Adoption and Impacts of Integrated Pest Management in Bangladesh: Evidence from Smallholder Bitter Gourd Growers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Sample Size
2.2. Analytical Technique
2.2.1. Adoption Analysis
2.2.2. Impact Evaluation
3. Results and Discussion
3.1. Descriptive Statistics
3.2. Determinants of IPM Adoption
3.3. Test of Different Parameters for the Selection of Model
3.4. Parameter Estimates of Conventional and Sample Selection SFPF
3.5. Technical Efficiency Distribution
3.6. Impacts of IPM Adoption on Productivity and Pesticide Applications
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rahman, M.S.; Malek, M.A.; Matin, M.A. Trend of pesticide usage in Bangladesh. Sci. Total Environ. 1995, 159, 33–39. [Google Scholar] [CrossRef]
- Matin, M.A. Pesticides in Bangladesh. In Pesticide Residues in Coastal Tropical Ecosystems: Distribution, Fate and Effects; Taylor, M.D., Klaine, S.J., Carvalho, F.P., Barcelo, D., Everaarts, J., Eds.; Taylor and Francis Group: London, UK, 2003; pp. 137–158. [Google Scholar]
- Aziz, M.A. Bangladesh country paper. In Proceedings of the Regional Workshop on Implementation Monitoring and Observance: International Code of Conduct on the Distribution and Use of Pesticides, FAO-RAP Publication-29, Bangkok, Thailand, 26–28 July 2005. [Google Scholar]
- Islam, M.S.; Alam, M.S.; Uddin, M.N.; Zabir, A.A.; Islam, M.S.; Haque, K.A.; Islam, M.A.S.; Hossain, S.A.A.M. Farm level pesticides use in Patuakhali and Comilla region of Bangladesh and associated health risk. J. Health Environ. Res. 2016, 2, 20–26. [Google Scholar] [CrossRef]
- Uddin, M.H.; Shahjahan, M.; Amin, A.K.M.R.; Haque, M.M.; Islam, M.A.; Azim, M.E. Impacts of organophosphate pesticide, sumithion on water quality and benthic invertebrates in aquaculture ponds. Aquac. Rep. 2016, 3, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, S.; Meisner, C.; Huq, M. Health Effect and Pesticide Perception as a Determinants of Pesticide Use: Evidencefrom Bangladesh. World Bank Policy Research Working Paper 3776. 2005. Available online: https://openknowledge.worldbank.org/handle/10986/8572 (accessed on 12 October 2018).
- Chitra, G.A.; Muraleedharan, V.R.; Swaminathan, T.; Veeraraghavan, D. Use of pesticides and its impact on health of farmers in south India. Int. J. Occup. Environ. Health 2006, 12, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Dey, N.C. Use of pesticides in vegetable farms and its impact on health of farmers and environment. Environ. Sci. Technol. 2010, 2, 134–140. [Google Scholar]
- Bhattacharjee, S.; Chowdhury, M.A.Z.; Fakhruddin, A.N.M.; Alam, M.K. Impact of pesticide exposure on paddy farmers’ health. Jahangirnagar Univ. Environ. Bull. 2013, 2, 18–25. [Google Scholar] [CrossRef]
- Antle, J.M.; Pingali, P.L. Pesticide, Productivity and farmer health: A Philippinecase study. Am. J Agric. Econ. 1994, 76, 418–430. [Google Scholar] [CrossRef]
- Ulimwengu, J. Farmer’s health and agricultural productivity in rural Ethiopia. Afr. J. Agric. Res. Econ. 2009, 3, 83–100. [Google Scholar]
- Rahman, Z. Lack of Regulations Affect Vegetable Export. 2016. Available online: http://www.thefinancialexpress-bd.com/2016/03/26/23070/asia/print (accessed on 7 August 2017).
- GoB. National Integrated Pest Management Policy; Ministry of Agriculture, Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, 2002.
- Greene, C.R.; Kramer, R.A.; Norton, G.W.; Rajotte, E.G.; McPherson, R.M. An economic analysis of soybean integrated pest management. Am. J. Agric. Econ. 1985, 67, 567–572. [Google Scholar] [CrossRef]
- Blake, G.; Sandler, H.; Coli, W.; Pober, D.; Coggins, C. An assessment of grower perceptions and factors influencing adoption of IPM in commercial cranberry production. Renew. Agric. Food Syst. 2007, 22, 134–144. [Google Scholar] [CrossRef]
- Harris, M.L.; Norton, W.G.; Karim, A.N.M.R.; Alwang, J.; Taylor, B.D. Bridging the information gap with cost-effective dissemination strategies: The case of integrated pest management in Bangladesh. J. Agric. Appl. Econ. 2013, 45, 639–654. [Google Scholar] [CrossRef]
- Kabir, M.K.; Rainis, R. Integrated pest management farming in Bangladesh: Present scenario and future prospect. J. Agril. Tech. 2015, 9, 515–547. [Google Scholar]
- Alam, S.N. Extent and Potential Use of Bio-Pesticides for Crop Protection in Bangladesh: Country Status Paper; Division of Entomology, Bangladesh Agricultural Research Institute: Gazipur, Bangladesh, 2013. [Google Scholar]
- Mian, M.Y.; Hossain, M.S.; Karim, A.N.M.R. Integrated pest management of vegetables crops in Bangladesh. In Integrated Pest Management of Tropical Vegetable Crops; Muniappan, R., Heinrichs, E.A., Eds.; Springer Science and Business Media: Dordrecht, The Netherland, 2016; pp. 235–249. [Google Scholar]
- McCarthy, E.T. Analyzing the Impacts of an IPM Vegetable Technology Transfer in Bangladesh. Master’s Thesis, Department of Agricultural and Applied Economics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2015. [Google Scholar]
- Gautam, S.; Schreinemachers, P.; Uddin, M.N.; Srinivasan, R. Impact of training vegetable farmers in Bangladesh in integrated pest management (IPM). Crop Prot. 2017, 102, 161–169. [Google Scholar] [CrossRef]
- Akter, M.; Islam, M.N.; Afrin, H.; Shammi, S.A.; Begum, F.; Haque, S. Comparative profitability analysis of IPM and Non-IPM technology on vegetable cultivation in selected areas of Kishoreganj district in Bangladesh. Prog. Agric. 2016, 27, 311–319. [Google Scholar] [CrossRef]
- Islam, M.N.; Kamruzzaman, M.; Mustafi, B.A.A. Financial analysis of major crops with and without IPM technologies. Paper Presented at the 15th National Conference and Seminar of the Bangladesh Agricultural Economists Association held at the Bangladesh Agricultural Research Council (BARC), Dhaka, Bangladesh, 23 January 2016. [Google Scholar]
- Karim, M.R.; Rashid, M.A.; Rahman, M.S. Comparative Study of IPM and Non-IPM Technology in Selected Vegetables Growing Areas in Bangladesh; Research Report, NATP-SPGR Project; BARC: Dhaka, Bangladesh, 2013. [Google Scholar]
- Raju, G.; Huang, W.-C.; RudraBahadur, S. Factors affecting adoption of improved rice varieties among rural farm households in Central Nepal. Rice Sci. 2015, 22, 35–43. [Google Scholar]
- Chuchird, R.; Sasaki, N.; Abe, I. Influencing factors of the adoption of agricultural irrigation technologies and the economic returns: A case study in Chaiyaphum Province, Thailand. Sustainability 2017, 9, 1524. [Google Scholar] [CrossRef]
- Xu, X.; Jeffery, S. Efficiency and technical progress in traditional and modern agriculture: Evidence from rice production in China. Agric. Econ. 1998, 18, 156–161. [Google Scholar] [CrossRef]
- Wadud, M.A.; White, B. The determinants of technical inefficiency of farms in Bangladesh. Ind. Econ. Rev. 2002, 37, 183–197. [Google Scholar]
- Bogale, T.; Bogale, A. Technical efficiency of resource use in the production of irrigated potato: A study of farmers using modern and traditional irrigation schemes in Awi Zone, Ethiopia. J. Agric. Rural Dev. Trop. 2005, 106, 59–70. [Google Scholar]
- Alam, M.F.; Khan, M.A.; Huq, A.A.S.M. Technical efficiency in tilapia farming of bangladesh: A stochastic frontier production approach. Aquac. Int. 2012, 20, 619–634. [Google Scholar] [CrossRef]
- Islam, M.N. Impact of IPM Technology on Productivity and Technical Efficiency of Selected Crops in Bangladesh. Master’s Thesis, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh, 2014. [Google Scholar]
- Bravo-Ureta, B.E.; Greene, W.; Solis, D. Technical efficiency analysis correcting for biases from observed and unobserved variables: An application to a natural resource management project. Empir. Econ. 2012, 43, 55–72. [Google Scholar] [CrossRef]
- Gonzalez-Flores, M.; Bravo-Ureta, B.E.; Solis, D.; Winters, P. The Impact of high value markets on smallholder productivity in the Ecuadorean Sierra: A stochastic production frontier approach correcting for selectivity bias. Food Policy 2014, 44, 237–247. [Google Scholar] [CrossRef]
- Villano, R.; Bravo-Ureta, B.; Solis, D.; Fleming, E. Modern rice technologies and productivity in the Philippines: Disentangling technology from managerial gaps. J. Agric. Econ. 2015, 66, 129–154. [Google Scholar] [CrossRef]
- Ahmed, M.H.; Melesse, K.A. Impact of off-farm activities on technical efficiency: Evidence from maize producers of eastern Ethiopia. Agric. Food Econ. 2018, 6, 3. [Google Scholar] [CrossRef]
- Coelli, T.J.; Rao, D.S.P.; Battese, G.E. An Introduction to Efficiency and Productivity Analysis, 2nd ed.; Kluwer: Boston, MA, USA, 1998. [Google Scholar]
- Aigner, D.; Lovell, C.A.K.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econ. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Khandker, S.R.; Gayatri, B.K.; Hussain, A.S. Handbook on Impact Evaluation: Quantitative Methods and Practices; The World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Greene, W. A stochastic frontier model with correction for sample selection. J. Prod. Anal. 2010, 34, 15–24. [Google Scholar] [CrossRef]
- Heckman, J. The common structure of statistical methods of truncation, sample selection and limited dependent variables and a simple estimator for such models. Ann Econ Soc Meas. 1976, 5, 475–492. [Google Scholar]
- Rahman, S. Resource use efficiency under self-selectivity: The case of Bangladeshi rice producers. Aust. J. Agric. Res. Econ. 2011, 55, 273–290. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; The MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Imbens, G.; Woolridge, J. Recent developments in the econometrics of program evaluation. J. Econ. Lit. 2009, 47, 5–86. [Google Scholar] [CrossRef]
- Rahman, M.S.; Norton, G.W.; Rashid, M.H. Economic impacts of integrated pest management on vegetables production in Bangladesh. Crop Prot. 2018, 113, 6–14. [Google Scholar] [CrossRef]
- Talukder, A.; Sakib, M.S.; Islam, M.A. Determination of influencing factors for integrated pest management adoption: A logistic regression analysis. Agrotechnology 2017, 6, 163. [Google Scholar]
- Gilbert, R.J.; Norton, G.W.; Alwang, J.; Miah, M.; Feder, G. Cost-Effectiveness of alternative integrated pest management extension methods: An example from Bangladesh. Appl Econ Perspect. 2008, 30, 252–269. [Google Scholar] [CrossRef]
- Rahman, S.; Wiboonponse, A.; Sriboonchitta, S.; Chaovanapoonphol, Y. Production efficiency of jasmine rice producers in northern and north-eastern Thailand. J. Agric. Econ. 2009, 60, 419–435. [Google Scholar] [CrossRef]
- Haque, M.; Miah, M.A.M.; Ali, M.A.; Luna, A.N. Adoption of mungbean technologies and technical efficiency of mungbean farmers in selected areas of Bangladesh. Bangladesh J. Agric. Res. 2014, 39, 113–125. [Google Scholar] [CrossRef]
- Rahman, M.S.; George, W.N. Farm-level impacts of eggplant integrated pest management: A stochastic frontier production function approach. Int. J. Veg. Sci. 2019. [Google Scholar] [CrossRef]
Variables z | Adopters | Non-Adopters | Mean Difference y | ||
---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | ||
Human labour (man-day/ha) | 388 | 191 | 373 | 177 | 15 |
Seed (kg/ha) | 1790 | 1283 | 2513 | 1488 | −723 *** |
Chemical fertilizers (kg/ha) | 865 | 432 | 1038 | 544 | −173 ** |
Organic fertilizers (kg/ha) | 8603 | 9093 | 9622 | 10,004 | −1019 |
Material cost (Tk/ha) | 81,871 | 38,684 | 79,337 | 26,294 | 2534 |
Yield (kg/ha) | 22,714 | 12,542 | 20,569 | 11,388 | 2144 |
Distance to market (km) | 1.28 | 1.07 | 1.73 | 1.57 | −0.45 ** |
No. of active member | 3.27 | 1.55 | 3.17 | 1.30 | 0.09 |
Schooling years | 7.63 | 4.33 | 6.23 | 4.32 | 1.39 ** |
Farming experience (years) | 17.62 | 10.15 | 21.06 | 11.41 | −3.44 ** |
Farm size (ha) | 1.11 | 1.06 | 0.96 | 0.79 | 0.14 |
IPM training (yes/no) | 0.41 | 0.49 | 0.07 | 0.25 | 0.33 *** |
Extension contact (yes/no) | 0.81 | 0.39 | 0.79 | 0.41 | 0.02 |
Credit access (yes/no) | 0.55 | 0.50 | 0.59 | 0.49 | 0.04 |
Contact with neighbours (yes/no) | 0.70 | 0.41 | 0.79 | 0.40 | 0.09 |
FAI (No.) | 2.84 | 3.51 | 0.39 | 1.12 | 2.44 *** |
Sample size | 81 | 87 |
Variables | Binary Probit | Multinomial Probit | ||||
---|---|---|---|---|---|---|
1 Practice | 2 Practices | |||||
Co-Effi. z | SE y | Co-Effi. | SE | Co-Effi. | SE | |
Constant | −0.184 | 0.549 | −0.136 | 0.770 | −3.366 | 1.466 |
Distance to market (km) | −0.191 *x | 0.099 | −0.268 * | 0.143 | −0.276 | 0.230 |
No. of active member | 0.038 | 0.082 | 0.070 | 0.116 | −0.062 | 0.181 |
Farming experience (years) | −0.009 | 0.011 | −0.015 | 0.015 | −0.029 | 0.028 |
Schooling years | 0.018 | 0.027 | 0.017 | 0.039 | 0.091 | 0.060 |
Farm size (ha) | 0.015 | 0.135 | −0.059 | 0.198 | 0.308 | 0.248 |
Credit access (yes/no) | 0.004 | 0.237 | −0.084 | 0.333 | 0.544 | 0.519 |
Extension contact (yes/no) | −0.046 | 0.294 | −0.102 | 0.412 | 0.975 | 0.970 |
Contact with neighbours (yes/no) | −0.253 | 0.271 | −0.344 | 0.381 | −0.409 | 0.577 |
IPM training (yes/no) | 1.037 *** | 0.325 | 1.146 ** | 0.457 | 2.084 *** | 0.564 |
FAI (No.) | 0.282 *** | 0.071 | 0.381 *** | 0.097 | 0.376 *** | 0.116 |
Log-likelihood | −83.68 | −114.33 | ||||
χ2 | 65.31 *** | 50.44 *** | ||||
Pseudo R2 | 0.28 | -- | ||||
No. of obs. | 168 | 168 |
Hypothesis | LR Test Statistics/z Value | Degree of Freedom | χ2/p-Value | Outcome |
---|---|---|---|---|
a. Functional form test | ||||
H0: Cobb-Douglas H1: Translog | 24.68 | 15 | 37 | Cobb-Douglas |
b. Frontier test | ||||
H0: No inefficiency component | −2.22 | -- | 0.013 | Frontier |
Variables | Conventional SFPF | Sample Selection SFPF | |||
---|---|---|---|---|---|
Pooled | Adopters | Non-Adopters | Adopters | Non-Adopters | |
Constant | 7.438 ***z (1.516) | 9.708 *** (2.135) | 6.303 ** (2.608) | 9.338 *** (3.253) | 6.438 *** (0.236) |
Seed | 0.093 (0.073) | 0.153 * (0.090) | 0.012 (0.122) | 0.217 (0.160) | −0.178 *** (0.008) |
Human labour | 0.038 (0.093) | −0.019 (0.135) | −0.010 (0.126) | −0.036 (0.166) | −0.045 *** (0.012) |
Chemical fertilizer | 0.354 *** (0.080) | 0.335 *** (0.104) | 0.417 *** (0.145) | 0.334 *** (0.127) | 0.315 *** (0.010) |
Organic fertilizers | 0.024 * (0.014) | −0.007 (0.024) | 0.033 ** (0.016) | −0.008 (0.034) | 0.025 *** (0.002) |
Material cost | −0.056 (0.133) | −0.244 (0.188) | 0.103 (0.163) | −0.225 (0.278) | 0.331 *** (0.020) |
Adoption status | 0.245 *** (0.089) | -- | -- | -- | -- |
Model Diagnostics | |||||
Log likelihood | −161.29 | −70.23 | −84.16 | −125.30 | −119.51 |
σ(u) | -- | -- | -- | 0.704 *** (0.259) | 1.134 *** (0.008) |
σ(v) | -- | -- | -- | 0.464 *** (0.123) | 0.026 *** (0.010) |
ρ(w,v) | -- | -- | -- | 0.776** (0.350) | −0.438 (1.005) |
Sample size | 168 | 81 | 87 | 81 | 77 |
Outcome Variable | Number of IPM Practices Adopted | ATT z | SE y | |
---|---|---|---|---|
Yield | 1 | 0 | 3514 | 2816 |
2 | 0 | 8109 *x | 4331 | |
2 | 1 | 4988 | 4122 | |
Number of pesticide applications | 1 | 0 | −2.80 * | 1.66 |
2 | 0 | −7.37 *** | 1.55 | |
2 | 1 | −2.81 ** | 1.22 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.S.; Norton, G.W. Adoption and Impacts of Integrated Pest Management in Bangladesh: Evidence from Smallholder Bitter Gourd Growers. Horticulturae 2019, 5, 32. https://doi.org/10.3390/horticulturae5020032
Rahman MS, Norton GW. Adoption and Impacts of Integrated Pest Management in Bangladesh: Evidence from Smallholder Bitter Gourd Growers. Horticulturae. 2019; 5(2):32. https://doi.org/10.3390/horticulturae5020032
Chicago/Turabian StyleRahman, Md. Sadique, and George W. Norton. 2019. "Adoption and Impacts of Integrated Pest Management in Bangladesh: Evidence from Smallholder Bitter Gourd Growers" Horticulturae 5, no. 2: 32. https://doi.org/10.3390/horticulturae5020032
APA StyleRahman, M. S., & Norton, G. W. (2019). Adoption and Impacts of Integrated Pest Management in Bangladesh: Evidence from Smallholder Bitter Gourd Growers. Horticulturae, 5(2), 32. https://doi.org/10.3390/horticulturae5020032