds. Ind. Crops Prod. 2010, 31, 65–70. [Google Scholar] [CrossRef]
- Noumi, E.; Snoussi, M.; Hajlaoui, H.; Trabelsi, N.; Ksouri, R.; Valentin, E.; Bakhrouf, A. Chemical composition, antioxidant and antifungal potential of Melaleuca alternifolia(tea tree) and Eucalyptus globulus essential oils against oral Candida species. J. Med. Plants Res. 2011, 5, 4147–4156. [Google Scholar]
- Khoshraftar, Z.; Safekordi, A.A.; Shamel, A.; Zaefizadeh, M. Synthesis of natural nanopesticides with the origin of Eucalyptus globulus extract for pest control. Green Chem. Lett. Rev. 2019, 12, 286–298. [Google Scholar] [CrossRef] [Green Version]
- Vazquez, G.; Santos, J.; Freire, M.S.; Antorrena, G.; Gonza’lez-Alvarez, J. Extraction of antioxidants from eucalyptus (Eucalyptus globulus) bark. Wood Sci. Technol. 2012, 46, 443–457. [Google Scholar] [CrossRef]
- Sharma, A.D.; Kaur, I. By-product hydrosol of Eucalyptus globulus essential oil distillation as source of botanical insecticides: Wealth from waste. Not. Sci. Biol. 2021, 13, 10854. [Google Scholar] [CrossRef]
- Mota, I.; Pinto, P.C.R.; Novo, C.; Sousa, G.; Guerreiro, O.; Guerra, Â.R.; Duarte, M.F.; Rodrigues, A.E. Eucalyptus globulus bark as source of polyphenolic compounds with biological activity. In Proceedings of the 45th ABTCP International Pulp and Paper Congress and VII IberoAmerican Congress on Pulp and Paper Research, Sao Paulo, Brazil, 9–11 October 2012; pp. 1–10. [Google Scholar]
- Lourenço, A.; Marques, A.V.; Gominho, J. The identification of new triterpenoids in Eucalyptus globulus wood. Molecules 2021, 26, 3495. [Google Scholar] [CrossRef] [PubMed]
- Mączka, W.; Duda-Madej, A.; Górny, A.; Grabarczyk, M.; Wińska, K. Can eucalyptol replace antibiotics? Molecules 2021, 26, 4933. [Google Scholar] [CrossRef]
- Salem, N.; Kefi, S.; Tabben, O.; Ayed, A.; Jallouli, S.; Feres, N.; Hammami, M.; Khammassi, S.; Hrigua, I.; Nefisi, S.; et al. Variation in chemical composition of Eucalyptus globulus essential oil under phenological stages and evidence synergism with antimicrobial standards. Ind. Crop. Prod. 2018, 124, 115–125. [Google Scholar] [CrossRef]
- Boulekbache-makhlouf, L.; Slimani, S.; Madani, K. Total phenolic content, antioxidant and antibacterial activities of fruits of Eucalyptus globulus cultivated in Algeria. Ind. Crops Prod. 2013, 41, 85–89. [Google Scholar] [CrossRef]
- Bachir, R.G.; Benali, M. Antibacterial activity of the essential oils from the leaves of Eucalyptus globulus against Escherichia coli and Staphylococcus aureus. Asian Pac. J. Trop. Biomed. 2012, 2, 739–742. [Google Scholar] [CrossRef] [Green Version]
- Esmaeili, D.; Mobarez, A.M.; Tohidpour, A. Anti-Hlicobacter pylori Activities of shoya powder and essential oils of Thymus vulgaris and Eucalyptus globulus. Open Microbiol. J. 2012, 6, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Djelloul, R.; Mokrani, K.; Hacini, N. Study of the antibacterial activity of the extract from the essential oil of Eucalyptus globulus and Rosmarinus officinalis on three bacterial strains. Int. J. Appl. Environ. Sci. 2017, 12, 47–56. [Google Scholar]
- Limam, H.; Ben Jemaa, M.; Tammar, S.; Ksibi, N.; Khammassi, S.; Jallouli, S.; Del Re, G.; Msaada, K. Variation in chemical profile of leaves essential oils from thirteen Tunisian Eucalyptus species and evaluation of their antioxidant and antibacterial properties. Ind. Crops Prod. 2020, 158, 112964. [Google Scholar] [CrossRef]
- Merghni, A.; Noumi, E.; Hadded, O.; Dridi, N.; Panwar, H.; Ceylan, O.; Mastouri, M.; Snoussi, M. Assessment of the antibiofilm and antiquorum sensing activities of Eucalyptus globulus essential oil and its main component 1,8-cineole against methicillin-resistant Staphylococcus aureus strains. Microb. Pathog. 2018, 118, 74–80. [Google Scholar] [CrossRef]
- Luo, J.; Qi, S.; Peng, L.; Xie, X. Phytoremediation potential of cadmium-contaminated soil by Eucalyptus globulus under different coppice systems. Bull. Environ. Contam. Toxicol. 2015, 94, 321–325. [Google Scholar] [CrossRef]
- Luo, J.; Qi, S.; Peng, L.; Wang, J. Phytoremediation efficiency of CD by Eucalyptus globulus transplanted from polluted and unpolluted sites. Int. J. Phytoremediat. 2016, 18, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Qi, S.; Peng, L.; Xie, X. Enhanced phytoremediation capacity of a mixed-species plantation of Eucalyptus globulus and Chickpeas. J. Geochem. Explor. 2017, 182, 201–205. [Google Scholar] [CrossRef]
- El-Khatib, A.A.; Youssef, N.A.; Barakat, N.A.; Samir, N.A. Responses of Eucalyptus globulus and Ficus nitida to different potential of heavy metal air pollution. Int. J. Phytoremediat. 2020, 22, 986–999. [Google Scholar] [CrossRef]
- Puig, C.G.; Revilla, P.; Barreal, M.E.; Reigosa, M.J.; Pedrol, N. On the suitability of Eucalyptus globulus green manure for field weed control. Crop Prot. 2019, 121, 57–65. [Google Scholar] [CrossRef]
- Puig, C.G.; Álvarez-Iglesias, L.; Reigosa, M.J.; Pedrol, N. Eucalyptus globulus leaves incorporated as green manure for weed control in maize. Weed Sci. 2013, 61, 154–161. [Google Scholar] [CrossRef]
- Nega, F.; Gudeta, T.B. Allelopathic effect of Eucalyptus globulus Labill. on seed germination and seedling growth of highland teff (Eragrostis tef (Zuccagni) Trotter)) and barely (Hordeum vulgare L.). J. Exp. Agric. Int. 2019, 30, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Pinto, M.; Soares, C.; Martins, M.; Sousa, B.; Valente, I.; Pereira, R.; Fidalgo, F. Herbicidal effects and cellular targets of aqueous extracts from young Eucalyptus globulus Labill. Leaves. Plants 2021, 10, 1159. [Google Scholar] [CrossRef] [PubMed]
- Almeida, E.F.A.; Santos, L.O.; Castricini, A.; da Silva Reis, J.B.R. Eucalyptus globulus essential oil on the postharvest quality of “Carola” roses. Ornam. Hortic. 2020, 26, 159–165. [Google Scholar] [CrossRef]
- Rani, N.; Harikrishnan, T.J.; Ponnudurai, G. In vitro insecticidal activity of essential oil of Eucalyptus globulus against Musca domestica. Indian Vet. J. 2016, 93, 25–27. [Google Scholar]
- Abdelkader, H.; Abdelkader, B.; Yahia, B. Toxicity and repellency of Eucalyptus globulus L. essential oil against Aphis fabae Scopoli, 1763 (Homoptera: Aphididae). J. Entomol. Res. 2020, 44, 147–152. [Google Scholar] [CrossRef]
Plant Parts | Major Constituents | References |
---|---|---|
Leaves | 1,8-cineole (31.42%) and trans-3-carven-2-ol (10.10%), 2-Octen-1-ol, 3,7-dimethyl (9.37), and Cis-p-Menth-2,8-dienol (6.33) | [36] |
Leaves | 1,8-cineole (86.51%), α-pinene (4.74%), γ-terpinene (2.57%) and α-phellandrene (1.40%) | [3] |
Leaves | 1,8-cineole (95.61%) and alpha-pinene (1.5%) | [65] |
Aerial parts | 1,8-cineole (79.85%), Limonene (6.72%), p-cymene (5.14%), and γ-terpinene (3.93%) | [25] |
Leaves | 1,8-cineole (85.8%), α-pinene (7.2%), and β-myrcene (1.5%) | [9] |
Leaves | γ-terpinene (94.48%) and 1,8-cineole (3.20%) | [58] |
Leaves | 1,8-cineole (33.6%), α-pinene (14.2%), and d-limonene (10.1%) | [38] |
Leaves | Terpinen-4-ol (23.46%), γ-terpinene (17.01%), pathulenol (8.94%), ρ-ymene (8.10%) and ρ-cymen-7-ol (6.39 %), globulol (2.52%), and α-phellandrene (2.20%) | [27] |
Leaves | 1,8-cineole (22.35%), limonene (7.01%), solanol (6.05%), β-pinene (5.20%), trans-verbenol (4.02%), and terpinen-4-ol (3.10%) | [8] |
Leaves | 1,8 cineole (51.08%), α-pinene (24.60%), L-pinocarveol (9.98%), and globulol (2.81) | [5] |
Leaves | 1,8-Cineole (71.05%) and α-pinene (8.30%) | [1] |
Leaves | Phenolics (quercetin and luteolin) | [2] |
Leaves | 1,8-cineole (76.65%), α-pinene (5.65%), α-terpineol acetate (4.85%), and alloaromadendrene (3.98%) | [11] |
Leaves | 1,8-cineole (62.38%), α-pinene (23.79%), α-terpinyl acetate (5.41%), globulol (1.68%), and β-pinene (1.1%) | [15] |
Leaves | 1,8-cineole (55.29%), spathulenol (7.44%), and α-terpineol (5.46%) | [20] |
Leaves | 1,8-cineole (36.68%), β-pinene (9.25%), aromedendrene (6.33%), and globulol (5.11%) | [6] |
Leaves | Chlorogenic acid, rutin, and quercetin 3-glucuronide and ellagic acid derivatives | [45] |
Leaves | 1,8-cineole (54.79%), β-pinene (18.54%), α-pinene (11.46%), β-eudesmol (4.68%), α-phellandrene (2.06%), para cymene (1.60%), and gamma-eudesmol (1.20%) | [4] |
Leaves | p-Cymene (18.18%), methyl eugenol (8.83%), 4-Terpinenol (8.45%), s-methyl 3-methylbutanethioate (7.26%), g-terpinene (5.12%), and 1,8-cineole (3.16%). | [59] |
leaves and small branches | 1,8-cineole (63.81%), α-pinene (16.06%), aromadendrene (3.68%), and o-cymene (2.35%) | [13] |
Leaves | 1,8-cineole (63.00%), α-pinene (16.10%), and camphor (3.42%) | [14] |
Leaves | 1,8-cineole (48.2%), α-pinene (16.1%), γ-terpinene (8.9%) and p-cymene (8.8%) | [35] |
Leaves | 1,8-cineole (75.8%), p-cymene (7.5%), α-pinene (7.4%), and limonene (6.4%) | [12] |
Leaves | 1,8-cineole (69.32%), camphene (9.41%), α-pinene (7.48%), and α-terpineol (5.08%) | [23] |
Leaves | 1,8-cineole (46.76%), D-limonene (9.61%), and o-cymene (6.49%) | [37] |
Leaves | Phenolic compounds (quercetin, luteolin, kaempferol, iso-rhamnetin, phloretin, chlorogenic acid) | [56] |
Leaves | 1,8-cineole, phenolic acids (Gallic acid, ellagic acid, vanillic acid, p-hydroxybenzoic acid, p-coumaric acid, and quercetin), phenolics (catechin, rutin, and luteolin) | [46] |
Leaves | 1,8-cineole (70.94%), 3-cyclohexene-1-ol (3.13%), beta. fenchyl (5.38%), 1,2-benzenedicarboxylic acid (6.08%), dodecane (1.50%) | [66] |
Leaves | Eucalyptol (59.63%), p-cymene (15.55%), and DL-limonene (14.90%) | [16] |
Leaves | Eucalyptol (55.43%), α-pinene (25.55%), and D-limonene (5.687%) | [24] |
Leaves | 1,8-cineol (56.83%), L-pinocarveol (10.42%), α-pinene (9.47%), globulol (7.68%), and carvacrol (1.59%) | [33] |
Leaves | p-cymene (20.24%), spathulenol (14.10%), and eucalyptol (11.30%) | [26] |
Leaves | 1,8-cineole (23.3%), citronellal (18.1%), geranial (17.6%), isopulegol (10.4%), myrcene (13.0%), cuminaldehyde (9.1%), and 2-pinene (8.5%) | [7] |
Leaves | 1,8-cineole (80.2%), p-cymene (6.6%), and limonene (5%) | [10] |
Leaves | D-limonene (23.5%), m-cymene (24.8%), o- cymene (9.9 and 5.4%), 6-camphenol (7.2 and 10.7%), terpinen-4-ol (5.2 and 4.5%), and globulol (4.0 and 12.9%) | [34] |
Leaves | Eucalyptol (51.62%), α-pinene (23.62%), p-cymene (10%), β-myrcene (8.74%), terpinen-4-ol (2.74%), and γ-terpinene (2.59%) | [22] |
Leaves | 1,8-cineol (67.4 and 67.6%) and α-pinene (12.8 and 13.1%) | [21] |
Fruits | Aromadendrene (31.17%), 1,8-cineole (14.55%), globulol (10.69%), and ledene (7.13%) | [43] |
Fruits | Globulol (23.6%), aromadendrene (19.7%), 1,8-cineole (19.8%), and α-pinene (3.8%) | [44] |
Bark | Polyphenol and tannin | [61] |
Deciduous bark | Fatty acids, aliphatic alcohols, sterols, and triterpenoids | [63] |
Bark | Polygalloyl glucoses (gallotannins), catechin, epicatechin, ellagic acid, quercetin-3-o-rhamnoside, and isorhamnetin (phenolic compounds) | [67] |
Stump | Phenolic compounds and flavonoids | [57] |
Plant Parts | Solvent Used | Method Used | Target Species | References |
---|---|---|---|---|
Leaves | Essential oil | Agar diffusion technique | Staphylococcus aureus CECT 4459 Escherichia coli O157:H7 CECT 4267 | [58] |
Aerial parts | Essential oil | Disc diffusion assay | Salmonella enteritidis (CECT 4155) Escherichia coli (CECT 4267) Pseudomonas aeruginosa (CECT 110) Staphylococcus aureus (CECT 239) Enterococcus faecium (CECT 239) Listeria monocytogenes (CECT 935) Listeria monocytogenes EGD-e | [25] |
Leaves | Essential oil | Agar disc diffusion method | Staphylococcus aureus ATCC 25923 Escherichia coli ATCC 25922 Pseudomonas aeruginosa ATCC 27853 Phylococcus aureus Escherichia coli Pseudomonas aeruginosa klebsiella pneumoniae Proteus mirabilis Streptococcus pyogenes Morganella morganii Providencia stuartii Enterobacter cloacae Acinetobacter baumannii Citrobacter freundii Salmonella infantis | [9] |
Leaves | Essential oil | Agar disc diffusion and dilution broth methods | Escherichia coli Staphylococcus aureus | [74] |
Leaves | Essential oil | Agar dilution method | Helicobacter pylori ATCC 700392 | [75] |
Leaves | Methanol extract | Cup-plate method | Staphylococcus aureus Bacillus subtilis | [60] |
Leaves | Ethyl acetate | Agar well diffusion method | Lactobacillus acidophilus (MTCC-*447) Lactobacillus casei (MTCC-1423) Staphylococcus aureus (MTCC-890) Streptococcus mutans (MTCC-96) | [19] |
Fruits | Aqueous methanol (80%) | Disc diffusion method | Staphylococcus aureus ATCC 6538 Bacillus subtilis ATCC 6633 Klebsiella pneumoniae E 47 | [73] |
Leaves | Oil encapsulated silica nanoparticle | Agar well diffusion method | Escherichia coli (ATCC 25922) | [29] |
Leaves | Essential oil | Cylinder plate method | Bacillus subtilis Escherichia coli Staphylococcus aureus Pseudomonas aeruginosa | [28] |
Stump | n-hexane, ethanol, methanol and 75% aqueous ethanol | Disc diffusion assay | Staphylococcus aureus ATCC 25923 Bacillus cereus ATCC 11778 Listeria monocytogenes LMG 16779 Enterococcus faecalis ATCC 29212 Escherichia coli ATCC 25922 Pseudomonas aeruginosa ATCC 27853 Klebsiella pneumoniae ATCC 13883 S. aureus: SA 01/10, SA 02/10, SA 03/10 and SA 08 S. aureus: MRSA 10/08 and MRSA 12/08 | [57] |
Leaves | Methanolic extracts | Disk diffusion method | Pseudomonas aeruginosa | [2] |
Leaves | Essential oil | Agar diffusion method | Streptococcus mutans (ATCC 700610) | [1] |
Leaves | Essential oil | Agar well diffusion method | Staphylococcus aureus (MTCC 3160), Staphylococcus epidermidis (MTCC 435) Pseudomonas aeruginosa (MTCC 7453) Klebsiella pneumonia (MTCC 4030) | [15] |
Leaves | Essential oil | Broth microdilution method | Fusobacterium nucleatum ATCC 25586 Aggregatibacter actinomycetemcomitans ATCC 29522 Porphyromonas gingivalis ATCC 33277, ATCC 49417, HW24D1, and W83) Streptococcus mutans ATCC 35668 ATCC 33535, ATCC 25175 S. sobrinus ATCC 33478, ATCC 27607 ATCC 27352 | [20] |
Leaves | Essential oil incorporated into chitosan films | Agar diffusion assay | Staphylococcus aureus Escherichia coli Pseudomonas aeruginosa Klebsiella pneumonia | [59] |
Leaves | Essential oil | Agar diffusion method | Salmonella typhi Salmonella paratyphi Salmonella typhimurium Shigella species Pseudomonas aeruginosa Staphylococcus aureus Escherichia coli | [14] |
Leaves and small branches | Essential oil | Disc diffusion assay | Pseudomonas aeruginosa ATCC 27853 E. coli ATCC 25922 K. pneumoniae ATCC 13883 Salmonella Typhimurium ATCC 13311 Acinetobacter baumannii LMG 1025 Acinetobacter baumannii LMG 1041 P. aeruginosa PA 08 P. aeruginosa PA 12/08 E. coli EC 08 K. pneumoniae KP 08 | [13] |
Fruits | Essential oil | Agar diffusion test | Staphylococcus aureus ATCC 43300 Bacillus subtilis ATCC 6633 Listeria innocua CLIP 74915 Escherichia coli ATCC 25922 Pseudomonas aeruginosa ATCC 27853 | [44] |
Leaves | Essential oil | Disk infusion | Escherichia coli ATCC 25922 Pseudomonas aeruginosa ATCC 27853 Staphylococcus aureus ATCC 25923 | [76] |
Leaves | Aqueous, ethanol, and methanol | Agar disc diffusion method | Staphylococcus aureus (MTCC 3160) Escherichia coli (MTCC 1655) Streptococcus mutans (MTCC 890) | [30] |
Leaves | Aqueous ethanol | Serial dilution technique | Listeria innocua (NCTC 10528) Staphylococcus aureus (ATCC 6538) Escherichia coli (ATCC 25922) Bacillus cereus (DSM 4313) Pseudomonas aeruginosa (10145) Salmonella enteritidis (ATCC 3076) | [54] |
Leaves | Nanoemulsions containing oil | Broth microdilution technique | Pseudomonas aeruginosa PA01 | [12] |
Aerial parts | Essential oil | Disk diffusion method | Staphylococcus aureus ATCC 6816 Staphylococcus aureus (MRSA) Bacillus cereus ATCC 14579 Listeria monocytogenes ATCC 19115 Enterococcus faecalis ATCC 29212 Escherichia coli ATCC 25922 Klebsiella pneumoniae CIP 104727 Salmonella enteridis DMB 560 | [72] |
Leaves | Essential oil | Double-dilution micro-plate assay | E. coli 1 E. coli 2 S. aureus 1 S. aureus 2 P. aeruginosa P. mirabilis | [16] |
Leaves | Essential oil | In vitro microdilution method | Propionibacterium acnes ATCC 6919 P. acnes ATCC 11827 Staphylococcus aureus ATCC 6538 S. epidermidis ATCC 12228 | [10] |
Leaves | Essential oil | Agar diffusion test | Enterococcus hiare (ATCC 10,541) Baccilus licheniformis (ATCC 8480) Staphyllococcus aureus (ATCC 6538) Pseudomonas aeruginosa (ATCC 9027) Serratia marcescens (ATCC 13,880) Escherchia coli (ATCC 8739) | [77] |
Leaves | Zinc oxide nanoparticles from essential oil of | Agar well diffusion method | Staphylococcus aureus ATCC 43300 Staphylococcus aureus ATCC 25923 Enterococcus faecalis ATCC 29212 Escherichia coli ATCC 25922 Klebsiella pneumoniae Salmonella enteritidis ATCC 13076 Salmonella typhimurium Pseudomonas aeruginosa ATCC 27853 Acinetobacter baumannii | [33] |
Leaves | Aqueous extract | Agar disk diffusion method | Staphylococcus aureus ATCC 6536 Bacillus subtilis ATCC 6633 Escherichia coli ATCC 8739 | [55] |
Leaves | Essential oil | Broth microdilution method | Staphylococus aureus ATCC 25923 Streptococus pyogenes ATCC 28422 Eschericha coli | [21] |
Leaves | Essential oil | Agar disc diffusion method | Acetobacter aceti Pseudomonas aeruginosa MTCC 427 Escherichia coli MTCC 40 Bacillus subtilis MTCC 121 Staphylococcus aureus MTCC 3160 Saccharomyces cerevisiae | [31] |
Plant Parts | Solvent Used | Method Used | Target Species | References |
---|---|---|---|---|
Leaves | Essential oil | Micro dilution method | Candida albicans ATCC 90028 Candida albicans 15B | [32] |
leaves | Essential oil | Agar-well diffusion method | Candida spp. | [65] |
Leaves | Essential oil | Broth microdilution assay | Candida albicans ATCC 10231 | [9] |
Leaves | Methanol extract | Cup-plate method | Trichophytor rubrum | [60] |
Leaves | Essential oil | Cylinder plate method | Aspergillus niger Candida albicans | [28] |
Stump | n-hexane, ethanol, methanol, and 75% aqueous ethanol | Disc diffusion assay | Candida albicans ATCC 90028 Candida tropicalis ATCC 750 | [57] |
Leaves | Essential oil incorporated into chitosan films | Agar diffusion assay | Candida albicans Candida parapsilosis | [59] |
Leaves | Essential oil | Agar diffusion method | Trichophyton spp. Aspergillus spp. | [14] |
Leaves | Nanoemulsions containing oil | Broth microdilution technique | C. albicans (ATCC 14053) C. tropicalis (ATCC 66029) C. glabrata (ATCC 66032) | [12] |
Aerial parts | Essential oil | Disk diffusion assay | Candida albicans ATCC 10231 | [72] |
Leaves | Essential oil | Double-dilution micro-plate assay | C. albicans1 C. albicans2 | [16] |
Leaves | Zinc oxide nanoparticles from essential oil | Agar well diffusion method | Candida albicans | [33] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shala, A.Y.; Gururani, M.A. Phytochemical Properties and Diverse Beneficial Roles of Eucalyptus globulus Labill.: A Review. Horticulturae 2021, 7, 450. https://doi.org/10.3390/horticulturae7110450
Shala AY, Gururani MA. Phytochemical Properties and Diverse Beneficial Roles of Eucalyptus globulus Labill.: A Review. Horticulturae. 2021; 7(11):450. https://doi.org/10.3390/horticulturae7110450
Chicago/Turabian StyleShala, Awad Y., and Mayank Anand Gururani. 2021. "Phytochemical Properties and Diverse Beneficial Roles of Eucalyptus globulus Labill.: A Review" Horticulturae 7, no. 11: 450. https://doi.org/10.3390/horticulturae7110450