Impact of Water Deficit during Fruit Development on Quality and Yield of Young Table Grape Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Yield and Quality Measurements
2.3. Statistical Analysis
3. Results
3.1. Yield and Quality of Table Grapes
3.1.1. Plant-Level
3.1.2. Bunch-Level
3.1.3. Berry-Level
3.2. Water Use and Water Contents of Soil, Plant and Leaves
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)—Managing Systems at Risk; Food and Agriculture Organization of the United Nations: Rome, Italy; Earthscan: London, UK, 2011. [Google Scholar]
- IPCC. Climate Change 2001: Impacts, Adaptation, and Vulnerability; Cambridge University Press: New York, NY, USA, 2001. [Google Scholar]
- Serra, I.; Strever, A.; Myburgh, P.; Deloire, A. Review: The interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Aust. J. Grape Wine Res. 2014, 20, 1–14. [Google Scholar] [CrossRef]
- Costa, J.M.; Ortuño, M.F.; Chaves, M.M. Deficit irrigation as a strategy to save water: Physiology and potential application to horticulture. J. Integr. Plant Biol. 2007, 49, 1421–1434. [Google Scholar] [CrossRef]
- Permanhani, M.; Costa, J.M.; Conceição, M.A.F.; de Souza, R.T.; Vasconcellos, M.A.S.; Chaves, M.M. Deficit irrigation in table grape: Eco-physiological basis and potential use to save water and improve quality. Theor. Exp. Plant Physiol. 2016, 28, 85–108. [Google Scholar] [CrossRef]
- Teixeira, A.H.D.C.; Bastiaanssen, W.G.M.; Ahmad, M.D.; Bos, M.G. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle São Francisco River basin, Brazil. Part B: Application to the regional scale. Agric. Forest Meteorol. 2009, 149, 477–490. [Google Scholar] [CrossRef]
- Molden, D.; Oweis, T.; Steduto, P.; Bindraban, P.; Hanjra, M.A.; Kijne, J. Improving agricultural water productivity: Between optimism and caution. Agric. Water Manag. 2010, 97, 528–535. [Google Scholar] [CrossRef]
- Pereira, L.S.; Cordery, I.; Iacovides, I. Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agric. Water Manag. 2012, 108, 39–51. [Google Scholar] [CrossRef]
- Zúñiga-Espinoza, C.; Aspillaga, C.; Ferreyra, R.; Selles, G. Response of Table Grape to Irrigation Water in the Aconcagua Valley, Chile. Agronomy 2015, 5, 405–417. [Google Scholar] [CrossRef] [Green Version]
- Blanco, O.; Faci, J.M.; Negueroles, J. Response of table grape cultivar ‘Autumn Royal’ to regulated deficit irrigation applied in post-veraison period. Spanish J. Agric. Res. 2010, 8, 76–85. [Google Scholar] [CrossRef]
- Ezzahouani, A.; Williams, L.E. Effect of irrigation amount and preharvest cutoff date on vine water status and productivity of Danlas grapevines. Am. J. Enol. Viticul. 2007, 58, 333–340. [Google Scholar]
- Conesa, M.R.; de la Rosa, J.M.; Artés-Hernández, F.; Dodd, I.C.; Domingo, R.; Pérez-Pastor, A. Long-term impact of deficit irrigation on the physical quality of berries in “Crimson Seedless” table grapes. J. Sci. Food Agric. 2015, 95, 2510–2520. [Google Scholar] [CrossRef] [PubMed]
- Matthews, M.A.; Cheng, G.; Weinbaum, S.A. Changes in water potential and dermal extensibility during grape berry development. J. Am. Soc. Hortic. Sci. 1987, 112, 314–319. [Google Scholar]
- Reynolds, A.G.; Naylor, A.P. ‘Pinot noir’ and ‘Riesling’ Grapevines Respond to Water Stress Duration and Soil Water-holding Capacity. HortScience 1994, 29, 1505–1510. [Google Scholar]
- Perniola, R.; Crupi, P.; Genghi, R.; Antonacci, D. Cultivar and rootstock interaction affects the physiology and fruit quality of table grape with different water management—Preliminary results. Acta Hortic. 2016, 1136, 129–136. [Google Scholar] [CrossRef]
- Conesa, M.R.; Falagán, N.; de la Rosa, J.M.; Aguayo, E.; Domingo, R.; Pérez Pastor, A. Post-veraison deficit irrigation regimes enhance berry coloration and health-promoting bioactive compounds in “Crimson Seedless” table grapes. Agric. Water Manag. 2016, 163, 9–18. [Google Scholar] [CrossRef]
- Jayasena, V.; Cameron, I. Brix/Acid ratio as a predictor of consumer acceptability of Crimson Seedless table grapes. J. Food Qual. 2008, 31, 736–750. [Google Scholar] [CrossRef]
- El-Ansary, D.O.; Nakayama, S.; Hirano, K.; Okamoto, G. Response of Muscat of Alexandria table grapes to post-veraison regulated deficit irrigation in Japan. Vitis J. Grapevine Res. 2005, 44, 5–9. [Google Scholar]
- Santesteban, L.G.; Miranda, C.; Royo, J.B. Effect of water deficit and rewatering on leaf gas exchange and transpiration decline of excised leaves of four grapevine (Vitis vinifera L.) cultivars. Sci. Hortic. 2009, 121, 434–439. [Google Scholar] [CrossRef]
- Kamiloglu, O.; Sivritepe, N.; Önder, S.; Daghan, H. Effects of water stress on plant growth and physiological characteristics of some grape varieties. Fresenius Environ. Bull. 2014, 23, 2155–2163. [Google Scholar]
- Chaves, M.M.; Santos, T.P.; Souza, C.R.; Ortuño, M.F.; Rodrigues, M.L.; Lopes, C.M.; Maroco, J.P.; Pereira, J.S. Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann. Appl. Biol. 2007, 150, 237–252. [Google Scholar] [CrossRef] [Green Version]
- Faci, J.M.; Blanco, O.; Medina, E.T.; Martínez-Cob, A. Effect of post veraison regulated deficit irrigation in production and berry quality of Autumn Royal and Crimson table grape cultivars. Agric. Water Manag. 2014, 134, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrate and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Sahamishirazi, S.; Moehring, J.; Claupein, W.; Graeff-Hoenninger, S. Quality assessment of 178 cultivars of plum regarding phenolic, anthocyanin and sugar content. Food Chem. 2017, 214, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Wolfinger, R. Covariance structure selection in general mixed models. Commun. Stat. Simul. Comput. 1993, 22, 1079–1106. [Google Scholar] [CrossRef]
- Piepho, H.P. A SAS macro for generating letter displays of pairwise mean comparisons. Commun. Biom. Crop Sci. 2012, 7, 4–13. [Google Scholar]
- Tarricone, L.; Di Gennaro, D.; Amendolagine, A.M.; Notarangelo, L.; Vox, G.; Schettini, E.; De Palma, L. Effects of water regimes on vine performance and quality of “Sublima” seedless table grape covered with plastic film to advance grape ripening. Acta Hortic. 2014, 1038, 593–6000. [Google Scholar] [CrossRef]
- El-Ansary, D.O.; Okamoto, G. Vine water relations and quality of “Muscat of Alexandria” table grapes subjected to partial root-zone drying and regulated deficit irrigation. J. Jpn. Soc. Hortic. Sci. 2007, 76, 13–19. [Google Scholar] [CrossRef]
- Mahajan, B.V.C.; Arora, N.K.; Gil, M.I.S.; Ghuman, B.S. Studies on extending storage life of ‘Flame Seedless’ grapes. J. Hortic. Sci. Ornamental Plants 2010, 2, 88–92. [Google Scholar]
- Zuñiga, C.; Aspillaga, C.; Ferreyra, R.; Selles, G. Response of “Flame Seedless” vines to different levels of irrigation water in the Aconcagua Valley, Chile. Acta Hortic. 2017, 1150, 295–302. [Google Scholar] [CrossRef]
- Bernstein, Z.; Lustig, I. A new method of firmness measurement of grape berries and other juicy fruits. Vitis 1981, 20, 15–21. [Google Scholar]
- Matthews, M.A.; Thomas, T.R.; Shackel, K.A. Fruit ripening in Vitis vinifera L.: Possible relation of veraison to turgor and berry softening. Aust. J. Grape Wine Res. 2009, 15, 278–283. [Google Scholar] [CrossRef]
- Williams, L.E.; Matthews, M.A. Grapevine. In Irrigation of Agricultural Crops; Stewart, B.A., Nielsen, D.R., Eds.; ASA-CSSA-SSSA: Madison, WI, USA, 1990; pp. 1019–1055. [Google Scholar]
- Dos Santos, T.P.; Lopes, C.M.; Rodrigues, M.L.; de Souza, C.R.; Ricardo-da-Silva, J.M.; Maroco, J.P.; Pereira, J.S.; Chaves, M.M. Effects of deficit irrigation strategies on cluster microclimate for improving fruit composition of Moscatel field-grown grapevines. Sci. Hortic. 2007, 112, 321–330. [Google Scholar] [CrossRef]
- Somkuwar, R.G. Fruitfulness in Grapes; National Research Centre for Grapes: Pune, India, 2005. [Google Scholar]
- Lisek, J. Evaluation of yield and healthiness of twenty table grapevine cultivars grown in central poland. J. Hortic. Res. 2014, 22, 101–107. [Google Scholar] [CrossRef]
- Zulini, L.; Vecchione, A.; Antonelli, L.; Stefanini, M. Characteristics of wine and table grapevine hybrids tested for cultivation in Trentino (northern Italy). IOBS/wprs Bull. 2008, 36, 215–219. [Google Scholar]
- Kadir, S.; Ennahli, S.; Griffin, J.; Ryer, R.; Shelton, M. Growth, Yield, Fruit Composition of 24 Wine and Table Grape Cultivars and Selections. Int. J. Fruit Sci. 2007, 7, 17–30. [Google Scholar] [CrossRef]
- OIV. OIV Standard on Minimum Maturity Requirements for Table Grapes; OIV: Paris, France, 2008. [Google Scholar]
- Kanner, J.; Frankel, E.; Granit, R.; German, B.; Kinsella, J.E. Natural antioxidants in grapes and wines. J. Agric. Food Chem. 1994, 42, 64–69. [Google Scholar] [CrossRef]
- Katalinić, V.; Možina, S.S.; Skroza, D.; Generalić, I.; Abramovič, H.; Miloš, M.; Ljubenkov, I.; Piskernik, S.; Pezo, I.; Terpinc, P.; et al. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chem. 2010, 119, 715–723. [Google Scholar] [CrossRef]
- Baiano, A.; Terracone, C. Varietal differences among the phenolic profiles and antioxidant activities of seven table grape cultivars grown in the south of Italy based on chemometrics. J. Agric. Food Chem. 2011, 59, 9815–9826. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Martinson, T.E.; Liu, R.H. Phytochemical profiles and antioxidant activities of wine grapes. Food Chem. 2009, 116, 332–339. [Google Scholar] [CrossRef]
Parameter | Cultivar | Muscat Bleu | Fanny | Nero | Palatina | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | ||||||||||||||
Grapes per plant | Control | 1.13 | 2.13 | 1.38 | 0.63 | |||||||||
Moderate | 1.13 | B z | 2.00 | A | 1.25 | B | 0.88 | B | ||||||
Severe | 1.63 | 2.00 | 1.25 | 1.13 | ||||||||||
Yield per plant (g) | Control | 44.17 | 189.76 | 96.44 | 36.20 | |||||||||
Moderate | 46.17 | B | 216.10 | A | 57.49 | B | 73.72 | B | ||||||
Severe | 42.31 | 179.65 | 54.54 | 52.23 | ||||||||||
TSS (°Brix) | Control | 21.26 | 16.80 | 26.39 | 24.77 | |||||||||
Moderate | 24.13 | C | 16.15 | D | 26.49 | A | 25.16 | B | ||||||
Severe | 22.32 | 16.29 | 26.10 | 24.41 | ||||||||||
TA (g·L−1) | Control | 7.04 | a | 5.43 | a | 7.90 | a | 6.86 | a | |||||
Moderate | 6.27 | a | B | 5.55 | a | C | 6.73 | a | A | 5.81 | a | BC | ||
Severe | 5.55 | b | 4.91 | b | 7.30 | b | n.a. | |||||||
Total phenolic content (mg GAE 100 g−1 FW) | Control | 42.22 | 7.64 | 73.90 | 19.91 | |||||||||
Moderate | 53.80 | B | 7.90 | D | 64.87 | A | 11.23 | C | ||||||
Severe | 43.86 | 6.68 | 64.25 | 10.33 | ||||||||||
ANOVA | Grapes per plant | Yield per plant | TSS | TTA | Total phenolic content | |||||||||
Cultivar (C) | <0.0098 | ** | <0.0001 | *** | <0.0001 | *** | <0.0001 | *** | <0.0001 | *** | ||||
Treatment (T) | 0.6363 | n.s. | 0.4115 | n.s. | 0.413 | n.s. | 0.0215 | * | 0.0837 | n.s. | ||||
C*T | 0.9445 | n.s. | 0.4016 | n.s. | 0.525 | n.s. | 0.3225 | n.s. | 0.2279 | n.s. |
Parameter | Cultivar | Muscat Bleu | Fanny | Nero | Palatina | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | |||||||||||||||
Yield (g per bunch) | Control | 33.51 | Abz | C | 96.15 | ab | A | 63.00 | ab | B | 34.13 | ab | C | ||
Moderate | 38.19 | a | 117.76 | a | 55.43 | a | 51.91 | a | |||||||
Severe | 34.05 | b | 95.77 | b | 43.88 | b | 33.81 | b | |||||||
Marketable yield (g per bunch) | Control | 28.82 | 90.80 | 43.83 | 30.70 | ||||||||||
Moderate | 32.10 | C | 110.74 | A | 39.96 | B | 44.64 | BC | |||||||
Severe | 28.73 | 94.03 | 34.13 | 29.39 | |||||||||||
Non-marketable yield (g per bunch) | Control | 0.26 | 1.26 | 11.43 | 0.64 | ||||||||||
Moderate | 0.00 | B | 3.89 | B | 8.90 | A | 1.24 | B | |||||||
Severe | 0.84 | 0.33 | 6.77 | 0.87 | |||||||||||
Number of berries (per bunch) | Control | 21.08 | a | C | 33.54 | a | B | 42.32 | a | A | 40.92 | b | AB | ||
Moderate | 16.78 | a | C | 33.74 | a | B | 31.18 | b | B | 55.33 | a | A | |||
Severe | 16.16 | a | C | 34.58 | a | A | 22.08 | c | B | 35.84 | b | A | |||
Number of marketable berries (per bunch) | Control | 18.58 | a | B | 33.89 | a | A | 32.70 | a | A | 24.82 | b | B | ||
Moderate | 17.17 | a | C | 34.90 | a | A | 22.71 | b | B | 39.05 | a | A | |||
Severe | 15.94 | a | B | 32.97 | a | A | 19.27 | b | B | 26.74 | b | A | |||
Number of non-marketable berries (per bunch) | Control | 0.80 | 0.06 | 2.86 | 3.12 | ||||||||||
Moderate | 0.01 | B | 0.11 | B | 2.76 | A | 12.03 | A | |||||||
Severe | 0.07 | 0.03 | 0.78 | 7.85 | |||||||||||
ANOVA | Yield | Marketable yield | Non-marketable yield | Number of berries | Number of marketable berries | Number of non-marketable berries | |||||||||
Cultivar (C) | <0.0001 | *** | <0.0001 | *** | <0.0001 | *** | <0.0001 | *** | <0.0001 | *** | <0.0001 | *** | |||
Treatment (T) | 0.0204 | * | 0.0628 | n.s. | 0.1421 | n.s. | <0.0001 | *** | 0.0196 | * | 0.4825 | n.s. | |||
C*T | 0.2721 | n.s. | 0.6606 | n.s. | 0.2635 | n.s. | <0.0001 | *** | 0.0019 | ** | 0.2167 | n.s. |
Parameter | Cultivar | Muscat Bleu | Fanny | Nero | Palatina | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | ||||||||||||||
Weight (g per berry) | Control | 2.01 | 3.52 | 1.77 | 1.08 | |||||||||
Moderate | 2.79 | B z | 3.98 | A | 1.94 | C | 1.24 | D | ||||||
Severe | 2.36 | 3.79 | 2.00 | 1.20 | ||||||||||
Skin weight (g FM per berry) | Control | 0.37 | 0.48 | 0.40 | 0.20 | |||||||||
Moderate | 0.33 | BC | 0.57 | A | 0.37 | B | 0.34 | C | ||||||
Severe | 0.39 | 0.49 | 0.46 | 0.42 | ||||||||||
Pulp weight (g FM per berry) | Control | 1.13 | 2.30 | 0.56 | 0.84 | |||||||||
Moderate | 1.24 | B | 2.37 | A | 0.79 | C | 0.84 | C | ||||||
Severe | 1.34 | 2.33 | 0.84 | 0.47 | ||||||||||
Seed weight (g FM per berry) | Control | 0.16 | 0.12 | 0.09 | 0.06 | |||||||||
Moderate | 0.21 | A | 0.15 | B | 0.09 | C | 0.06 | D | ||||||
Severe | 0.16 | 0.16 | 0.14 | 0.06 | ||||||||||
Number of seeds (per berry) | Control | 2.51 | b | 2.30 | b | 1.98 | b | 1.47 | b | |||||
Moderate | 2.52 | ab | A | 2.69 | ab | A | 2.11 | ab | B | 1.44 | ab | C | ||
Severe | 3.07 | a | 2.76 | a | 2.44 | a | 1.66 | a | ||||||
Diameter (mm) | Control | 13.94 | 17.35 | 12.37 | 12.61 | |||||||||
Moderate | 14.40 | B | 17.71 | A | 12.60 | C | 12.57 | C | ||||||
Severe | 14.80 | 17.95 | 13.17 | 12.17 | ||||||||||
Height (mm) | Control | 15.54 | 18.09 | 15.15 | 13.76 | |||||||||
Moderate | 16.64 | B | 18.46 | A | 15.32 | C | 13.75 | D | ||||||
Severe | 16.84 | 18.62 | 15.59 | 13.12 | ||||||||||
Firmness (N) | Control | 11.26 | 14.87 | 10.88 | 14.58 | |||||||||
Moderate | 11.75 | B | 15.11 | A | 10.74 | B | 12.82 | A | ||||||
Severe | 11.33 | 14.23 | 10.74 | 13.59 | ||||||||||
ANOVA | Weight | Skin weight | Pulp weight | Seed weight | ||||||||||
Cultivar (C) | <0.0001 | *** | 0.0002 | *** | <0.0001 | *** | <0.0001 | *** | ||||||
Treatment (T) | 0.0933 | n.s. | 0.0911 | n.s. | 0.4900 | n.s. | 0.0864 | n.s. | ||||||
C*T | 0.9237 | n.s. | 0.2491 | n.s. | 0.1736 | n.s. | 0.1061 | n.s. | ||||||
Number of Seeds | Diameter | Height | Firmness | |||||||||||
Cultivar (C) | <0.0001 | *** | <0.0001 | *** | <0.0001 | *** | <0.0001 | *** | ||||||
Treatment (T) | 0.0239 | * | 0.3277 | n.s. | 0.4132 | n.s. | 0.6837 | n.s. | ||||||
C*T | 0.9263 | n.s. | 0.8211 | n.s. | 0.7352 | n.s. | 0.8105 | n.s. |
Parameter | Cultivar | Muscat Bleu | Fanny | Nero | Palatina |
---|---|---|---|---|---|
Treatment | |||||
Irrigation amounts (mm) fruit set to harvest | Control | 761.2 | 859.7 | 891.0 | 832.0 |
Moderate | 760.9 | 787.1 | 809.1 | 784.2 | |
Severe | 596.9 | 597.0 | 637.4 | 598.0 | |
Differences of irrigation amounts (mm) | Control—Moderate | 0.2 | 72.6 | 81.9 | 47.8 |
Moderate—Severe | 164.1 | 190.1 | 171.7 | 186.2 | |
Control—Severe | 164.3 | 262.7 | 253.6 | 234.0 | |
Saved water (%) | Control—Moderate | 0.0 | 8.4 | 9.2 | 5.7 |
Moderate—Severe | 21.6 | 24.2 | 21.2 | 23.7 | |
Control—Severe | 21.6 | 30.6 | 28.5 | 28.1 |
Volumetric Water Contentz (in %) | Cultivar | Muscat Bleu | Fanny | Nero | Palatina | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | ||||||||||||||
June | Control | 31.41 | Cy | 32.15 | B | 33.27 | AB | 35.49 | A | |||||
Moderate | 30.06 | 31.95 | 33.21 | 34.00 | ||||||||||
Severe | 29.83 | 33.82 | 33.89 | 34.71 | ||||||||||
July | Control | 20.11 | a | B | 19.69 | a | B | 18.28 | a | B | 23.18 | a | A | |
Moderate | 14.10 | b | 15.05 | b | 15.69 | b | 18.89 | b | ||||||
Severe | 13.72 | c | 13.00 | c | 13.59 | c | 15.93 | c | ||||||
August | Control | 20.80 | a | B | 19.28 | a | BC | 18.59 | a | C | 24.27 | a | A | |
Moderate | 14.99 | b | 13.79 | b | 13.82 | b | 18.88 | b | ||||||
Severe | 13.32 | c | 12.87 | c | 11.95 | c | 14.28 | c | ||||||
September | Control | 21.77 | a | B | 16.00 | a | C | 20.95 | a | AB | 22.11 | a | A | |
Moderate | 15.80 | b | 11.56 | b | 17.20 | b | 18.51 | b | ||||||
Severe | 12.40 | c | 9.82 | c | 14.21 | c | 13.46 | c | ||||||
ANOVA | June | July | August | September | ||||||||||
Cultivar (C) | <0.0001 | *** | <0.0001 | *** | <0.0001 | *** | <0.0001 | *** | ||||||
Treatment (T) | 0.4600 | n.s. | <0.0001 | *** | <0.0001 | *** | <0.0001 | *** | ||||||
C*T | 0.7557 | n.s. | 0.3728 | n.s. | 0.3740 | n.s. | 0.3591 | n.s. |
Parameter | Cultivar | Muscat Bleu | Fanny | Nero | Palatina | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | |||||||||||||||
Plant water content | Control | 62.13 | BCz | 63.21 | AB | 60.84 | C | 63.04 | A | ||||||
Moderate | 60.20 | 63.12 | 60.14 | 64.94 | |||||||||||
Severe | 61.76 | 62.49 | 60.94 | 62.59 | |||||||||||
Leaf water content | Control | 69.59 | a | A | 69.41 | a | A | 67.50 | a | B | 69.92 | a | A | ||
Moderate | 66.20 | b | 69.36 | b | 66.24 | b | 69.12 | b | |||||||
Severe | 68.70 | b | 68.81 | b | 64.25 | b | 68.98 | b | |||||||
ANOVA | Plant water content | Leaf water content | |||||||||||||
Cultivar (C) | 0.0020 | *** | <0.0001 | *** | |||||||||||
Treatment (T) | 0.8797 | n.s. | 0.0295 | * | |||||||||||
C*T | 0.4909 | n.s. | 0.1592 | n.s. |
Cultivar | Muscat Bleu | Fanny | Nero | Palatina | ||||
---|---|---|---|---|---|---|---|---|
Parameter | ||||||||
Yield (kg·plant−1) | 0.65–2.52 1 | [36] | 0.68–2.51 1 | [36] | 1.5–6.5 | [37,38] | 3.2 | [37] |
Bunch weight (g) | 93–181 | [36] | 239–281 | [36,37] | 46–138 | [38] | 152 | [37] |
Total soluble solids (°Brix) | 15.8–18.4 | [36,37] | 14.3–15.4 | [36,37] | 17.3–19.8 | [38] | 19.0 | [37] |
Titratable acidity (g·L−1) | 5.20 | [37] | 4.49 | [37] | 6.2–8.7 | [37,38] | 7.64 | [37] |
TSS:TA ratio | 35.38 2 | [37] | 34.3 2 | [37] | 21.49 2 | [37] | 24.87 2 | [37] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weiler, C.S.; Merkt, N.; Graeff-Hönninger, S. Impact of Water Deficit during Fruit Development on Quality and Yield of Young Table Grape Cultivars. Horticulturae 2018, 4, 45. https://doi.org/10.3390/horticulturae4040045
Weiler CS, Merkt N, Graeff-Hönninger S. Impact of Water Deficit during Fruit Development on Quality and Yield of Young Table Grape Cultivars. Horticulturae. 2018; 4(4):45. https://doi.org/10.3390/horticulturae4040045
Chicago/Turabian StyleWeiler, Carolin Susanne, Nikolaus Merkt, and Simone Graeff-Hönninger. 2018. "Impact of Water Deficit during Fruit Development on Quality and Yield of Young Table Grape Cultivars" Horticulturae 4, no. 4: 45. https://doi.org/10.3390/horticulturae4040045
APA StyleWeiler, C. S., Merkt, N., & Graeff-Hönninger, S. (2018). Impact of Water Deficit during Fruit Development on Quality and Yield of Young Table Grape Cultivars. Horticulturae, 4(4), 45. https://doi.org/10.3390/horticulturae4040045