Quantitative Trait Loci (QTL) Analysis of Fruit and Agronomic Traits of Tropical Pumpkin (Cucurbita moschata) in an Organic Production System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of the Mapping Population
2.2. Field Conditions
2.3. Evaluation of Traits
2.4. DNA Extraction and Genotype-by-Sequencing (GBS)
2.5. Linkage Map Development and Quantitative Trait Loci (QTL) Mapping
2.6. Genomic Analysis
3. Results and Discussion
3.1. Genotype-by-Sequencing
3.2. Linkage Map
3.3. QTL Mapping and Genomic Analysis.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lammerts van Bueren, E.T.; Jones, S.S.; Tamm, L.; Murphy, K.M.; Myers, J.R.; Leifert, C.; Messmer, M.M. The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review. NJAS Wagening. J. Life Sci. 2011, 58, 193–205. [Google Scholar] [CrossRef]
- Lammerts van Bueren, E.T.; Struik, P.C.; Jacobsen, E. Ecological concepts in organic farming and their consequences for an organic crop ideotype. NJAS Wagening. J. Life Sci. 2002, 50, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Lammerts van Bueren, E.T.; Struik, P.C.; van Eekeren, N.; Nuijten, E. Towards resilience through systems-based plant breeding. A review. Agron. Sustain. Dev. 2018, 38, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, M.M.; Landes, X.; Xiang, W.; Anyshchenko, A.; Falhof, J.; Østerberg, J.T.; Olsen, L.I.; Edenbrandt, A.K.; Vedel, S.E.; Thorsen, B.J.; et al. Feasibility of new breeding techniques for organic farming. Trends Plant Sci. 2015, 20, 426–434. [Google Scholar] [CrossRef] [Green Version]
- Nuijten, E.; Messmer, M.; Lammerts van Bueren, E. Concepts and strategies of organic plant breeding in light of novel breeding techniques. Sustainability 2016, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.; Semagn, K.; Iqbal, M.; N’Diaye, A.; Chen, H.; Asif, M.; Navabi, A.; Perez Lara, E.; Pozniak, C.J.; Yang, R.-C.; et al. Mapping QTLs controlling agronomic traits in the ‘Attila’בCDC Go’spring wheat population under organic management using 90K SNP array. Crop Sci. 2017, 57, 365–377. [Google Scholar] [CrossRef]
- Lammerts van Bueren, E.; Backes, G.; De Vriend, H.; Østergård, H. The role of molecular markers and marker assisted selection in breeding for organic agriculture. Euphytica 2010, 175, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, M.S.; Baresel, J.P.; Desclaux, D.; Goldringer, I.; Hoad, S.; Kovacs, G.M.; Löschenberger, F.; Miedaner, T.; Østergård, H.; Lammerts van Bueren, E.T. Developments in breeding cereals for organic agriculture. Euphytica 2008, 163, 323. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.A.; Radovich, T.J.; Nguyen, H.V.; Uyeda, J.; Arakaki, A.; Cadby, J.; Paull, R.; Sugano, J.; Teves, G. Use of organic fertilizers to enhance soil fertility, plant growth, and yield in a tropical environment. In Organic Fertilizers-From Basic Concepts to Applied Outcomes; IntechOpen: London, UK, 2016; pp. 85–108. [Google Scholar]
- Jones, A.M.P.; Murch, S.J.; Ragone, D. Diversity of breadfruit (Artocarpus altilis, Moraceae) seasonality: A resource for year-round nutrition. Econ. Bot. 2010, 64, 340–351. [Google Scholar] [CrossRef]
- Loke, M.K.; Xu, X.; Leung, P. Estimating organic, local, and other price premiums in the Hawaii fluid milk market. J. Dairy Sci. 2015, 98, 2824–2830. [Google Scholar] [CrossRef] [Green Version]
- Radovich, T. Pumpkin and Squash (Cucurbita spp). In Farm and Forestry Production and Marketing Profiles for Pacific Islands; Elevitch, C.R., Ed.; Permanent Agriculture Resources (PAR): Hōlualoa, HI, USA, 2011; pp. 341–354. [Google Scholar]
- Elsey, K.D. Resistance mechanisms in Cucurbita moschata to pickleworm and melonworm (Lepidoptera: Pyralidae). J. Econ. Entomol. 1985, 78, 1048–1051. [Google Scholar] [CrossRef]
- Leiner, R.C.; Spafford, H. Oviposition Preferences of Pickleworm (Lepidoptera: Crambidae) in Relation to a Potential Push–Pull Cropping Management Approach. Environ. Entomol. 2016, 45, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Jang, E.B.; Klungness, L.M.; Mcquate, G.T. Extension of the use of Augmentoria for Sanitation in a cropping system susceptible to the alien terphritid fruit flies (Diptera: Terphritidae) in Hawaii. J. Appl. Sci. Environ. Manag. 2007, 11, 239–248. [Google Scholar] [CrossRef]
- Rocha Gonring, A.H.; Picanço, M.C.; Zanuncio, J.C.; Puiatti, M.; Semeão, A. Natural biological control and key mortality factors of the pickleworm, Diaphania nitidalis Stoll (Lepidoptera: Pyralidae), in cucumber. Biol. Agric. Hortic. 2003, 20, 365–380. [Google Scholar] [CrossRef]
- Wessel-Beaver, L. Release of Tropical Pumpkin ‘Taina Dorada’. J. Agric. Univ. Puerto Rico 2013, 97, 97–100. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 24 February 2020).
- Broman, K.W.; Wu, H.; Sen, Ś.; Churchill, G.A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 2003, 19, 889–890. [Google Scholar] [CrossRef] [Green Version]
- Schulz, M.H.; Weese, D.; Holtgrewe, M.; Dimitrova, V.; Niu, S.; Reinert, K.; Richard, H. Fiona: A parallel and automatic strategy for read error correction. Bioinformatics 2014, 30, i356–i363. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.J.; Zhou, Y.Y.; Li, J.X.; Yu, T.; Wu, T.Q.; Luo, J.N.; Luo, S.B.; Huang, H.X. A high-density linkage map and QTL mapping of fruit-related traits in pumpkin (Cucurbita moschata Duch.). Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Wu, S.; Zhang, G.; Jiao, C.; Guo, S.; Ren, Y.; Zhang, J.; Zhang, H.; Gong, G.; Jia, Z.; et al. Karyotype Stability and Unbiased Fractionation in the Paleo- Allotetraploid Cucurbita Genomes. Mol. Plant 2017, 10, 1293–1306. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Wu, S.; Bai, Y.; Sun, H.; Jiao, C.; Guo, S.; Zhao, K.; Blanca, J.; Zhang, Z.; Huang, S.; et al. Cucurbit Genomics Database (CuGenDB): A central portal for comparative and functional genomics in cucurbit crops. Nucleic Acids Res. 2018, 47, D1128–D1136. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Garcia-Mas, J.; Benjak, A.; Sanseverino, W.; Bourgeois, M.; Mir, G.; González, V.M.; Hénaff, E.; Câmara, F.; Cozzuto, L.; Lowy, E.; et al. The genome of melon (Cucumis melo L.). Proc. Natl. Acad. Sci. USA 2012, 109, 11872–11877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chayut, N.; Yuan, H.; Ohali, S.; Meir, A.; Yeselson, Y.; Portnoy, V.; Zheng, Y.; Fei, Z.; Lewinsohn, E.; Katzir, N.; et al. A bulk segregant transcriptome analysis reveals metabolic and cellular processes associated with Orange allelic variation and fruit β-carotene accumulation in melon fruit. BMC Plant Biol. 2015, 15, 274. [Google Scholar] [CrossRef] [Green Version]
- Latrasse, D.; Rodriguez-Granados, N.Y.; Veluchamy, A.; Mariappan, K.G.; Bevilacqua, C.; Crapart, N.; Camps, C.; Sommard, V.; Raynaud, C.; Dogimont, C.; et al. The quest for epigenetic regulation underlying unisexual flower development in Cucumis melo. Epigenetics Chromatin 2017, 10, 22. [Google Scholar] [CrossRef] [Green Version]
- Sebastiani, M.S.; Bagnaresi, P.; Sestili, S.; Biselli, C.; Zechini, A.; Orrù, L.; Cattivelli, L.; Ficcadenti, N. Transcriptome Analysis of the melon-Fusarium oxysporum f. sp. melonis race 1.2 pathosystem in susceptible and resistant plants. Front. Plant Sci. 2017, 8, 362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahesh, S.; Leelambika, M.; Jaheer, M.; Anithakumari, A.M.; Sathyanarayanam, N. Genetic mapping and QTL analysis of agronomic traits in Indian Mucuna pruriens using an intraspecific F2 population. J. Genet. 2016, 95, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Bajgain, P.; Zhang, X.; Turner, M.K.; Curlanf, R.D.; Heim, B.; Dill-Macky, R.; Ishimaru, C.A.; Anderson, J.A.; Ishimaru, C.A.; Anderson, J.A. Characterization of genetic resistance to Fusarium head blight and bacterial leaf streak in intermediate wheatgrass (Thinopyrum intermedium). Agronomy 2019, 9, 429. [Google Scholar] [CrossRef] [Green Version]
Minimum Calling Rate (MCR) | No. SNPs | Missing Data Points | % Polymorphisms * |
---|---|---|---|
MCR50 | 1582 | 82,434/314,818 = 26.2% | 1582/859,838 = 0.18% |
MCR60 | 1101 | 39,111/219,099 = 17.9% | 1101/699,932 = 0.16% |
MCR70 | 805 | 18,318/160,195 = 11.4% | 805/578,022 = 0.14% |
MCR80 | 617 | 8861/122,783 = 7.2% | 617/460,450 = 0.13% |
MCR90 | 415 | 3069/82,585 = 3.7% | 415/346,589 = 0.12% |
Trait | Mean +/− Standard Error |
---|---|
Fresh pumpkin weight | 4.8 +/− 0.18 lbs |
Diaphania nitidalis (pickleworm) damage | 0.9 +/− 0.08 z |
Cavity volume | 392.4 +/− 17.09 mL |
Thickness of the flesh outside the rib | 3.3 +/− 0.09 cm |
Thickness of the flesh inside the rib | 3.2 +/− 0.09 cm |
Height of the pumpkin cavity outside rib | 18.5 +/− 0.25 cm |
Height of the pumpkin cavity inside rib | 17.6 +/− 0.22 cm |
Cavity width | 11.7 +/− 0.51 cm |
Overall flesh color intensity | 63.3 +/− 1.19 y |
Flesh red color intensity | 22.0 +/− 1.20 x |
Flesh yellow color intensity | 46.1 +/− 2.34 w |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Valle Echevarria, A.R.; Campbell, A.; Radovich, T.J.K.; Silvasy, T.; Moore, S.; Kantar, M.B. Quantitative Trait Loci (QTL) Analysis of Fruit and Agronomic Traits of Tropical Pumpkin (Cucurbita moschata) in an Organic Production System. Horticulturae 2020, 6, 14. https://doi.org/10.3390/horticulturae6010014
Del Valle Echevarria AR, Campbell A, Radovich TJK, Silvasy T, Moore S, Kantar MB. Quantitative Trait Loci (QTL) Analysis of Fruit and Agronomic Traits of Tropical Pumpkin (Cucurbita moschata) in an Organic Production System. Horticulturae. 2020; 6(1):14. https://doi.org/10.3390/horticulturae6010014
Chicago/Turabian StyleDel Valle Echevarria, Angel R., Alexandra Campbell, Theodore J. K. Radovich, Tia Silvasy, Sarah Moore, and Michael B. Kantar. 2020. "Quantitative Trait Loci (QTL) Analysis of Fruit and Agronomic Traits of Tropical Pumpkin (Cucurbita moschata) in an Organic Production System" Horticulturae 6, no. 1: 14. https://doi.org/10.3390/horticulturae6010014
APA StyleDel Valle Echevarria, A. R., Campbell, A., Radovich, T. J. K., Silvasy, T., Moore, S., & Kantar, M. B. (2020). Quantitative Trait Loci (QTL) Analysis of Fruit and Agronomic Traits of Tropical Pumpkin (Cucurbita moschata) in an Organic Production System. Horticulturae, 6(1), 14. https://doi.org/10.3390/horticulturae6010014