Metalaxyl Resistance of Phytophthora palmivora Causing Durian Diseases in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pathogen Collection and Fungicides
2.2. DNA Extraction, PCR Amplification, and Sequence Analysis
2.3. Fungicide Sensitivity Tests on Culture Medium
2.4. Data Analysis for Fungicide Sensitivity
2.5. Fungicide Sensitivity Tests on Detached Durian Leaves
3. Results
3.1. Species Identification by rDNA-ITS Sequence Analysis
3.2. Fungicide Sensitivity Tests on Culture Medium
3.3. Fungicide Sensitivity Tests on Detached Durian Leaves
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN Comtrade, Trade Map. Durian Global Market Report 2018. Available online: http://www.plantationsinternational.com/docs/durian-market.pdf (accessed on 10 January 2019).
- Chomchalow, N.; Somsri, S.; Na Songkhla, P. Marketing and export of major tropical fruits from Thailand. Assumpt. Univ. J. Technol. 2008, 11, 133–143. [Google Scholar]
- Pokterng, S.; Kengpol, A. The Forecasting of Durian Production Quantity for Consumption in Domestic and International Markets. Appl. Sci. Eng. Prog. 2010, 3, 7–18. [Google Scholar]
- Parichatnon, S.; Maichum, K.; Peng, K.C. Application of the malmquist productivity index on measurement of productivity trend of durian production in Thailand. Int. J. Bus. Mark. Manag. 2017, 2, 1–9. [Google Scholar]
- Drenth, A.; Guest, D.I. Diversity and Management of Phytophthora in Southeast Asia; ACIAR Monograph 114; Australian Centre for International Agricultural Research: Canberra, ACT, Australia, 2004.
- Suksiri, S.; Laipasu, P.; Soytong, K.; Poeaim, S. Isolation and identification of Phytophthora sp. and Pythium sp. from durian orchard in Chumphon province, Thailand. Int. J. Agric. Technol. 2018, 14, 389–402. [Google Scholar]
- Lim, T.K.; Sangchote, S. Diseases of Tropical Fruit Crops; Tropical Research and Education Center: Homestead, FL, USA, 2003. [Google Scholar]
- Abad, R.G.; Cruz, K.J.T. Incidence of Phytophthora fruit rot on four durian cultivars in Davao city, Philippines. Banwa 2012, 9, 1–9. [Google Scholar] [CrossRef]
- Office of Agricultural Economics, Department of Agriculture, Thailand. Quantity and Value of Imports of Agricultural Hazardous Substances. Resource Document Office of Agricultural Economics, Department of Agriculture, Thailand, 2018. Available online: http://oldweb.oae.go.th/economicdata/pesticides.html (accessed on 28 September 2019).
- Department of Agriculture Thailand. Durian Production Technology for Quality. Resource Document. 2018. Available online: http://www.doa.go.th/hrc/chantaburi/images/files/tecno_durian56.pdf (accessed on 10 January 2019).
- Steffens, J.J.; Pell, E.J.; Tien, M. Mechanisms of fungicide resistance in phytopathogenic fungi. Curr. Opin. Biotechnol. 1996, 7, 348–355. [Google Scholar] [CrossRef]
- Deising, H.B.; Reimann, S.; Pascholati, S.F. Mechanisms and significance of fungicide resistance. Braz. J. Microbiol. 2008, 39, 286–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishii, H.; Hollomon, D.W. Fungicide Resistance in Plant Pathogens: Principles and a Guide to Practical Management; Springer: Tokyo, Japan, 2015. [Google Scholar]
- Wightwick, A.; Walters, R.; Allinson, G.; Reichman, S.M.; Menzies, N.W. Environmental risks of fungicides used in horticultural production systems. In Fungicides; Carisse, O., Ed.; InTech: Rijeka, Croatia, 2010; pp. 273–304. [Google Scholar]
- Earnshaw, D.M.; Shattock, R.C. Sensitivity of Progeny of Phytophthora infestans to Fungicides. Asian J. Agric. Sci. 2012, 4, 213–224. [Google Scholar]
- Fontem, D.A.; Olanya, O.M.; Tsopmbeng, G.R.; Owona, M.A.P. Pathogenicity and metalaxyl sensitivity of Phytophthora infestans isolates obtained from garden huckleberry, potato, and tomato in Cameroon. J. Crop Prot. 2005, 24, 449–456. [Google Scholar] [CrossRef]
- Zhu, G.; Huang, F.; Feng, L.; Qin, B.; Yang, Y.; Hen, Y.; Lu, X. Sensitivities of Phytophthora infestans to metalaxyl, cymoxanil, and dimethomorph. Agric. Sci. China 2008, 7, 831–840. [Google Scholar] [CrossRef]
- Runno-Paurson, E.; Fry, W.E.; Remmel, T.; Mänd, M.; Myers, K.L. Phenotypic and genotypic characterisation of Estonian isolates of Phytophthora infestans in 2004–2007. J. Plant Pathol. 2010, 92, 375–384. [Google Scholar]
- Matuszak, J.M.; Fernandez-Elquezabel, J.; Gu, W.K.; Villarreal-Gonzalez, M.; Fry, W.E. Sensitivity of Phytophthora infestans populations to metalaxyl in Mexico: Distribution and dynamics. Plant Dis. 1994, 78, 911–916. [Google Scholar] [CrossRef]
- Lee, T.Y.; Mizubuti, E.; Fry, W.E. Genetics of metalaxyl resistance in Phytophthora infestans. Fungal Genet. Biol. 1999, 26, 118–130. [Google Scholar] [CrossRef]
- Hammi, A.; Msatef, Y.; Bennani, A.; Ismaili, A.E.L.; Serrhini, M.N. Mating type, metalaxyl resistance and aggressiveness of Phytophthora infestans (Mont.) de Bary in Morocco. J. Phytopathol. 2002, 150, 289–291. [Google Scholar] [CrossRef]
- Sobkowiak, S.; Śliwka, J.; Chmielarz, R.; Lebecka, R.; Zimnoch-Guzowska, E. Resistance to metalaxyl of Phytophthora infestans isolates occurring in Poland in 2006–2010. Phytopathologia 2016, 61, 29–35. [Google Scholar]
- Elansky, S.; Apryshko, V.; Milyutina, D.; Kozlovsky, B. Resistance of Russian strains of Phytophthora infestans to fungicides metalaxyl and dimethomorph. Moscow Univ. Biol. Sci. Bull. 2007, 62, 11–14. [Google Scholar] [CrossRef]
- Mukalazi, J.; Adipala, E.; Sengooba, T.; Hakiza, J.J.; Olanya, M.; Kidanemariam, H.M. Metalaxyl resistance, mating types, and pathogenicity of Phytophthora infestans in Uganda. Crop Prot. 2001, 20, 379–388. [Google Scholar] [CrossRef]
- Timmer, L.W.; Graham, J.H.; Zitko, S.E. Metalaxyl-resistant isolates of Phytophthora nicotianae: Occurrence, sensitivity, and competitive parasitic ability on citrus. Plant Dis. 1998, 82, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Parra, G.; Ristaino, J.B. Resistance to mefenoxam and metalaxyl among field isolates of Phytophthora capsici causing Phytophthora blight of bell pepper. Plant Dis. 2001, 85, 1069–1075. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R.J.; Salas, B.; Secor, G.A.; Rivera, V.; Gudmestad, N.C. Sensitivity of North American isolates of Phytophthora erythroseptica and Pythium ultimum to mefenoxam (metalaxyl). Plant Dis. 2002, 86, 797–802. [Google Scholar] [CrossRef] [Green Version]
- Peter, R.D.; Sturz, A.V.; Matheson, B.G.; Arsenault, W.J.; Malone, A. Metalaxyl sensitivity of isolates of Phytophthora erythroseptica in Prince Edward Island. Plant Pathol. 2001, 50, 302–309. [Google Scholar] [CrossRef]
- Fungicide Resistance Action Committee (FRAC). List of Resistant Pathogenic Organisms Resistant to Disease Control Agents. Resource Document. Fungicide Resistance Action Committee. 2018. Available online: http://www.frac.info/docs/default-source/publications/list-of-resistant-plant-pathogens/list-of-resistant-plant-pathogenic-organisms_may-2018.pdf?sfvrsn=a2454b9a_2 (accessed on 10 January 2019).
- Chiampiriyakul, P.; Sopee, J.; Mekmok, T. Evaluation of metalaxyl sensitivity among Phytophthora infestans by poisoned food technique using corn agar. In Proceedings of the 49th Kasetsart University Annual Conference, Bangkok, Thailand, 1–4 February 2011; Volume 1, pp. 480–487. [Google Scholar]
- Saitoh, K.I.; Togashi, K.; Arie, T.; Teraoka, T. A simple method for a mini-preparation of fungal DNA. J. Gen. Plant Pathol. 2006, 72, 348–350. [Google Scholar] [CrossRef]
- Ishii, H.; Zhen, F.; Hu, M.; Li, X.; Schnabel, G. Efficacy of SDHI fungicides, including benzovindiflupyr, against Colletotrichum species. Pest Manag. Sci. 2016, 72, 1844–1853. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Torres-Calzada, C.; Tapia-Tussell, R.; Higuera-Ciapara, I.; Martin-Me, R.; Nexticapan-Garcez, A.; Perez-Brito, D. Sensitivity of Colletotrichum truncatum to four fungicides and molecular characterization of thiabendazole-resistant isolates. Plant Dis. 2015, 99, 1590–1595. [Google Scholar] [CrossRef] [Green Version]
- Tian, M.; Zhao, L.M.; Li, S.; Huang, J.; Sui, Z.; Wen, J.Z.; Li, Y.H. Pathotypes and metalaxyl sensitivity of Phytophthora sojae and their distribution in Heilongjiang, China 2011–2015. J. Gen. Plant Pathol. 2016, 82, 132–141. [Google Scholar] [CrossRef]
- Ristaino, J.B.; Madritch, M.; Trout, C.L.; Parra, G. PCR amplification of ribosomal DNA for species identification in the plant pathogen genus. Phytophthora. Appl. Environ. Microbiol. 1998, 64, 948–954. [Google Scholar] [CrossRef] [Green Version]
- Cooke, D.E.L.; Drenth, A.; Duncan, J.M.; Wagels, G.; Brasier, C.M. A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet. Biol. 2000, 30, 17–32. [Google Scholar] [CrossRef]
- Kongtragoul, P.; Viriyaekkul, O. Sensitivity detection of Phytophthora spp. causing para-rubber leaf fall disease to same systemic fungicides. In Proceedings of the 2nd International Symposium on Agricultural Technology Global Agriculture Trends for Sustainability, Pattaya, Thailand, 1–3 July 2015; pp. 149–152. [Google Scholar]
- Grünwald, N.J.; Sturbaum, A.K.; Romero, M.G.; Garay, S.E.; Lozoya-Saldaña, H.; Fry, W.E. Selection for fungicide resistance within a growing season in field populations of Phytophthora infestans at the center of origin. Phytopathology 2006, 96, 1397–1403. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Wang, H.; Stammler, G.; Ma, J.; Zhou, M. Baseline sensitivity of populations of Phytophthora capsici from China to three carboxylic acid amide (CAA) fungicides and sequence analysis of cholinephosphotranferases from a CAA-sensitive isolate and CAA-resistant laboratory mutants. J. Phytopathol. 2010, 158, 244–252. [Google Scholar] [CrossRef]
- Ma, D.; Jiang, J.; He, L.; Cui, K.; Mu, W.; Liu, F. Detection and characterization of QoI-resistant Phytophthora capsici causing pepper Phytophthora blight in China. Plant Dis. 2018, 102, 1725–1732. [Google Scholar] [CrossRef] [Green Version]
- Forcelini, B.B.; Peres, N.A.; Amiri, A.; Seijo, T.E. Resistance in strawberry isolates of Colletotrichum acutatum from Florida to Quinone-outside inhibitor fungicides. Plant Dis. 2016, 100, 2050–2056. [Google Scholar] [CrossRef] [Green Version]
- Ramallo, A.C.; Cerioni, L.; Olmedo, G.M.; Volentini, S.I.; Ramallo, J.; Rapisarda, V.A. Control of Phytophthora brown rot of lemons by pre- and postharvest applications of potassium phosphite. Eur. J. Plant Pathol. 2019, 154, 975–982. [Google Scholar] [CrossRef]
- Kwon, J.-H.; Won, S.-J.; Moon, J.-H.; Lee, U.; Park, Y.-S.; Maung, C.E.H.; Ajuna, H.B.; Ahn, Y.S. Bacillus licheniformis PR2 controls fungal diseases and increases production of jujube fruit under field conditions. Horticulturae 2021, 7, 49. [Google Scholar] [CrossRef]
- Oszust, K.; Pylak, M.; Frąc, M. Trichoderma-based biopreparation with prebiotics supplementation for the naturalization of raspberry plant rhizosphere. Int. J. Mol. Sci. 2021, 22, 6356. [Google Scholar] [CrossRef]
Year of Isolation | Isolate Code | Host Tissue | Location |
---|---|---|---|
2016 | D001 | Fruit | Thale Sap Sub-District, Pathio District, Chumphon. |
DS_T024 | Stem | Thale Sap Sub-District, Pathio District, Chumphon. | |
DF_Z030 | Fruit | Tham Sing Sub-District, Muang Chumphon District, Chumphon. | |
DS_B032 | Stem | Tham Sing Sub-District, Muang Chumphon District, Chumphon. | |
DF_M034 | Fruit | Khron Sub-District, Sawi District, Chumphon. | |
DF_PA01 | Fruit | Pak Chan Sub-District, Kra Buri District, Ranong. | |
DF_S053 | Fruit | Numcha Sub-District, Sawi District, Chumphon. | |
DF_S055 | Fruit | Numcha Sub-District, Sawi District, Chumphon. | |
DF_N014 | Fruit | Thale Sap Sub-District, Pathio District, Chumphon. | |
2017 | DF_K012 | Fruit | Numcha Sub-District, Sawi District, Chumphon. |
DF_M035 | Fruit | Khron Sub-District, Sawi District, Chumphon. | |
DF_P027 | Fruit | Thale Sap Sub District, Pathio District, Chumphon. | |
DF_P075 | Fruit | Thale Sap Sub-District, Pathio District, Chumphon. | |
DF_PA01/2 | Fruit | Pak Chan Sub-District, Kra Buri District, Ranong. | |
DF_S065 | Fruit | Numcha Sub-District, Sawi District, Chumphon. | |
DS_T024/2 | Stem | Thale Sap Sub-District, Pathio District, Chumphon. | |
DS_T026 | Stem | Thale Sap Sub-District, Pathio District, Chumphon. | |
DF_M050 | Fruit | Khron Sub-District, Sawi District, Chumphon. | |
DS_B033 | Stem | Tham Sing Sub-District, Muang Chumphon District, Chumphon. | |
DF_CH04 | Fruit | Na Kha Sub-District, Lang Suan District, Chumphon. |
Year of Isolation | Isolate Code | EC50 (mg L−1) | Sensitivity Type 1 | ||||
---|---|---|---|---|---|---|---|
Metalaxyl | Azoxystrobin | Dimethomorph | Metalaxyl | Azoxystrobin | Dimethomorph | ||
2016 | D001 | >100 | <0.1 | 0.3 | R | S | S |
DS_T024 | >100 | 0.17 | 0.4 | R | S | S | |
DF_Z030 | <0.1 | <0.1 | 0.3 | S | S | S | |
DS_B032 | >100 | <0.1 | 0.3 | R | S | S | |
DF_M034 | 2.3 | 0.2 | <0.1 | MR | S | S | |
DF_PA01 | 11.7 | 0.2 | 0.2 | MR | S | S | |
DF_S053 | 3.9 | 0.1 | 0.1 | MR | S | S | |
DF_S055 | <0.1 | 0.3 | <0.1 | S | S | S | |
DF_N014 | 1.4 | <0.1 | <0.1 | MR | S | S | |
2017 | DF_K012 | <0.1 | <0.1 | 0.1 | S | S | S |
DF_M035 | 4.9 | <0.1 | <0.1 | MR | S | S | |
DF_P027 | >100 | <0.1 | 0.3 | R | S | S | |
DF_P075 | >100 | <0.1 | 0.3 | R | S | S | |
DF_PA01/2 | 5.49 | <0.1 | 0.86 | MR | S | S | |
DF_S065 | 7.86 | <0.1 | 0.35 | MR | S | S | |
DS_T024/2 | >100 | <0.1 | 0.37 | R | S | S | |
DS_T026 | >100 | <0.1 | 0.29 | R | S | S | |
DF_M050 | >100 | <0.1 | 0.43 | R | S | S | |
DS_B033 | >100 | <0.1 | 0.35 | R | S | S | |
DF_CH04 | <0.1 | <0.1 | 0.34 | S | S | S |
Phenotype 1 | Isolate Code | Mean Lesion Diameter (mm) 2 | Disease Control (%) 3 | |
---|---|---|---|---|
Water | Metalaxyl 100 mg L−1 | |||
MetR | DS_B032 | 12.79 | 11.64 | 8.99 c |
DF_P027 | 12.41 | 11.41 | 8.06 c | |
DF_P075 | 16.80 | 13.07 | 22.20 c | |
DF_M050 | 7.30 | 9.17 | −25.61 d | |
Mean | 12.32 A | 11.32 A | ||
MetMR | DF_M034 | 6.39 | 3.64 | 43.06 b |
DF_PA01 | 12.60 | 4.71 | 62.62 a | |
DF_N014 | 7.66 | 5.13 | 33.02 bc | |
DF_S053 | 10.28 | 4.31 | 58.07 ab | |
Mean | 9.23 A | 4.44 B | ||
MetS | DF_S055 | 11.33 A | 4.36 B | 61.52 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kongtragoul, P.; Ishikawa, K.; Ishii, H. Metalaxyl Resistance of Phytophthora palmivora Causing Durian Diseases in Thailand. Horticulturae 2021, 7, 375. https://doi.org/10.3390/horticulturae7100375
Kongtragoul P, Ishikawa K, Ishii H. Metalaxyl Resistance of Phytophthora palmivora Causing Durian Diseases in Thailand. Horticulturae. 2021; 7(10):375. https://doi.org/10.3390/horticulturae7100375
Chicago/Turabian StyleKongtragoul, Pornprapa, Koichiro Ishikawa, and Hideo Ishii. 2021. "Metalaxyl Resistance of Phytophthora palmivora Causing Durian Diseases in Thailand" Horticulturae 7, no. 10: 375. https://doi.org/10.3390/horticulturae7100375
APA StyleKongtragoul, P., Ishikawa, K., & Ishii, H. (2021). Metalaxyl Resistance of Phytophthora palmivora Causing Durian Diseases in Thailand. Horticulturae, 7(10), 375. https://doi.org/10.3390/horticulturae7100375