Host Tree Identity Influences Leaf Nutrient Relations of the Epiphyte Dendrobium guamense Ames.
Abstract
:1. Introduction
2. Materials and Methods
- Areca catechu L. is one of two native palm species. This tree is the source of betel nut, a resource that is important to many cultures. The deviation from horizontal for the host stems of each sampled D. guamense was measured with a 50-cm bubble level and protractor. With this method, an orientation of 0° indicates horizontal and 90° indicates vertical. The stem angle above the horizontal ranged from 81° to 90°, with a mean of 85°.
- Cycas micronesica K.D. Hill is the only native gymnosperm in the Mariana Islands. Several recent specialist insect invasions have devastated the population of this cycad. As a result, the species was listed as endangered under the International Union for Conservation of Nature Red List [7] and as threatened under the ESA [4]. The stem angle above the horizontal ranged from 84° to 90°, with a mean of 86°.
- Elaeocarpus joga Merr. is endemic to the Mariana Islands. It is a striking horticultural specimen because of unique canopy architecture and blue fruits. This tree is not listed as threatened, although it has become less common in recent decades. The stem angle above the horizontal ranged from 2° to 18°, with a mean of 8°.
- Guettarda speciosa L. is a small Rubiaceae tree that has a very wide indigenous range in the Pacific Ocean. It is not very common on Guam but is not considered threatened. The stem angle above the horizontal ranged from 7° to 22°, with a mean of 18°.
- Pandanus dubius Spreng. is one of two native Pandanus species. The stem angle above the horizontal ranged from 70° to 84°, with a mean of 78°.
- Pandanus tectorius Parkinson ex Zucc. is the second native Pandanus species. It is much more prevalent than P. dubius throughout Guam. The stem angle above the horizontal ranged from 72° to 89°, with a mean of 81°.
2.1. Field Methods
2.2. Analytical Protocols
3. Results
3.1. Macronutrients
3.2. Micronutrients
3.3. Derived Leaf Traits
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Zotz, G.; Hietz, P. The physiological ecology of vascular epiphytes: Current knowledge, open questions. J. Exp. Bot. 2001, 52, 2067–2078. [Google Scholar] [CrossRef] [PubMed]
- Zotz, G.; Winkler, U. Aerial roots of epiphytic orchids: The velamen radicum and its role in water and nutrient uptake. Oecologia 2013, 171, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Raulerson, L.; Rinehart, A. Ferns and Orchids of the Mariana Islands; Raulerson and Rinehart: Mangilao, GU, USA, 1992; pp. 1–138. ISBN 9781878453099. [Google Scholar]
- United States Fish and Wildlife Service (USFWS). Endangered and threatened wildlife and plants; endangered status for 16 species and threatened status for 7 species in Micronesia. Fed. Regist. 2015, 80, 59424–59497. [Google Scholar]
- Corti, G.; Agnelli, A.; Cocco, S.; Cardelli, V.; Masse, J.; Courchesne, F. Soil affects throughfall and stemflow under Turkey oak (Quercus cerris L.). Geoderma 2019, 333, 43–56. [Google Scholar] [CrossRef]
- Young, F.J. Soil Survey of Territory of Guam; U.S. Department of Agriculture Soil Conservation Service: Washington, DC, USA, 1988.
- Marler, T.; Haynes, J.; Lindström, A. Cycas micronesica. IUCN Red List Threat. Spec. 2010, e.T61316A12462113. [Google Scholar] [CrossRef]
- Aerts, R. Nutrient resorption from senescing leaves of perennials: Are there general patterns? J. Ecol. 1996, 84, 597–608. [Google Scholar] [CrossRef]
- Killingbeck, K.T. Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency. Ecology 1996, 77, 1716–1727. [Google Scholar] [CrossRef]
- Killingbeck, K.T. Nutrient resorption. In Plant Cell Death Processes; Noodén, L.D., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 215–226. [Google Scholar]
- Dumas, J.B.A. Procedes de l’analyse organique. Ann. Chim. Phys. 1831, 47, 198–205. [Google Scholar]
- Hou, X.; Jones, B.T. Inductively coupled plasma/optical emission spectrometry. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons: Chichester, UK, 2000; pp. 9468–9485. [Google Scholar]
- Zotz, G. What are backshoots good for? Seasonal changes in mineral, carbohydrate and water content of different organs of the epiphytic orchid, Dimerandra emarginata. Ann. Bot. 1999, 84, 791–798. [Google Scholar] [CrossRef]
- Zotz, G. The resorption of phosphorus is greater than that of nitrogen in senescing leaves of vascular epiphytes from lowland Panama. J. Trop. Ecol. 2004, 20, 693–696. [Google Scholar] [CrossRef][Green Version]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: San Diego, CA, USA, 1995. [Google Scholar]
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition, 5th ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Cakmak, I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil Sci. 2005, 168, 521–530. [Google Scholar] [CrossRef]
- Levia, D.F.; Frost, E.E. A review and evaluation of stemflow literature in the hydro- logic and biogeochemical cycles of forested and agricultural ecosystems. J. Hydrol. 2003, 274, 1–29. [Google Scholar] [CrossRef]
- Ikawa, R. Literature review of stemflow generation and chemical characteristics in Japanese forests. J. Jpn. Assoc. Hydrol. Sci. 2007, 37, 187–200. [Google Scholar] [CrossRef][Green Version]
- Levia, D.F.; Germer, S. A review of stemflow generation dynamics and stemflow- environment interactions in forests and shrublands. Rev. Geophys. 2015, 53, 673–714. [Google Scholar] [CrossRef]
- Van Stan, J.T.; Gordon, D.A. Mini-Review: Stemflow as a resource limitation to near-stem soils. Front. Plant Sci. 2018, 9, 248. [Google Scholar] [CrossRef] [PubMed]
- Van Stan, J.T.; Stubbins, A. Tree-DOM: Dissolved organic matter in throughfall and stemflow. Limnology Oceanogr. Lett. 2018, 3, 199–214. [Google Scholar] [CrossRef][Green Version]
- Parker, G.G. Throughfall and stemflow in the forest nutrient cycle. Adv. Ecol. Res. 1983, 13, 58–135. [Google Scholar]
- Chiwa, M.; Crossley, A.; Sheppard, L.J.; Sakugawa, H.; Cape, J.N. Throughfall chemistry and canopy interactions in a Sitka spruce plantation sprayed with six different simulated polluted mist treatments. Environ. Pollut. 2004, 127, 57–64. [Google Scholar] [CrossRef]
- Fahey, T.J.; Yavitt, J.B.; Joyce, G. Precipitation and throughfall chemistry in Pinus contorta ssp. latifolia ecosystems, southeastern Wyoming. Can. J. For. Res. 1988, 18, 337–345. [Google Scholar]
- Germer, S.; Werther, L.; Elsenbeer, H. Have we underestimated stemflow? Lessons from an open tropical rainforest. J. Hydrol. 2010, 395, 169–179. [Google Scholar] [CrossRef]
- Schroth, G.; da Silva, L.F.; Wolf, M.A.; Teixeira, W.G.; Zech, W. Distribution of throughfall and stemflow in multi-strata agroforestry, perennial monoculture, fallow and primary forest in central Amazonia, Brazil. Hydrol. Process. 1999, 13, 1423–1436. [Google Scholar] [CrossRef]
- Schroth, G.; Elias, M.E.A.; Uguen, K.; Seixas, R.; Zech, W. Nutrient fluxes in rainfall, throughfall and stemflow in tree-based land use systems and spontaneous tree vegetation of central Amazonia. Agric. Ecosyst. Environ. 2001, 87, 37–49. [Google Scholar] [CrossRef]
- Enright, N.J. Stemflow as a nutrient source for nikau palm (Rhopalostylis sapida) in a New Zealand forest. Austral Ecol. 1987, 12, 17–24. [Google Scholar] [CrossRef]
- Edwards, P.J.; Fleischer-Dogley, F.; Kaiser-Bunbury, C.N. The nutrient economy of Lodoicea maldivica, a monodominant palm producing the world’s largest seed. New Phytol. 2015, 206, 990–999. [Google Scholar] [CrossRef] [PubMed]
- Raich, J.W. Understory palms as nutrient traps: A hypothesis. Brenesia 1983, 21, 119–129. [Google Scholar]
- Ghate, S.D.; Sridhar, K.R. Rain-borne fungi in stemflow and throughfall of six tropical palm species. Czech Mycol. 2015, 67, 45–58. [Google Scholar]
- Gay, T.E.; Van Stan, T.V.; Moore, L.D.; Lewis, E.S.; Reichard, J.S. Throughfall alterations by degree of Tillandsia usneoides cover in a Southeastern U.S. Quercus virginiana forest. Can. J. For. Res. 2015. [Google Scholar] [CrossRef]
- Howard, D.H.; Van Stan, J.T.; Whitetree, A.; Zhu, L.; Stubbins, A. Interstorm variability in the biolability of tree-derived dissolved organic matter (Tree-DOM) in throughfall and stemflow. Forests 2018, 9, 236. [Google Scholar] [CrossRef]
- Koerselman, W.; Meuleman, A.F.M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
- Aerts, R.; Chapin, F.S. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Adv. Ecol. Res. 2000, 30, 1–67. [Google Scholar]
- Olde Venterink, H.; Wassen, M.J.; Verkroost, A.W.M.; de Ruiter, P.C. Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology 2003, 84, 2191–2199. [Google Scholar] [CrossRef]
- Tessier, J.T.; Raynal, D.J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. J. Appl. Ecol. 2003, 40, 523–534. [Google Scholar] [CrossRef][Green Version]
- Güsewell, S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 43–266. [Google Scholar] [CrossRef]
- McGroddy, M.E.; Daufresne, T.; Hedin, L.O. Scaling of C:N:P stoichiometry in forests worldwide: Implications of terrestrial Redfield-type ratios. Ecology 2004, 85, 2390–2401. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Chen, H.Y.H. Global trends in senesced-leaf nitrogen and phosphorus. Glob. Ecol. Biogeogr. 2009, 18, 532–542. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Chen, H.Y.H. Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Glob. Ecol. Biogeogr. 2009, 18, 11–18. [Google Scholar] [CrossRef]
- Vergutz, L.; Manzoni, S.; Porporato, A.; Novais, R.F.; Jackson, R.B. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 2012, 82, 205–220. [Google Scholar] [CrossRef][Green Version]
- Cornwell, W.K.; Cornelissen, J.H.C.; Amatangelo, K.; Dorrepaal, E.; Eviner, V.T.; Godoy, O.; Hobbie, S.E.; Hoorens, B.; Kurokawa, H.; Pérez-Harquindeguy, N.; et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 2008, 11, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, J.H.C.; Quested, H.M.; Gwynn-Jones, D.; Van Logtestijn, R.S.P.; De Beus, M.A.H.; Kondratchuk, A.; Callaghan, T.V.; Aerts, R. Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Funct. Ecol. 2004, 18, 779–786. [Google Scholar] [CrossRef][Green Version]
- March, W.A.; Watson, D.M. Parasites boost productivity: Effects of mistletoe on litterfall dynamics in a temperate Australian forest. Oecologia 2007, 154, 339–347. [Google Scholar] [CrossRef] [PubMed]
- March, W.A.; Watson, D.M. The contribution of mistletoes to nutrient returns: Evidence for a critical role in nutrient cycling. Austral Ecol. 2010, 35, 713–721. [Google Scholar] [CrossRef]
- Donnegan, J.A.; Butler, S.L.; Grabowiecki, W.; Hiserote, B.A.; Limtiaco, D. Guam’s Forest Resources, 2002; Resource Bulletin PNW-RB-243; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2004. [Google Scholar]
- Marler, T.E. Cycad aulacaspis scale invades the Mariana Islands. Mem. N. Y. Bot. Gard. 2012, 106, 20–35. [Google Scholar]
- Marler, T.E. Temporal variations in leaf miner, butterfly, and stem borer infestations of Cycas micronesica in relation to Aulacaspis yasumatsui incidence. HortScience 2013, 48, 1334–1338. [Google Scholar]
- Marler, T.E.; Lawrence, J.H. Demography of Cycas micronesica on Guam following introduction of the armoured scale Aulacaspis yasumatsui. J. Trop. Ecol. 2012, 28, 233–242. [Google Scholar] [CrossRef]
- McCormick, M.K.; Whigham, D.F.; Canchani-Viruet, A. Mycorrhizal fungi affect orchid distribution and population dynamics. New Phytol. 2018, 219, 1207–1215. [Google Scholar] [CrossRef] [PubMed]
Element (mg g−1) | Areca catechu | Cycas micronesica | Elaeocarpus joga | Guettarda speciosa | Pandanus dubius | Pandanus tectorius | p |
---|---|---|---|---|---|---|---|
Green | Leaves | ||||||
Carbon | 466.17 | 461.24 | 460.24 | 470.26 | 476.14 | 471.64 | 0.994 |
Nitrogen | 7.02b 1 | 7.68b | 4.98a | 4.41a | 7.25b | 7.18b | <0.001 |
Phosphorus | 0.70a | 0.73a | 1.29b | 1.13b | 0.67a | 0.65a | <0.001 |
Potassium | 10.16 | 9.96 | 10.84 | 11.84 | 10.01 | 9.96 | 0.058 |
Calcium | 9.12b | 9.09b | 7.19a | 6.98a | 8.57b | 8.89b | <0.001 |
Magnesium | 3.12a | 3.06a | 4.05b | 3.89b | 3.22a | 3.25a | <0.001 |
Senesced | Leaves | ||||||
Carbon | 472.33 | 469.47 | 466.54 | 482.17 | 479.42 | 471.50 | 0.999 |
Nitrogen | 4.30b | 4.62b | 2.99a | 2.23a | 4.88b | 4.32b | <0.001 |
Phosphorus | 0.48a | 0.47a | 0.81b | 0.78b | 0.46a | 0.44a | <0.001 |
Potassium | 4.46 | 4.45 | 4.30 | 4.94 | 4.25 | 4.24 | 0.170 |
Calcium | 9.99a | 10.43a | 13.71b | 12.12b | 10.56a | 10.59a | <0.001 |
Magnesium | 2.88a | 2.82a | 4.06b | 3.88b | 2.82a | 3.11a | <0.001 |
Element (µg g−1) | Areca catechu | Cycas micronesica | Elaeocarpus joga | Guettarda speciosa | Pandanus dubius | Pandanus tectorius | p |
---|---|---|---|---|---|---|---|
Green | Leaves | ||||||
Iron | 56.17b 1 | 61.68b | 46.02a | 44.18a | 56.54b | 59.92b | <0.001 |
Manganese | 51.12b | 53.64b | 32.16a | 35.51a | 50.38b | 48.76b | <0.001 |
Zinc | 18.34c | 19.22c | 14.18b | 11.64a | 19.35c | 20.49c | <0.001 |
Copper | 3.21a | 3.17a | 4.81b | 4.26b | 2.95a | 3.12a | <0.001 |
Boron | 31.03b | 30.41b | 24.25a | 23.79a | 28.81b | 28.66b | 0.002 |
Senesced | Leaves | ||||||
Iron | 68.16b | 69.72b | 54.52a | 51.37a | 69.83b | 72.36b | <0.001 |
Manganese | 69.03 | 71.48 | 76.22 | 73.51 | 66.97 | 66.08 | 0.258 |
Zinc | 15.05b | 16.08b | 12.44a | 11.43a | 16.17b | 15.12b | <0.001 |
Copper | 2.10a | 2.48a | 4.83b | 4.03b | 2.45a | 2.44a | <0.001 |
Boron | 25.74 | 27.24 | 24.12 | 23.01 | 25.73 | 25.13 | 0.230 |
Trait | Areca catechu | Cycas micronesica | Elaeocarpus joga | Guettarda speciosa | Pandanus dubius | Pandanus tectorius | p |
---|---|---|---|---|---|---|---|
Green | leaves | ||||||
Nitrogen:phosphorus | 10.01b 1 | 10.55b | 3.86a | 3.92a | 10.84b | 11.12b | <0.001 2 |
Nitrogen:potassium | 0.69b | 0.77b | 0.46a | 0.37a | 0.72b | 0.72b | <0.001 |
Potassium:phosphorus | 14.49cd | 13.67c | 8.41a | 10.51b | 14.98d | 15.43d | <0.001 |
Senesced | leaves | ||||||
Nitrogen:phosphorus | 8.7b | 9.81b | 3.71a | 2.86a | 10.82b | 9.93b | <0.001 |
Nitrogen:potassium | 0.96c | 1.04c | 0.69b | 0.45a | 1.17d | 1.02c | <0.001 |
Potassium:phosphorus | 9.30b | 9.46b | 5.35a | 6.35a | 9.20b | 9.74b | <0.001 |
Carbon:nitrogen | 109.87a | 101.87a | 156.87b | 214.85c | 100.93a | 109.05a | <0.001 |
Carbon:phosphorus | 985.34b | 998.88b | 582.26a | 614.95a | 1038.90c | 1082.72d | <0.001 |
Carbon:potassium | 105.96b | 105.58b | 108.93b | 96.90a | 112.93b | 111.26b | 0.014 |
Nitrogen resorption | 38.74 | 38.96 | 39.89 | 49.67 | 31.34 | 39.74 | 0.068 |
Phosphorus resorption | 31.52 | 34.29 | 37.40 | 30.96 | 30.86 | 32.29 | 0.450 |
Potassium resorption | 56.13 | 54.58 | 60.26 | 58.36 | 57.59 | 57.43 | 0.173 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marler, T.E. Host Tree Identity Influences Leaf Nutrient Relations of the Epiphyte Dendrobium guamense Ames. Horticulturae 2018, 4, 43. https://doi.org/10.3390/horticulturae4040043
Marler TE. Host Tree Identity Influences Leaf Nutrient Relations of the Epiphyte Dendrobium guamense Ames. Horticulturae. 2018; 4(4):43. https://doi.org/10.3390/horticulturae4040043
Chicago/Turabian StyleMarler, Thomas E. 2018. "Host Tree Identity Influences Leaf Nutrient Relations of the Epiphyte Dendrobium guamense Ames." Horticulturae 4, no. 4: 43. https://doi.org/10.3390/horticulturae4040043