A Semi-Systematic Review of Capillary Irrigation: The Benefits, Limitations, and Opportunities
Abstract
:1. Introduction
2. Review Method
Systematic Review
3. Literature Review
3.1. Capillary Irrigation Systems
3.2. Performance and Water Efficiency of Subirrrigation Systems
3.2.1. Ebb and Flow Systems
3.2.2. Capillary Mat System
3.2.3. Capillary Wick Irrigation
3.2.4. Negative Pressure Difference Irrigation
3.3. Environmental Benefits
3.4. Salinity in the Substrate
3.5. Nutrient Concentration in Foliage
3.6. Limitations and Future Research Requirements
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Beardsell, D.; Bodman, K.; Cresswell, G.; Mebalds, M.; Nicholas, D.; Rolfe, C.; Yiasoumi, B.; McDonald, J.; Kachenko, A.; Danelon, M. Nursery Industry Water Management Best Management Practice Guidelines; Nursery & Garden Industry Australia: Epping, NSW, Australia, 2010; p. 104. [Google Scholar]
- Yeager, T.; Henley, R. Irrigation and fertilization for minimal environmental impact. In Acta Horticulture; Bertschinger, L., Anderson, J., Eds.; International Society for Horticultural Science: Korbeek-Lo, Belgium, 2004; Volume 638, pp. 233–240. [Google Scholar]
- Ferrarezi, R.S.; Weaver, G.M.; van Iersel, M.W.; Testezlaf, R. Subirrigation: Historical overview, challenges, and future prospects. HortTechnology 2015, 25, 262–276. [Google Scholar]
- Mallett, R.; Hagen-Zanker, J.; Slater, R.; Duvendack, M. The benefits and challenges of using systematic reviews in international development research. J. Dev. Eff. 2012, 4, 445–455. [Google Scholar] [CrossRef] [Green Version]
- Booth, A.; Papaioannou, D.; Sutton, A. Systematic Approaches to a Successful Literature Review; SAGE Publications Ltd.: London, UK, 2012. [Google Scholar]
- Bartok, J.W. Ebb and Flow from an Engineer’s Viewpoint; University of Connecticut: Storrs, CT, USA, 1989. [Google Scholar]
- Santamaria, P.; Campanile, G.; Parente, A.; Elia, A. Subirrigation vs drip-irrigation: Effects on yield and quality of soilless grown cherry tomato. J. Hortic. Sci. Biotechnol. 2003, 78, 290–296. [Google Scholar] [CrossRef]
- Austin, C. Wicking Bed-A New Technology for Adapting to Climate Change. Available online: http://www.waterright.com.au/ (accessed on 20 October 2015).
- ModBOX©. Modbox Raised Garden Beds. Available online: http://www.modbox.com.au/wicking-garden-beds/ (accessed on 10 June 2016).
- Sullivan, C.; Hallaran, T.; Sogorka, G.; Weinkle, K. An evaluation of conventional and subirrigated planters for urban agriculture: Supporting evidence. Renew. Agric. Food Syst. 2015, 30, 55–63. [Google Scholar] [CrossRef]
- Semananda, N.P.K.; Ward, J.D.; Myers, B.R. Evaluating the efficiency of wicking bed irrigation systems for small-scale urban agriculture. Horticulturae 2016, 2, 13. [Google Scholar] [CrossRef]
- Lane, K.S.; Washburn, D.E. Capillarity tests by capillarimeter and by soil filled tubes. In Highway Research Board Proceedings; Highway Research Board: Washington, DC, USA, 1947; Volume 26, pp. 460–473. [Google Scholar]
- Li, X.; Zhang, L.M.; Fredlund, D.G. Wetting front advancing column test for measuring unsaturated hydraulic conductivity. Can. Geotech. J. 2009, 46, 1431–1445. [Google Scholar] [CrossRef]
- Hunter, M.N.; Scattini, W.J. The anovapot® and twinpot reduce root escape and save water. In Acta Horticulturae; Snyder, R.L., Ortega-Farias, S., Carlile, W.R., Raviv, M., Nichols, M., Clothier, B., Goodwin, I., Gentile, R., Eds.; International Society for Horticultural Science Korbeek-Lo: Leuven, Belgium, 2016; Volume 1112, pp. 23–30. [Google Scholar]
- Hunter, M.N.; Scattini, W.J. The Anovapot(r): Origin, Development and Associated Pot Irrigation Systems; University of Queensland: St Lucia, Australia, 2014. [Google Scholar]
- Hunter, M.; Leong, G.; Mitchell, J.; Dieters, M.; Fujinuma, R. Constant water table sub-irrigation of pots allows derivation of root weights (without physical recovery) and repeated measures of in situ growth and water use efficiencies. Plant Soil. 2018, 425, 1–19. [Google Scholar] [CrossRef]
- Million, J.; Yeager, T.; Larsen, C. Water use and fertilizer response of azalea using several no-leach irrigation methods. HortTechnology 2007, 17, 21–25. [Google Scholar]
- Kang, S.W.; Seo, S.G.; Pak, C.H. Capillary wick width and water level in channel affects water absorption properties of growing media and growth of chrysanthemum and poinsettia cultured in c-channel subirrigation system. Korean J. Hortic. Sci. Technol. 2009, 27, 86–92. [Google Scholar]
- Bainbridge, D.A. Wick irrigation for tree establishment. In The Overstory; Agroforestry Net, Inc.: Holualoa, HI, USA, 2012. [Google Scholar]
- Albaho, M.S. Cross sectional area of the root medium affects water uptake of tomato in a closed system. J. Food Agric. Environ. 2006, 4, 175–180. [Google Scholar]
- Son, J.E.; Oh, M.M.; Lu, Y.J.; Kim, K.S.; Giacomelli, G.A. Nutrient-flow wick culture system for potted plant production: System characteristics and plant growth. Sci. Hortic. 2006, 107, 392–398. [Google Scholar] [CrossRef]
- Ferrarezi, R.S.; Testezlaf, R. Performance of wick irrigation system using self-compensating troughs with substrates for lettuce production. J. Plant Nutr. 2016, 39, 147–161. [Google Scholar] [CrossRef]
- Moniruzzaman, S.M.; Fukuhara, T.; Terasaki, H. Experimental study on water balance in a negative pressure difference irrigation system. J. Jpn. Soc. Civ. Eng. 2011, 67, 103–108. [Google Scholar] [CrossRef]
- Wesonga, J.M.; Wainaina, C.; Ombwara, F.K.; Masinde, P.W.; Home, P.G. Wick material and media for capillary wick based irrigation system in Kenya. Int. J. Sci. Res. 2014, 3, 613–617. [Google Scholar]
- Dole, J.M.; Cole, J.C.; von Broembsen, S.L. Growth of poinsettias, nutrient leaching, and water-use efficiency respond to irrigation methods. HortScience 1994, 29, 858–864. [Google Scholar]
- Elmer, W.H.; Gent, M.P.N.; McAvoy, R.J. Partial saturation under ebb and flow irrigation suppresses pythium root rot of ornamentals. Crop Prot. 2012, 33, 29–33. [Google Scholar] [CrossRef]
- Morvant, J.K.; Dole, J.M.; Cole, J.C. Fertilizer source and irrigation system affect geranium growth and nitrogen retention. Hortscience 2001, 36, 1022–1026. [Google Scholar]
- Bouchaaba, Z.; Santamaria, P.; Choukr-Allah, R.; Lamaddalena, N.; Montesano, F.F. Open-cycle drip vs closed-cycle subirrigation: Effects on growth and yield of greenhouse soilless green bean. Sci. Hortic. 2015, 182, 77–85. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Growth, yield, fruit quality and nutrient uptake of hydroponically cultivated zucchini squash as affected by irrigation systems and growing seasons. Sci. Hortic. 2005, 105, 177–195. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. The influence of drip irrigation or subirrigation on zucchini squash grown in closed-loop substrate culture with high and low nutrient solution concentrations. HortScience 2009, 44, 306–311. [Google Scholar]
- Ferrarezi, R.S.; Van Iersel, M.W.; Testezlaf, R. Plant growth response of subirrigated salvia ‘vista red’ to increasing water levels at two substrates. Hortic. Bras. 2016, 34, 202–209. [Google Scholar] [CrossRef]
- Ferrarezi, R.S.; van Iersel, M.W.; Testezlaf, R. Monitoring and controlling ebb-and flow subirrigation with soil moisture sensors. HortScience 2015, 50, 447–453. [Google Scholar]
- Montesano, F.; Parente, A.; Santamaria, P. Closed cycle subirrigation with low concentration nutrient solution can be used for soilless tomato production in saline conditions. Sci. Hortic. 2010, 124, 338–344. [Google Scholar] [CrossRef]
- Gent, M.; McAvoy, R. Water and nutrient uptake and use efficiency with partial saturation ebb and flow watering. HortScience 2011, 46, 791–798. [Google Scholar]
- Montesano, F.F.; Serio, F.; Mininni, C.; Signore, A.; Parente, A.; Santamaria, P. Tensiometer-based irrigation management of subirrigated soilless tomato: Effects of substrate matric potential control on crop performance. Front. Plant Sci. 2015, 6, 1150. [Google Scholar] [CrossRef] [PubMed]
- Schuch, U.K.; Kelly, J.J.; Teegerstrom, T. Capillary mats for maintenance of plants in the retail nursery. HortTechnology 2008, 18, 250–255. [Google Scholar]
- Londra, P.A.; Paraskevopoulou, A.T.; Psychoyou, M. Evaluation of water air-balance of various substrates on begonia growth. Hortscience 2012, 47, 1153–1158. [Google Scholar]
- Fascella, G.; Rouphael, Y. Growth and water use efficiency of potted murraya paniculata as affected by irrigation system and container size. Eur. J. Hortic. Sci. 2015, 80, 81–86. [Google Scholar] [CrossRef]
- Perroux, K.M. Controlled water potential in subirrigated pots. Plant Soil 1979, 52, 385–392. [Google Scholar] [CrossRef]
- Nalliah, V.; Ranjan, R.S. Evaluation of a capillary-irrigation system for better yield and quality of hot pepper (capsicum annuum). Appl. Eng. Agric. 2010, 26, 807–816. [Google Scholar] [CrossRef]
- Nicola, S.; Pignata, G.; Casale, M.; Lo Turco, P.E.; Gaino, W. Overview of a lab-scale pilot plant for studying baby leaf vegetables grown in soilless culture. Hortic. J. 2016, 85, 97–104. [Google Scholar] [CrossRef]
- Iwama, H.; Kubota, T.; Ushiroda, T.; Osozawa, S.; Katou, H. Control of soil water potential using negative pressure water circulation technique. Soil Sci. Plant Nutr. 1991, 37, 7–14. [Google Scholar] [CrossRef]
- Shi, X.; Zhou, Q.; Wang, Y.; Cao, C.; Jin, G.; Liu, Y. Research on soil moisture dynamic under negative pressure irrigation. In Advances in Energy, Environment and Materials Science; Wang, Y., Zhao, J., Eds.; CRC Press: Oxon, UK, 2016; pp. 161–164. [Google Scholar]
- Roeber, R.U. Environmentally sound plant production by means of soilless cultivation. Comun. Sci. 2010, 1, 1–8. [Google Scholar]
- Nicola, S.; Hoeberechts, J.; Fontana, E. Studies on irrigation systems to grow lettuce (lactuca sativa l.) transplants. In Acta Horticulturae; Nicola, S., Nowak, J., Vavrina, C.S., Eds.; International Society for Horticultural Science: Korbeek-Lo, Belgium, 2004; Volume 631, pp. 141–148. [Google Scholar]
- Pinto, J.R.; Chandler, R.A.; Dumroese, R.K. Growth, nitrogen use efficiency, and leachate comparison of subirrigated and overhead irrigated pale purple coneflower seedlings. Hortscience 2008, 43, 897–901. [Google Scholar]
- Klock-Moore, K.A.; Broschat, T.K. Irrigation systems and fertilizer affect petunia growth. HortTechnology 2001, 11, 416–418. [Google Scholar]
- Zheng, Y.; Cayanan, D.F.; Dixon, M. Optimum feeding nutrient solution concentration for greenhouse potted miniature rose production in a recirculating subirrigation system. HortScience 2010, 45, 1378–1383. [Google Scholar]
- Zheng, Y.; Graham, T.; Richard, S.; Dixon, M. Potted gerbera production in a subirrigation system using low-concentration nutrient solutions. HortScience 2004, 39, 1283–1286. [Google Scholar]
- Kang, J.G.; Van Iersel, M.W.; Nemali, K.S. Fertilizer concentration and irrigation method affect growth and fruiting of ornamental pepper. J. Plant Nutr. 2004, 27, 867–884. [Google Scholar] [CrossRef]
- Goodwin, P.B.; Murphy, M.; Melville, P.; Yiasoumi, W. Efficiency of water and nutrient use in containerised plants irrigated by overhead, drip or capillary irrigation. Aust. J. Exp. Agric. 2003, 43, 189–194. [Google Scholar] [CrossRef]
- Cox, D.A. Growth, nutrient content, and growth medium electrical conductivity of poinsettia irrigated by subirrigation or from overhead. J. Plant Nutr. 2001, 24, 523–533. [Google Scholar] [CrossRef]
- Klock-Moore, K.A.; Broschat, T.K. Effect of four growing substrates on growth of ornamental plants in two irrigation systems. HortTechnology 2001, 11, 456–460. [Google Scholar]
- Matysiak, B.; Bielenin, M. Effect of nutrient solution composition on growth, flowering, nutrient status and cold hardiness of rhododendron yakushimanum grown on ebb-and-flow benches. Eur. J. Hortic. Sci. 2005, 70, 35–42. [Google Scholar]
- Rouphael, Y.; Cardarelli, M.; Rea, E.; Colla, G. The influence of irrigation system and nutrient solution concentration on potted geranium production under various conditions of radiation and temperature. Sci. Hortic. 2008, 118, 328–337. [Google Scholar] [CrossRef]
- Guttormsen, G. Accumulation of salts in the sub-irrigation of pot plants. Plant Soil 1969, 31, 425–438. [Google Scholar] [CrossRef]
- Cartmill, A.D.; Cartmill, D.L.; Ballweg, D.L.; Valdez-Aguilar, L.A. Optimum phosphorus concentration for growth of catharanthus roseus (l.) g. Don ‘pacifica white’ in a subirrigation and top watering system. Commun. Soil Sci. Plant Anal. 2016, 47, 52–64. [Google Scholar] [CrossRef]
- Xu, H.L.; Qin, F.F.; Xu, Q.C.; Xu, R.Y.; Wang, T.Y.; Wang, R. Applications of xerophytophysiology in plant production: Sub-irrigation improves tomato fruit yield and quality. J. Food Agric. Environ. 2011, 9, 256–263. [Google Scholar]
- Hicklenton, P.R.; Cairns, K.G. Plant water relations and mineral nutrition of containerized nursery plants in relation to irrigation method. Can. J. Plant Sci. 1996, 76, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Oh, M.M.; Son, J.E. Phytophthora nicotianae transmission and growth of potted kalanchoe in two recirculating subirrigation systems. Sci. Hortic. 2008, 119, 75–78. [Google Scholar] [CrossRef]
- Argo, W.R.; Weesies, B.J.; Bergman, E.M.; Marshal, M.; Biernbaum, J.A. Evaluating rhizon soil solution samplers as a method for extracting nutrient solution and analyzing media for container-grown crops. HortTechnology 1997, 7, 404–408. [Google Scholar]
- Strong, S.S.; Behe, B.K.; Deneke, C.F.; Bowen, K.L.; Keever, G.J. Cultivar and spacing effects on transmission of phytophthora parasitica in an ebb-and-flow subirrigation system. Plant Dis. 1997, 81, 89–95. [Google Scholar] [CrossRef]
- Van Iersel, M. Root restriction effects on growth and development of salvia (salvia splendens). HortScience 1997, 32, 1186–1190. [Google Scholar]
- Heller, H.; Bar-Tal, A.; Assouline, S.; Narkis, K.; Suryano, S.; de la Forge, A.; Barak, M.; Alon, H.; Bruner, M.; Cohen, S. The effects of container geometry on water and heat regimes in soilless culture: Lettuce as a case study. Irrig. Sci. 2015, 33, 53–65. [Google Scholar] [CrossRef]
- Caron, J.; Elrick, D.E.; Beeson, R.; Boudreau, J. Defining critical capillary rise properties for growing media in nurseries. Soil Sci. Soc. Am. J. 2005, 69, 794–806. [Google Scholar] [CrossRef]
- Patel, R.M.; Prasher, S.O.; Goel, P.K.; Madramootoo, C.A.; Broughton, R.S. Brackish water subirrigation for vegetables. Irrig. Drain. 2003, 52, 121–132. [Google Scholar] [CrossRef]
Criterion | Synonyms |
---|---|
Capillary Irrigation | “capillary irrigation” or “capillary wick” or “capillary mat” or “wicking bed *” or “sub irrigation” or “sub-irrigated planter *” or “subirrigated planter *” or “self-watering” |
Container | Container * or pot * or bucket * or tub * or drum * or barrel * |
Irrigation System | Advantages | Disadvantages |
---|---|---|
Ebb and flow Trough systems |
|
|
Capillary mat |
|
|
Capillary wick |
|
|
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semananda, N.P.K.; Ward, J.D.; Myers, B.R. A Semi-Systematic Review of Capillary Irrigation: The Benefits, Limitations, and Opportunities. Horticulturae 2018, 4, 23. https://doi.org/10.3390/horticulturae4030023
Semananda NPK, Ward JD, Myers BR. A Semi-Systematic Review of Capillary Irrigation: The Benefits, Limitations, and Opportunities. Horticulturae. 2018; 4(3):23. https://doi.org/10.3390/horticulturae4030023
Chicago/Turabian StyleSemananda, Niranjani P. K., James D. Ward, and Baden R. Myers. 2018. "A Semi-Systematic Review of Capillary Irrigation: The Benefits, Limitations, and Opportunities" Horticulturae 4, no. 3: 23. https://doi.org/10.3390/horticulturae4030023
APA StyleSemananda, N. P. K., Ward, J. D., & Myers, B. R. (2018). A Semi-Systematic Review of Capillary Irrigation: The Benefits, Limitations, and Opportunities. Horticulturae, 4(3), 23. https://doi.org/10.3390/horticulturae4030023