Influence of the Sunlike Light Spectral Composition on Radish in Controlled Environment Agriculture: Morphophysiological Characteristics and Diffuse Reflection Indices of Leaves
Abstract
1. Introduction
2. Materials and Method
2.1. Object of Research
- 1.
- Pr—the proportion of root crop:Pr = Mass of the root/Mass of the whole plant
- 2.
- Ai—attraction index:Ai = Mass of root/mass of leaves
2.2. Lighting Treatments
- (1)
- LED 1 with a color temperature of 3000 K, R:G:B is 5.2:3.3:1;
- (2)
- LED 2 with a color temperature of 4000 K, R:G:B is 2.3:2:1;
- (3)
- LED 3 with a color temperature of 5000 K, R:G:B is 1.5:1.5:1.
2.3. Leaf Reflectance Spectroscopy
2.3.1. Indices Associated with the Chlorophyll Content, Intensity (Capacity) of the Photosynthetic Apparatus
- 1.
- ChlRI—chlorophyll reflectance index:ChlRI = ((R750 − R705)/(R750 + R705)) − 2R445
- 2.
- Chlgreen model (Chlgr):Chlgr = (RNIR/Rgreen) − 1where RNIR = 750–800 nm, Rgreen (Rgr) = 545–565 nm
- 3.
- Chlred-edge model (Chlre):(Chlre = (RNIR/Rred-edge) − 1where RNIR = 750–800 nm, Rred-edge (Rre) = 710–730 nm
2.3.2. Indices Related to the Efficiency of the Photosynthetic Apparatus (Content of Carotenoids, Anthocyanins, Photochemical Activity and Scattering of Light)
- 1.
- SIPI—leaf structure-independent pigment index. This index has maximum sensitivity to the carotenoid/chlorophyll ratio while minimizing the influence of variable leaf structure [19]:SIPI = (R800 − R445)/(R800 − R680)
- 2.
- Anthocyanin indices: ARI-1 [21]:
- 3.
- Photochemical reflectance index PRI—characterizes changes in carotenoid pigments, in particular xanthophylls, of leaves. Variations in PRI occur due to changes in xanthophyll cycle pigments, accompanied by thermal dissipation. PRI is closely related to the epoxidation of xanthophyll cycle pigments and the efficiency of photosynthesis [19]. It is a good indicator of the efficiency of photosynthetic light use and is useful for quantitatively assessing plant responses to stress:PRI = (R570 − R531)/(R570 + R531)
- 4.
- R800—light scattering inside leaf tissues in the near-infrared range at 800 nm. The R800 value is related to the characteristics of the leaf structure and does not depend on their chemical composition or water content [25].
2.4. Statistical Analysis
3. Results and Discussion
3.1. Morphophysiological Traits of Radish Plants Under Different Lighting Treatments
3.2. Reflectivity of Radish Leaves Depending on the Spectral Characteristics of Radiation During Vegetation
3.3. Indices of Capacity and Efficiency of the Photosynthetic Apparatus Depending on the Spectral Composition of PAR During Vegetation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fasciolo, B.; Awouda, A.M.M.; Grasso, N.; Bruno, G.; Chiabert, P.; Lombardi, F. An evaluation of research interests in vertical farming through the analysis of KPIs adopted in the literature. Sustainability 2024, 16, 1371. [Google Scholar] [CrossRef]
- Kabir, M.S.N.; Reza, M.N.; Chowdhury, M.; Ali, M.; Samsuzzaman; Ali, M.R.; Lee, K.Y.; Chung, S.-O. Technological trends and engineering issues on vertical farms: A review. Horticulturae 2023, 9, 1229. [Google Scholar] [CrossRef]
- Kaiser, E.; Kusuma, P.; Vialet-Chabrand, S.; Folta, K.M.; Liu, Y.; Poorter, H.; Woning, N.; Shrestha, S.; Ciarreta, A.; Van Brenk, J.; et al. Vertical farming goes dynamic: Optimizing resource use efficiency, product quality, and energy costs. Front. Sci. 2024, 2, 1411259. [Google Scholar] [CrossRef]
- Nájera, C.; Gallegos-Cedillo, V.M.; Ros, M.; Pascual, J.A. Role of spectrum-light on productivity, and plant quality over vertical farming systems: Bibliometric analysis. Horticulturae 2023, 9, 63. [Google Scholar] [CrossRef]
- Singh, B.K. Radish (Raphanus sativus L.): Breeding for higher yield, better quality and wider adaptability. In Advances in Plant Breeding Strategies: Vegetable Crops: Volume 8: Bulbs, Roots and Tubers; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 275–304. ISBN 978-3-030-66965-2. [Google Scholar]
- Sinyavina, N.G.; Kochetov, A.A.; Kocherina, N.V.; Egorova, K.V.; Kurina, A.B.; Panova, G.G.; Chesnokov, Y.V. Breeding approaches for controlled conditions of artificial light culture for small radish and radish (Raphanus sativus L.). Horticulturae 2023, 9, 678. [Google Scholar] [CrossRef]
- Stamford, J.D.; Stevens, J.; Mullineaux, P.M.; Lawson, T. LED Lighting: A grower’s guide to light spectra. HortScience 2023, 58, 180–196. [Google Scholar] [CrossRef]
- Wu, B.-S.; Hitti, Y.; MacPherson, S.; Orsat, V.; Lefsrud, M.G. Comparison and perspective of conventional and led lighting for photobiology and industry applications. Environ. Exp. Bot. 2020, 171, 103953. [Google Scholar] [CrossRef]
- Chen, J.; Ji, F.; Gao, R.; He, D. Reducing red light proportion in full-spectrum LEDs enhances runner plant propagation by promoting the growth and development of mother plants in strawberry. Front. Plant Sci. 2024, 15, 1465004. [Google Scholar] [CrossRef]
- Dannehl, D.; Schwend, T.; Veit, D.; Schmidt, U. Increase of yield, lycopene, and lutein content in tomatoes grown under continuous PAR spectrum LED lighting. Front. Plant Sci. 2021, 12, 611236. [Google Scholar] [CrossRef]
- Kuleshova, T.E.; Udalova, O.R.; Balashova, I.T.; Anikina, L.M.; Kononchuk, P.Y.; Mirskaya, G.V.; Dubovitskaya, V.I.; Vertebny, V.E.; Khomyakov, Y.V.; Panova, G.G. Features of the lighting spectrum influence on the productivity and biochemical composition of test fruit and leaf vegetable crops. Tech. Phys. 2022, 92, 885. [Google Scholar] [CrossRef]
- Zou, J.; Zhou, C.; Xu, H.; Cheng, R.; Yang, Q.; Li, T. The effect of artificial solar spectrum on growth of cucumber and lettuce under controlled environment. J. Integr. Agric. 2020, 19, 2027–2034. [Google Scholar] [CrossRef]
- Shadd, A.; Asgari, N.; Pearce, J.M. Effects of spectral ranges on growth and yield in vertical hydroponic–aeroponic hybrid grow systems for radishes and turnips. Foods 2025, 14, 1872. [Google Scholar] [CrossRef]
- Yakushev, V.; Kanash, E.; Rusakov, D.; Yakushev, V.; Blokhina, S.Y.; Petrushin, A.; Blokhin, Y.I.; Mitrofanova, O.; Mitrofanov, E. Correlation dependences between crop reflection indices, grain yield and optical characteristics of wheat leaves at different nitrogen level and seeding density. Sel’skokhozyaistvennaya Biol. 2022, 57, 98–112. [Google Scholar] [CrossRef]
- Rusakov, D.V.; Kanash, E.V. Spectral characteristics of leaves diffuse reflection in conditions of soil drought: A study of soft spring wheat cultivars of different drought resistance. Plant Soil Environ. 2022, 68, 137–145. [Google Scholar] [CrossRef]
- Kanash, E.V.; Sinyavina, N.G.; Rusakov, D.V.; Egorova, K.V.; Panova, G.G.; Chesnokov, Y.V. Morpho-physiological, chlorophyll fluorescence, and diffuse reflectance spectra characteristics of lettuce under the main macronutrient deficiency. Horticulturae 2023, 9, 1185. [Google Scholar] [CrossRef]
- Kanash, E.V.; Osipov, Y.A. Optical signals of oxidative stress in crops physiological state diagnostics. In Precision Agriculture ’09; Brill: Boston, MA, USA, 2009. [Google Scholar]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Penuelas, J.; Baret, F.; Filella, I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, 2005GL022688. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Solovchenko, A.E.; Smagin, A.I.; Gitelson, A.A. Apple flavonols during fruit adaptation to solar radiation: Spectral features and technique for non-destructive assessment. J. Plant Physiol. 2005, 162, 151–160. [Google Scholar] [CrossRef]
- Gamon, J.A.; Surfus, J.S. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 1999, 143, 105–117. [Google Scholar] [CrossRef]
- Chesnokov, Y.V.; Mirskaya, G.V.; Kanash, E.V.; Kocherina, N.V.; Rusakov, D.V.; Lohwasser, U.; Börner, A. QTL identification and mapping in soft spring wheat (Triticum aestivum L.) under controlled agroecological and biological testing area conditions with and without nitrogen fertilizer. Russ. J. Plant Physiol. 2018, 65, 123–135. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, H.; Shi, M.; Xiong, Y.; Wang, J.; Wang, Y.; Zou, J. Optimized spectral and spatial design of high-uniformity and energy-efficient LED lighting for Italian lettuce cultivation in miniature plant factories. Horticulturae 2025, 11, 779. [Google Scholar] [CrossRef]
- Slaton, M.R.; Raymond Hunt, E.; Smith, W.K. Estimating near-infrared leaf reflectance from leaf structural characteristics. Am. J. Bot. 2001, 88, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Olle, M.; Viršile, A. The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agric. Food Sci. 2013, 22, 223–234. [Google Scholar] [CrossRef]
- Wu, B.-S.; MacPherson, S.; Lefsrud, M. Filtering light-emitting diodes to investigate amber and red spectral effects on lettuce growth. Plants 2021, 10, 1075. [Google Scholar] [CrossRef] [PubMed]
- Mansoori, M.; Wu, B.-S.; Addo, P.W.; MacPherson, S.; Lefsrud, M. Growth responses of tomato plants to different wavelength ratios of amber, red, and blue light. Sci. Hortic. 2023, 322, 112459. [Google Scholar] [CrossRef]
- Wu, B.-S.; Mansoori, M.; Schwalb, M.; Islam, S.; Naznin, M.T.; Addo, P.W.; MacPherson, S.; Orsat, V.; Lefsrud, M. Light emitting diode effect of red, blue, and amber light on photosynthesis and plant growth parameters. J. Photochem. Photobiol. B Biol. 2024, 256, 112939. [Google Scholar] [CrossRef]
- Somma, A.; Liu, Y.; Nielen, L.B.A.; Olschowski, S.; Heuvelink, E.; Marcelis, L.F.M. Increasing the red fraction in light-emitting diode supplemental light enhances yield without affecting the quality of greenhouse-grown lettuce (Lactuca sativa L.). HortScience 2025, 60, 163–171. [Google Scholar] [CrossRef]
- Tarakanov, I.G.; Tovstyko, D.A.; Lomakin, M.P.; Shmakov, A.S.; Sleptsov, N.N.; Shmarev, A.N.; Litvinskiy, V.A.; Ivlev, A.A. Effects of light spectral quality on photosynthetic activity, biomass production, and carbon isotope fractionation in lettuce, Lactuca sativa L., plants. Plants 2022, 11, 441. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Wang, L.; Guo, W. Red and blue wavelengths affect the morphology, energy use efficiency and nutritional content of lettuce (Lactuca sativa L.). Sci. Rep. 2021, 11, 8374. [Google Scholar] [CrossRef]
- He, X.; He, R.; Li, Y.; Liu, K.; Tan, J.; Chen, Y.; Liu, X.; Liu, H. Effect of ratios of red and white light on the growth and quality of Pak Choi. Agronomy 2022, 12, 2322. [Google Scholar] [CrossRef]
- Yuan, L.U.O.; Lin, Y.E.; Wen-zhong, G.U.O.; Xin, Z.; Yi-han, L.I.U.; Xiao-li, C. Influence by Supplementary red and blue light on the growth and development of greenhouse tomatoes and fluorescence characteristics. Chin. J. Agrometeorol. 2024, 45, 506. [Google Scholar] [CrossRef]
- Ke, X.; Yoshida, H.; Hikosaka, S.; Goto, E. Effect of red and blue light versus white light on fruit biomass radiation-use efficiency in dwarf tomatoes. Front. Plant Sci. 2024, 15, 1393918. [Google Scholar] [CrossRef]
- Lee, J.H.; Kwon, Y.B.; Roh, Y.H.; Choi, I.-L.; Kim, J.; Kim, Y.; Yoon, H.S.; Kang, H.-M. Effect of various LED light qualities, including wide red spectrum-LED, on the growth and quality of mini red romaine lettuce (cv. Breen). Plants 2023, 12, 2056. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Adasme, C.; Silva, H.; Escalona, V. In-Door germination and seedling growth of green and red lettuce under LED-light spectrum and subsequent effect on baby leaf lettuce. Ital. J. Agron. 2022, 17, 1982. [Google Scholar] [CrossRef]
- Gao, Q.; Liao, Q.; Li, Q.; Yang, Q.; Wang, F.; Li, J. Effects of LED red and blue light component on growth and photosynthetic characteristics of coriander in plant factory. Horticulturae 2022, 8, 1165. [Google Scholar] [CrossRef]
- Luo, S.; Zou, J.; Shi, M.; Lin, S.; Wang, D.; Liu, W.; Shen, Y.; Ding, X.; Jiang, Y. Effects of red-blue light spectrum on growth, yield, and photo-synthetic efficiency of lettuce in a uniformly illumination environment. Plant Soil Environ. 2024, 70, 305–316. [Google Scholar] [CrossRef]
- Meng, Q.; Runkle, E.S. Blue photons from broad-spectrum LEDs control growth, morphology, and coloration of indoor hydroponic red-leaf lettuce. Plants 2023, 12, 1127. [Google Scholar] [CrossRef] [PubMed]
- Kusuma, P.; Swan, B.; Bugbee, B. Does green really mean go? Increasing the fraction of green photons promotes growth of tomato but not lettuce or cucumber. Plants 2021, 10, 637. [Google Scholar] [CrossRef]
- Snowden, M.C.; Cope, K.R.; Bugbee, B. Sensitivity of seven diverse species to blue and green light: Interactions with photon flux. PLoS ONE 2016, 11, e0163121. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, L.; Cheng, J.; Lin, D.; Yang, Y. Morphology, growth, and physiological traits of greenhouse cucumber seedlings as affected by supplementary white and blue LEDs. Int. J. Agric. Biol. Eng. 2022, 15, 60–66. [Google Scholar] [CrossRef]
- Mohamed, S.J.; Rihan, H.Z.; Aljafer, N.; Fuller, M.P. The Impact of light spectrum and intensity on the growth, physiology, and antioxidant activity of lettuce (Lactuca sativa L.). Plants 2021, 10, 2162. [Google Scholar] [CrossRef]
- Yorio, N.C.; Goins, G.D.; Kagie, H.R.; Wheeler, R.M.; Sager, J.C. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortScience 2001, 36, 380–383. [Google Scholar] [CrossRef]
- Chutimanukul, P.; Piew-ondee, P.; Dangsamer, T.; Thongtip, A.; Janta, S.; Wanichananan, P.; Thepsilvisut, O.; Ehara, H.; Chutimanukul, P. Effects of light spectra on growth, physiological responses, and antioxidant capacity in five radish varieties in an indoor vertical farming system. Horticulturae 2024, 10, 1059. [Google Scholar] [CrossRef]
- Alrajhi, A.A.; Alsahli, A.S.; Alhelal, I.M.; Rihan, H.Z.; Fuller, M.P.; Alsadon, A.A.; Ibrahim, A.A. The Effect of LED light spectra on the growth, yield and nutritional value of red and green lettuce (Lactuca sativa). Plants 2023, 12, 463. [Google Scholar] [CrossRef]
- Frąszczak, B.; Kula-Maximenko, M. The preferences of different cultivars of lettuce seedlings (Lactuca sativa L.) for the spectral composition of light. Agronomy 2021, 11, 1211. [Google Scholar] [CrossRef]
- Bukhov, N.; Bondar, V.; Drozdova, I.; Kara, A.; Kotov, A.; Maevskaya, S.; Vasil’ev, A.; Voevudskaya, S.Y.; Voronin, P.Y.; Mokronosov, A. Development of storage roots in radish (Raphanus sativus) plants as affected by light quality. J. Plant Physiol. 1996, 149, 405–412. [Google Scholar] [CrossRef]
- Kara, A.; Kotov, A.; Bukhov, N. Specific distribution of gibberellins, cytokinins, indole-3-acetic acid, and abscisic acid in radish plants closely correlates with photomorphogenetic responses to blue or red light. J. Plant Physiol. 1997, 151, 51–59. [Google Scholar] [CrossRef]
- Zha, L.; Liu, W. Effects of light quality, light intensity, and photoperiod on growth and yield of cherry radish grown under red plus blue LEDs. J. Korean Soc. Hortic. Sci. 2018, 59, 511–518. [Google Scholar] [CrossRef]
- Mickens, M.A. Comparative Study of Lettuce and Radish Grown Under Red and Blue Light-Emitting Diodes (LEDs) and White Fluorescent Lamps (No. KSC-2012-236); Kennedy Space Center: Merritt Island, FL, USA, 2012; 8p. Available online: https://ntrs.nasa.gov/api/citations/20120015737/downloads/20120015737.pdf (accessed on 22 July 2025).
- Gamon, J.A.; Penuelas, J.; Field, C. A Narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Filella, I.; Amaro, T.; Araus, J.L.; Peñuelas, J. Relationship between photosynthetic radiation-use efficiency of barley canopies and the photochemical reflectance index (PRI). Physiol. Plant. 1996, 96, 211–216. [Google Scholar] [CrossRef]
- Tambussi, E.A.; Bartoli, C.G.; Beltrano, J.; Guiamet, J.J.; Araus, J.L. Oxidative damage to thylakoid proteins in water-stressed leaves of wheat (Triticum aestivum). Physiol. Plant. 2000, 108, 398–404. [Google Scholar] [CrossRef]
- Tambussi, E.A.; Casadesus, J.; Munné-Bosch, S.; Araus, J.L. Photoprotection in water-stressed plants of durum wheat (Triticum turgidum var. Durum): Changes in chlorophyll fluorescence, spectral signature and photosynthetic pigments. Funct. Plant Biol. 2002, 29, 35–44. [Google Scholar] [CrossRef]
- Knipling, E.B. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sens. Environ. 1970, 1, 155–159. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Ustin, S.L.; Verdebout, J.; Schmuck, G.; Andreoli, G.; Hosgood, B. Estimating leaf biochemistry using the PROSPECT leaf optical properties model. Remote Sens. Environ. 1996, 56, 194–202. [Google Scholar] [CrossRef]
- Dawson, T.P.; Curran, P.J. Technical note a new technique for interpolating the reflectance red edge position. Int. J. Remote Sens. 1998, 19, 2133–2139. [Google Scholar] [CrossRef]
- Blackburn, G.A. Relationships between spectral reflectance and pigment concentrations in stacks of deciduous broadleaves. Remote Sens. Environ. 1999, 70, 224–237. [Google Scholar] [CrossRef]
- Knapp, A.K.; Carter, G.A. Variability in leaf optical properties among 26 species from a broad range of habitats. Am. J. Bot. 1998, 85, 940–946. [Google Scholar] [CrossRef]





| Range | WL, nm | Incident Radiation PPFD μmol m−2 s−1 | |||
|---|---|---|---|---|---|
| HPS | LED 1 | LED 2 | LED 3 | ||
| PAR | 400–700 | 317 ± 24 | 321 ± 21 | 309 ± 24 | 316 ± 23 |
| Blue (B) | 400–500 | 17 ± 1 | 32 ± 2 | 54 ± 4 | 75 ± 5 |
| Green (G) | 501–565 | 24 ± 2 | 64 ± 4 | 74 ± 6 | 78 ± 6 |
| Yellow (Y) | 566–590 | 86 ± 7 | 33 ± 2 | 32 ± 2 | 30 ± 2 |
| Orange (O) | 591–620 | 116 ± 9 | 53 ± 4 | 44 ± 3 | 40 ± 3 |
| Red (R) | 621–700 | 74 ± 6 | 139 ± 9 | 105 ± 8 | 93 ± 7 |
| Far-red (F-R) | 701–750 | 15 ± 1 | 28 ± 2 | 21 ± 2 | 20 ± 1 |
| Near-Infrared (NIR) | 751–800 | 20 ± 1 | 7 ± 1 | 5 ± 1 | 5 ± 1 |
| Lighting Treatment | Commercial Root Crops, % | Yield, kg m−2 | ||
|---|---|---|---|---|
| cv. Pf | cv. P | cv. Pf | cv. P | |
| HPS | 95.0 ± 5.0 | 85.0 ± 5.0 | 3.7 ± 0.1 | 2.4 ± 0.2 |
| LED 1 | 85.0 ± 5.0 | 75.0 ± 5.0 | 3.1 ± 0.2 | 1.9 ± 0.2 |
| LED 2 | 95.0 ± 1.5 | 80.0 ± 5.0 | 3.4 ± 0.1 | 2.3 ± 0.1 |
| LED 3 | 95.0 ± 0.0 | 85.0 ± 5.0 | 3.6 ± 0.1 | 2.5 ± 0.1 |
| Range | WL, nm | Cultivar | Reflected Radiation, % of Incident Radiation | |||
|---|---|---|---|---|---|---|
| HPS | LED 1 | LED 2 | LED 3 | |||
| Blue (B) | 400–500 | Pf | 1.3 ± 0.0 Bb | 1.7 ± 0.0 Ba | 1.0 ± 0.0 Bc | 0.7 ± 0.0 Bd |
| P | 2.7 ± 0.0 Aa | 2.2 ± 0.0 Ac | 2.4 ± 0.0 Ab | 2.1 ± 0.0 Ad | ||
| Green (G) | 501–565 | Pf | 9.3 ± 0.1 Bc | 11.9 ± 0.1 Ba | 10.4 ± 0.1 Bb | 8.7 ± 0.1 Bd |
| P | 12.5 ± 0.1 Ac | 14.1 ± 0.1 Aa | 13.2 ± 0.1 Ab | 11.3 ± 0.1 Ad | ||
| Yellow (Y) | 566–590 | Pf | 8.7 ± 0.1 Bd | 14.4 ± 0.1 Ba | 12.3 ± 0.1 Bb | 10.1 ± 0.1 Bc |
| P | 11.8 ± 0.1 Ad | 16.9 ± 0.1 Aa | 12.8 ± 0.1 Ab | 12.0 ± 0.1 Ac | ||
| Orange (O) | 591–620 | Pf | 5.9 ± 0.0 Bd | 11.2 ± 0.1 Ba | 8.7 ± 0.0 Bb | 6.7 ± 0.1 Bc |
| P | 8.0 ± 0.1 Ad | 13.4 ± 0.1 Aa | 9.2 ± 0.0 Ab | 8.6 ± 0.0 Ac | ||
| Red (R) | 621–700 | Pf | 3.5 ± 0.1 Bd | 6.9 ± 0.1 Ba | 4.9 ± 0.1 Bb | 3.7 ± 0.1 Bc |
| P | 5.1 ± 0.1 Ac | 8.6 ± 0.1 Aa | 5.7 ± 0.1 Ab | 5.7 ± 0.1 Ab | ||
| Far-red (F-R) | 701–750 | Pf | 40.7 ± 0.3 Bd | 47.6 ± 0.3 Bc | 50.9 ± 0.3 Bb | 52.9 ± 0.4 Aa |
| P | 51.2 ± 0.4 Ac | 53.5 ± 0.2 Aa | 52.1 ± 0.3 Ab | 52.7 ± 0.4 Ab | ||
| NIR | 751–800 | Pf | 52.5 ± 0.1 Bb | 46.8 ± 0.2 Bd | 51.3 ± 0.2 Bc | 54.5 ± 0.1 Ba |
| P | 65.6 ± 0.2 Aa | 53.6 ± 0.1 Ad | 61.0 ± 0.1 Ab | 57.5 ± 0.2 Ac | ||
| Reflectivity Index | Cultivar | Lighting Treatment | |||
|---|---|---|---|---|---|
| HPS | LED 1 | LED 2 | LED 3 | ||
| ChlRI | Pf | 0.43 ± 0.01 Aa | 0.25± 0.01 Ad | 0.31 ± 0.01 Bc | 0.38 ± 0.01 Ab |
| P | 0.43 ± 0.01 Aa | 0.24 ± 0.01 Ad | 0.36 ± 0.01 Ac | 0.38 ± 0.01 Ab | |
| Chlgr | Pf | 2.81 ± 0.12 Aa | 1.65 ± 0.09 Ac | 2.04 ± 0.12 Ab | 2.63 ± 0.14 Aa |
| P | 2.65 ± 0.08 Aa | 1.67 ± 0.10 Ac | 2.19 ± 0.11 Ab | 2.23 ± 0.08 Bb | |
| Chlre | Pf | 1.89 ± 0.07 Aa | 0.61 ± 0.05 Bd | 0.85 ± 0.06 Bc | 1.17 ± 0.08 Ab |
| P | 1.84 ± 0.03 Aa | 0.63 ± 0.06 Ad | 1.34 ± 0.03 Ab | 1.18 ± 0.08 Ac | |
| Reflectivity Index | Cultivar | Lighting Treatment | |||
|---|---|---|---|---|---|
| HPS | LED 1 | LED 2 | LED 3 | ||
| SIPI | Pf | 1.008 ± 0.002 Ad | 1.050 ± 0.006 Aa | 1.026 ± 0.002 Ab | 1.019 ± 0.002 Bc |
| P | 1.010 ± 0.002 Ad | 1.053 ± 0.006 Aa | 1.017 ± 0.002 Bc | 1.034 ± 0.004 Ab | |
| ARI-1 | Pf | 0.513 ± 0.032 Ad | 1.279 ± 0.024 Ac | 1.341 ± 0.029 Ab | 1.473 ± 0.049 Aa |
| P | 0.481 ± 0.047 Ad | 1.267 ± 0.022 Aa | 0.653 ± 0.105 Bc | 1.092 ± 0.150 Bb | |
| ARI-2 | Pf | 0.902 ± 0.001 Ab | 0.917 ± 0.001 Aa | 0.916 ± 0.001 Aa | 0.916 ± 0.001 Aa |
| P | 0.901 ± 0.001 Ac | 0.914 ± 0.001 Ba | 0.904 ± 0.002 Bc | 0.911 ± 0.001 Bb | |
| PRI | Pf | 0.783 ± 0.004 Ac | 1.934 ± 0.056 Ab | 2.026 ± 0.008 Ab | 2.201 ± 0.031 Aa |
| P | 0.780 ± 0.007 Ab | 1.819 ± 0.050 Ba | 0.801 ± 0.083 Bb | 1.660 ± 0.201 Ba | |
| R800 | Pf | 51.9 ± 1.32 Ba | 44.7 ± 1.96 Bc | 47.8 ± 1.74 Bbc | 49.7 ± 0.68 Bb |
| P | 64.9 ± 2.47 Aa | 52.1 ± 1.18 Ac | 59.8 ± 1.01 Ab | 53.4 ± 2.19 Ac | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kanash, E.V.; Kuleshova, T.E.; Ezerina, E.M.; Rusakov, D.V.; Kocherina, N.V.; Dobrokhotov, A.V.; Gorshkov, O.A.; Panova, G.G.; Sinyavina, N.G. Influence of the Sunlike Light Spectral Composition on Radish in Controlled Environment Agriculture: Morphophysiological Characteristics and Diffuse Reflection Indices of Leaves. Horticulturae 2026, 12, 74. https://doi.org/10.3390/horticulturae12010074
Kanash EV, Kuleshova TE, Ezerina EM, Rusakov DV, Kocherina NV, Dobrokhotov AV, Gorshkov OA, Panova GG, Sinyavina NG. Influence of the Sunlike Light Spectral Composition on Radish in Controlled Environment Agriculture: Morphophysiological Characteristics and Diffuse Reflection Indices of Leaves. Horticulturae. 2026; 12(1):74. https://doi.org/10.3390/horticulturae12010074
Chicago/Turabian StyleKanash, Elena V., Tatiana E. Kuleshova, Elizaveta M. Ezerina, Dmitry V. Rusakov, Natalia V. Kocherina, Alexey V. Dobrokhotov, Oleg A. Gorshkov, Gayane G. Panova, and Nadezhda G. Sinyavina. 2026. "Influence of the Sunlike Light Spectral Composition on Radish in Controlled Environment Agriculture: Morphophysiological Characteristics and Diffuse Reflection Indices of Leaves" Horticulturae 12, no. 1: 74. https://doi.org/10.3390/horticulturae12010074
APA StyleKanash, E. V., Kuleshova, T. E., Ezerina, E. M., Rusakov, D. V., Kocherina, N. V., Dobrokhotov, A. V., Gorshkov, O. A., Panova, G. G., & Sinyavina, N. G. (2026). Influence of the Sunlike Light Spectral Composition on Radish in Controlled Environment Agriculture: Morphophysiological Characteristics and Diffuse Reflection Indices of Leaves. Horticulturae, 12(1), 74. https://doi.org/10.3390/horticulturae12010074

