Phospholipases in the Response of Fortune Mandarins to Heat and Cold Stress and in the Heat-Induced Cross-Adaption to Chilling
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. The Heat Treatment
2.3. Storage Temperatures and Heat-Conditioning Treatment
2.4. Differentiation Between Healthy and Chilling-Induced Necrotic Flavedo Tissues
2.5. CI Incidence and Severity
2.6. Total RNA Extraction and cDNA Synthesis
2.7. RT-qPCR Analysis of Genes Encoding the Enzymes PLD, PLA, and PLC
2.8. Statistical Analysis
3. Results
3.1. Effect of Heat, Chilling, and of Conditioning Fortune Mandarins for 3 Days at 37 °C to Reduce the Chilling-Induced Damage on the Regulation of the PLD-Encoding Genes
3.2. The PLA-Encoding Genes Are Differentially Regulated by Heat, Chilling, and the HCT That Promotes Heat-Induced Cross-Adaptation to Chilling
3.3. Regulation of PLC-Encoding Genes by Heat, Chilling, and the HCT That Reduces Chilling Injury
3.4. Relative Expression Levels of PL-Encoding Genes in Necrotic and Non-Necrotic Flavedo Tissues of Chilled Fruit
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABA | Abscisic acid |
CI | Chilling injury |
DAG | Diacylglycerol |
FFA | Free fatty acid |
HCT | Heat conditioning treatment |
IP3 | Inositol-1,4,5-triphosphate |
LPL | Lysophospholipid |
NPC | Non-specific PLC |
PA | Phosphatidic acid |
PI-PLC | Phosphoinositide-specific PLC |
PL | Phospholipase |
PLA | Phospholipase A |
PLC | Phospholipase C |
PLD | Phospholipase D |
References
- Sevillano, L.; Sanchez-Ballest, M.T.; Romojaro, F.; Flores, F.B. Physiological, Hormonal and Molecular Mechanisms Regulating Chilling Injury in Horticultural Species. Postharvest Technologies Applied to Reduce Its Impact. J. Sci. Food Agric. 2009, 89, 555–573. [Google Scholar] [CrossRef]
- Mulas, M.; Schirra, M. The Effect of Heat Conditioning Treatments on the Postharvest Quality of Horticultural Crops. Stewart Postharvest Rev. 2007, 3, 1–6. [Google Scholar] [CrossRef]
- Valenzuela, J.L.; Manzano, S.; Palma, F.; Carvajal, F.; Garrido, D.; Jamilena, M. Oxidative Stress Associated with Chilling Injury in Immature Fruit: Postharvest Technological and Biotechnological Solutions. Int. J. Mol. Sci. 2017, 18, 1467. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Tellez, M.A.; Lafuente, M.T. Effect of High Temperature Conditioning on Ethylene, Phenylalanine Ammonia-Lyase, Peroxidase and Polyphenol Oxidase Activities in Flavedo of Chilled ‘Fortune’ Mandarin Fruit. J. Plant Physiol. 1997, 150, 674–678. [Google Scholar] [CrossRef]
- Moreno, A.S.; Margarit, E.; Morales, L.; Montecchiarini, M.; Bello, F.; Vázquez, D.; Tripodi, K.E.J.; Podestá, F.E. Immediate- and Long-Term Proteomic Responses of Epicarp from Two Heat Conditioned Tangor Cultivars Stored at Low Temperature Differing in Their Susceptibility to Infection. Postharvest Biol. Technol. 2020, 161, 111091. [Google Scholar] [CrossRef]
- Mulas, M.; Lafuente, M.T.; Zacarias, L. Postharvest Temperature Conditioning and Chilling Effects on Flavedo Lipid Composition of ‘Fortune’ Mandarin. Proc. Int. Soc. Citricult. 1997, 2, 1132–1135. [Google Scholar]
- Rodov, V.; Ben-Yehoshua, S.; Albagli, R.; Fang, D.Q. Reducing Chilling Injury and Decay of Stored Citrus Fruit by Hot Water Dips. Postharvest Biol. Technol. 1995, 5, 119–127. [Google Scholar] [CrossRef]
- Schirra, M.; Mulas, M.; Fadda, A.; Cauli, E. Cold Quarantine Responses of Blood Oranges to Postharvest Hot Water and Hot Air Treatments. Postharvest Biol. Technol. 2004, 31, 191–200. [Google Scholar] [CrossRef]
- Gonzalez-Aguilar, G.A.; Zacarias, L.; Perez-Amador, M.A.; Carbonell, J.; Lafuente, M.T. Polyamine Content and Chilling Susceptibility Are Affected by Seasonal Changes in Temperature and by Conditioning Temperature in Cold-Stored ‘Fortune’ Mandarin Fruit. Physiol. Plant 2000, 108, 140–146. [Google Scholar] [CrossRef]
- Lafuente, M.T.; Martínez-Téllez, M.A.; Zacarías, L. Abscisic Acid in the Response of ‘Fortune’ Mandarins to Chilling. Effect of Maturity and High-Temperature Conditioning. J. Sci. Food Agric. 1997, 73, 494–502. [Google Scholar] [CrossRef]
- Lafuente, M.T.; Establés-Ortíz, B.; González-Candelas, L. Insights into the Molecular Events That Regulate Heat-Induced Chilling Tolerance in Citrus Fruits. Front. Plant Sci. 2017, 8, 262778. [Google Scholar] [CrossRef]
- Lafuente, M.T.; Romero, P. Hormone Profiling and Heat-Induced Tolerance to Cold Stress in Citrus Fruit. Postharvest Biol. Technol. 2022, 194, 112088. [Google Scholar] [CrossRef]
- Sanchez-Ballesta, M.T.; Lluch, Y.; Gosalbes, M.J.; Zacarias, L.; Granell, A.; Lafuente, M.T. A Survey of Genes Differentially Expressed during Long-Term Heat-Induced Chilling Tolerance in Citrus Fruit. Planta 2003, 218, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Yang, S. Surviving and Thriving: How Plants Perceive and Respond to Temperature Stress. Dev. Cell 2022, 57, 947–958. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Yao, L.; Wang, X.; Zhang, Y.; Zhang, G.; Li, X. Mechanisms for Cell Survival during Abiotic Stress: Focusing on Plasma Membrane. Stress Biol. 2025, 5, 1. [Google Scholar] [CrossRef]
- Wei, X.; Liu, S.; Sun, C.; Xie, G.; Wang, L. Convergence and Divergence: Signal Perception and Transduction Mechanisms of Cold Stress in Arabidopsis and Rice. Plants 2021, 10, 1864. [Google Scholar] [CrossRef]
- Parkin, K.L.; Marangoni, A.; Jackman, R.L.; Yada, R.Y.; Stanley, D.W. Chilling Injury. A Review of Possible Mechanisms. J. Food Biochem. 1989, 13, 127–153. [Google Scholar] [CrossRef]
- Liang, S.M.; Kuang, J.F.; Ji, S.J.; Chen, Q.F.; Deng, W.; Min, T.; Shan, W.; Chen, J.Y.; Lu, W.J. The Membrane Lipid Metabolism in Horticultural Products Suffering Chilling Injury. Food Qual. Saf. 2020, 4, 9–14. [Google Scholar] [CrossRef]
- Wu, G.; Baumeister, R.; Heimbucher, T. Molecular Mechanisms of Lipid-Based Metabolic Adaptation Strategies in Response to Cold. Cells 2023, 12, 1353. [Google Scholar] [CrossRef]
- Welti, R.; Li, W.; Li, M.; Sang, Y.; Biesiada, H.; Zhou, H.E.; Rajashekar, C.B.; Williams, T.D.; Wang, X. Profiling Membrane Lipids in Plant Stress Responses: Role of phospholipase dα in freezing-induced lipid changes in Arabidopsis. J. Biol. Chem. 2002, 277, 31994–32002. [Google Scholar] [CrossRef]
- Murphy, A.; Schulz, B.; Peer, W. The Plant Plasma Membrane, 1st ed.; Springer: Berlin, Germany, 2011. [Google Scholar] [CrossRef]
- Hou, Q.; Ufer, G.; Bartels, D. Lipid Signalling in Plant Responses to Abiotic Stress. Plant Cell Environ. 2016, 39, 1029–1048. [Google Scholar] [CrossRef]
- Yu, L.; Zhou, C.; Fan, J.; Shanklin, J.; Xu, C. Mechanisms and Functions of Membrane Lipid Remodeling in Plants. Plant J. 2021, 107, 37–53. [Google Scholar] [CrossRef]
- Schirra, M.; Cohen, E. Long-Term Storage of ‘Olinda’ Oranges under Chilling and Intermittent Warming Temperatures. Postharvest Biol. Technol. 1999, 16, 63–69. [Google Scholar] [CrossRef]
- Alferez, F. The Role of Lipid Metabolism and Signalling during Postharvest Treatment and Storage of Horticultural Crops. Stewart Postharvest Rev. 2008, 4, 1–8. [Google Scholar] [CrossRef]
- Hong, Y.; Zhao, J.; Guo, L.; Kim, S.C.; Deng, X.; Wang, G.; Zhang, G.; Li, M.; Wang, X. Plant Phospholipases D and C and Their Diverse Functions in Stress Responses. Prog. Lipid Res. 2016, 62, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Meijer, H.J.G.; Munnik, T. Phospholipid-Based Signaling in Plants. Annu. Rev. Plant Biol. 2003, 54, 265–306. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.B. Phospholipid-Derived Signaling Mediated by Phospholipase A in Plants. Trends Plant Sci. 2004, 9, 229–235. [Google Scholar] [CrossRef]
- Wang, X. Plant Phospholipases. Annu. Rev. Plant Biol. 2001, 52, 211–231. [Google Scholar] [CrossRef]
- Li, J.; Wang, X. Phospholipase D and Phosphatidic Acid in Plant Immunity. Plant Sci. 2019, 279, 45–50. [Google Scholar] [CrossRef]
- Wang, X.; Chapman, K.D. Lipid Signaling in Plants. Front. Plant Sci. 2013, 4, 57100. [Google Scholar] [CrossRef]
- Aloulou, A.; Rahier, R.; Arhab, Y.; Noiriel, A.; Abousalham, A. Phospholipases: An Overview. Methods Mol. Biol. 2018, 1835, 69–105. [Google Scholar] [CrossRef] [PubMed]
- Mariani, M.E.; Fidelio, G.D. Secretory Phospholipases A2 in Plants. Front. Plant Sci. 2019, 10, 451927. [Google Scholar] [CrossRef]
- Kirik, A.; Mudgett, M.B. SOBER1 Phospholipase Activity Suppresses Phosphatidic Acid Accumulation and Plant Immunity in Response to Bacterial Effector AvrBsT. Proc. Natl. Acad. Sci. USA 2009, 106, 20532–20537. [Google Scholar] [CrossRef] [PubMed]
- Munnik, T.; Laxalt, A.M. Measuring PLD Activity in vivo. In Plant Lipid Signaling Protocols; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2013; Volume 1009, pp. 219–231. [Google Scholar] [CrossRef]
- Romero, P.; Alférez, F.; Lafuente, M.T. Involvement of Phospholipases and Sucrose in Carbon Starvation-Induced Non-Chilling Peel Pitting in Citrus Fruit. Postharvest Biol. Technol. 2020, 169, 111295. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Bodbodak, S. Physiological and Biochemical Mechanisms Regulating Chilling Tolerance in Fruits and Vegetables under Postharvest Salicylates and Jasmonates Treatments. Sci. Hortic. 2013, 156, 73–85. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Asghari, M.; Khorsandi, O.; Mohayeji, M. Alleviation of Postharvest Chilling Injury of Tomato Fruit by Salicylic Acid Treatment. J. Food Sci. Technol. 2014, 51, 2815–2820. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Asle-Mohammadi, Z.; Ebrahimi, A.; Razavi, F. Exogenous Dopamine Application Ameliorates Chilling Injury and Preserves Quality of Kiwifruit during Cold Storage. Sci. Rep. 2025, 15, 2894. [Google Scholar] [CrossRef]
- Huang, D.; Tian, W.; Feng, J.; Zhu, S. Interaction between Nitric Oxide and Storage Temperature on Sphingolipid Metabolism of Postharvest Peach Fruit. Plant Physiol. Biochem. 2020, 151, 60–68. [Google Scholar] [CrossRef]
- Jiao, C. IP3 Mediates NO-Enhanced Chilling Tolerance in Postharvest Kiwifruit. Postharvest Biol. Technol. 2021, 176, 111463. [Google Scholar] [CrossRef]
- Kong, X.; Wei, B.; Gao, Z.; Zhou, Y.; Shi, F.; Zhou, X.; Zhou, Q.; Ji, S. Changes in Membrane Lipid Composition and Function Accompanying Chilling Injury in Bell Peppers. Plant Cell Physiol. 2018, 59, 167–178. [Google Scholar] [CrossRef]
- Li, Z.; Palmer, W.M.; Martin, A.P.; Wang, R.; Rainsford, F.; Jin, Y.; Patrick, J.W.; Yang, Y.; Ruan, Y.L. High Invertase Activity in Tomato Reproductive Organs Correlates with Enhanced Sucrose Import into, and Heat Tolerance of, Young Fruit. J. Exp. Bot. 2012, 63, 1155–1166. [Google Scholar] [CrossRef]
- Malekzadeh, P.; Khosravi-Nejad, F.; Hatamnia, A.A.; Sheikhakbari Mehr, R. Impact of Postharvest Exogenous γ-Aminobutyric Acid Treatment on Cucumber Fruit in Response to Chilling Tolerance. Physiol. Mol. Biol. Plants 2017, 23, 827–836. [Google Scholar] [CrossRef]
- Mao, L.; Pang, H.; Wang, G.; Zhu, C. Phospholipase D and Lipoxygenase Activity of Cucumber Fruit in Response to Chilling Stress. Postharvest Biol. Technol. 2007, 44, 42–47. [Google Scholar] [CrossRef]
- Rui, H.; Cao, S.; Shang, H.; Jin, P.; Wang, K.; Zheng, Y. Effects of Heat Treatment on Internal Browning and Membrane Fatty Acid in Loquat Fruit in Response to Chilling Stress. J. Sci. Food Agric. 2010, 90, 1557–1561. [Google Scholar] [CrossRef]
- Song, K.; Gu, H.; Golding, J.B.; Pristijono, P.; Hou, X.; Zhang, L.; Hong, K.; Yao, Q.; Zhang, X. Insight into the Physiological and Molecular Mechanisms of Hot Air Treatment Which Reduce Internal Browning in Winter-Harvested Pineapples. Postharvest Biol. Technol. 2022, 194, 112066. [Google Scholar] [CrossRef]
- Sun, J.; Li, C.; Nagendra Prasad, K.; You, X.; Li, L.; Liao, F.; Peng, H.; He, X.; Li, Z.; Zhang, Y. Membrane Deterioration, Enzymatic Browning and Oxidative Stress in Fresh Fruits of Three Litchi Cultivars during Six-Day Storage. Sci. Hortic. 2012, 148, 97–103. [Google Scholar] [CrossRef]
- Wang, L.; Bokhary, S.U.F.; Xie, B.; Hu, S.; Jin, P.; Zheng, Y. Biochemical and Molecular Effects of Glycine Betaine Treatment on Membrane Fatty Acid Metabolism in Cold Stored Peaches. Postharvest Biol. Technol. 2019, 154, 58–69. [Google Scholar] [CrossRef]
- Xie, P.; Yang, Y.; Gong, D.; Li, Y.; Wang, Y.; Li, Y.; Prusky, D.; Bi, Y. Spraying L-Phenylalanine during Fruit Development Alleviates Chilling Injury in Harvested Muskmelons by Regulating Membrane Lipid Metabolism. Postharvest Biol. Technol. 2024, 211, 112858. [Google Scholar] [CrossRef]
- Xu, D.; Lam, S.M.; Zuo, J.; Yuan, S.; Lv, J.; Shi, J.; Gao, L.; Chen, B.; Sui, Y.; Shui, G.; et al. Lipidomics Reveals the Difference of Membrane Lipid Catabolism between Chilling Injury Sensitive and Non-Sensitive Green Bell Pepper in Response to Chilling. Postharvest Biol. Technol. 2021, 182, 111714. [Google Scholar] [CrossRef]
- Xu, P.; Huber, D.J.; Gong, D.; Yun, Z.; Pan, Y.; Jiang, Y.; Zhang, Z. Amelioration of Chilling Injury in ‘Guifei’ Mango Fruit by Melatonin Is Associated with Regulation of Lipid Metabolic Enzymes and Remodeling of Lipidome. Postharvest Biol. Technol. 2023, 198, 112233. [Google Scholar] [CrossRef]
- Huang, S.; Bi, Y.; Li, H.; Liu, C.; Wang, X.; Wang, X.; Lei, Y.; Zhang, Q.; Wang, J. Reduction of Membrane Lipid Metabolism in Postharvest Hami Melon Fruits by N-Butanol to Mitigate Chilling Injury and the Cloning of Phospholipase D-β Gene. Foods 2023, 12, 1904. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; El Kayal, W.; Sullivan, J.A.; Paliyath, G.; Jayasankar, S. Pre-Harvest Application of Hexanal Formulation Enhances Shelf Life and Quality of ‘Fantasia’ Nectarines by Regulating Membrane and Cell Wall Catabolism-Associated Genes. Sci. Hortic. 2018, 229, 117–124. [Google Scholar] [CrossRef]
- Kong, X.M.; Zhou, Q.; Luo, F.; Wei, B.D.; Wang, Y.; Sun, H.J.; Zhao, Y.B.; Ji, S.J. Transcriptome Analysis of Harvested Bell Peppers (Capsicum annuum L.) in Response to Cold Stress. Plant Physiol. Biochem. 2019, 139, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Lin, H.; Lin, H.T.; Lin, M.S.; Wang, H.; Wei, W.; Chen, J.Y.; Lu, W.J.; Shao, X.F.; Fan, Z.Q. The Metabolism of Membrane Lipid Participates in the Occurrence of Chilling Injury in Cold-Stored Banana Fruit. Food Res. Int. 2023, 173, 113415. [Google Scholar] [CrossRef]
- Lu, X.; Yin, F.; Liu, C.; Liang, Y.; Song, M.; Shang, F.; Liu, Y.; Shuai, L. Nitric Oxide Alleviates Chilling Injury in Cucumber (Cucumis sativus L.) Fruit by Regulating Membrane Lipid and Energy Metabolism. Int. J. Food Prop. 2023, 26, 1047–1061. [Google Scholar] [CrossRef]
- Qiao, Y.; Zheng, Y.; Watkins, C.B.; Zuo, J.; Liu, H.; Wang, Y.; Wang, Z.; Ma, L.; He, H.; Hu, L. Transcriptomic and Metabolomic Analysis of Quality Deterioration of Postharvest Okra Fruit at Different Storage Temperatures. Postharvest Biol. Technol. 2024, 218, 113146. [Google Scholar] [CrossRef]
- Malladi, A.; Burns, J.K. CsPLDα1 and CsPLDγ1 are Differentially Induced during Leaf and Fruit Abscission and Diurnally Regulated in Citrus sinensis. J. Exp. Bot. 2008, 59, 3729–3739. [Google Scholar] [CrossRef]
- Romero, P.; Gandía, M.; Alférez, F. Interplay between ABA and Phospholipases A2 and D in the Response of Citrus Fruit to Postharvest Dehydration. Plant Physiol. Biochem. 2013, 70, 287–294. [Google Scholar] [CrossRef]
- Alferez, F.; Lluch, Y.; Burns, J.K. Phospholipase A2 and Postharvest Peel Pitting in Citrus Fruit. Postharvest Biol. Technol. 2008, 49, 69–76. [Google Scholar] [CrossRef]
- Lafuente, M.T.; Ballester, A.R.; Holland, N.; Cerveró, J.; Romero, P. Interrelation between ABA and Phospholipases D, C and A2 in Early Responses of Citrus Fruit to Penicillium digitatum Infection. Postharvest Biol. Technol. 2021, 175, 111475. [Google Scholar] [CrossRef]
- Romero, P.; Lafuente, M.T.; Alférez, F. A Transcriptional Approach to Unravel the Connection between Phospholipases A2 and D and ABA Signal in Citrus under Water Stress. Plant Physiol. Biochem. 2014, 80, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Li, S.; Li, Y.; Huang, Z.; Li, J.; Xiong, B.; Zhang, M.; Sun, G.; Wang, Z. Pre- or Post-Harvest Treatment with MeJA Improves Post-Harvest Storage of Lemon Fruit by Stimulating the Antioxidant System and Alleviating Chilling Injury. Plants 2022, 11, 2840. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Khan, A.S.; Nawaz, A.; Naz, S.; Ejaz, S.; Shah, A.A.; Haider, M.W. The Combined Application of Arabic Gum Coating and γ-Aminobutyric Acid Mitigates Chilling Injury and Maintains Eating Quality of ‘Kinnow’ Mandarin Fruits. Int. J. Biol. Macromol. 2023, 236, 123966. [Google Scholar] [CrossRef] [PubMed]
- Romero, P.; Rodrigo, M.J.; Alférez, F.; Ballester, A.R.; González-Candelas, L.; Zacarías, L.; Lafuente, M.T. Unravelling Molecular Responses to Moderate Dehydration in Harvested Fruit of Sweet Orange (Citrus sinensis L. Osbeck) Using a Fruit-Specific ABA-Deficient Mutant. J. Exp. Bot. 2012, 63, 2753–2767. [Google Scholar] [CrossRef]
- Fan, L.; Zheng, S.; Cui, D.; Wang, X. Subcellular Distribution and Tissue Expression of Phospholipase Dα, Dβ, and Dγ in Arabidopsis. Plant Physiol. 1999, 119, 1371–1378. [Google Scholar] [CrossRef]
- Mishkind, M.; Vermeer, J.E.M.; Darwish, E.; Munnik, T. Heat Stress Activates Phospholipase D and Triggers PIP2 Accumulation at the Plasma Membrane and Nucleus. Plant J. 2009, 60, 10–21. [Google Scholar] [CrossRef]
- Horváth, I.; Glatz, A.; Nakamoto, H.; Mishkind, M.L.; Munnik, T.; Saidi, Y.; Goloubinoff, P.; Harwood, J.L.; Vigh, L. Heat Shock Response in Photosynthetic Organisms: Membrane and Lipid Connections. Prog. Lipid Res. 2012, 51, 208–220. [Google Scholar] [CrossRef]
- Wan, S.B.; Tian, L.; Tian, R.R.; Pan, Q.H.; Zhan, J.C.; Wen, P.F.; Chen, J.Y.; Zhang, P.; Wang, W.; Huang, W.D. Involvement of Phospholipase D in the Low Temperature Acclimation-Induced Thermotolerance in Grape Berry. Plant Physiol. Biochem. 2009, 47, 504–510. [Google Scholar] [CrossRef]
- Li, G.; Xue, H.W. Arabidopsis PLDζ2 Regulates Vesicle Trafficking and Is Required for Auxin Response. Plant Cell 2007, 19, 281–295. [Google Scholar] [CrossRef]
- Su, Y.; Li, M.; Guo, L.; Wang, X. Different Effects of Phospholipase Dζ2 and Non-Specific Phospholipase C4 on Lipid Remodeling and Root Hair Growth in Arabidopsis Response to Phosphate Deficiency. Plant J. 2018, 94, 315–326. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, C.; Bedair, M.; Welti, R.; Sumner, L.; Baxter, I.; Wang, X. Suppression of Phospholipase Dγs Confers Increased Aluminum Resistance in Arabidopsis thaliana. PLoS ONE 2011, 6, e28086. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Hong, Y.; Wang, X. Phospholipase D- and Phosphatidic Acid-Mediated Signaling in Plants. Biochem. Biophys. Acta 2009, 1791, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Sang, Y.; Cui, D.; Wang, X. Phospholipase D and Phosphatidic Acid-Mediated Generation of Superoxide in Arabidopsis. Plant Physiol. 2001, 126, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Rajashekar, C.B.; Zhou, H.E.; Zhang, Y.; Li, W.; Wang, X. Suppression of Phospholipase Dα1 Induces Freezing Tolerance in Arabidopsis: Response of Cold-Responsive Genes and Osmolyte Accumulation. J. Plant Physiol. 2006, 163, 916–926. [Google Scholar] [CrossRef]
- Kong, X.M.; Zhou, Q.; Zhou, X.; Wei, B.D.; Ji, S.J. Transcription Factor CaNAC1 Regulates Low-Temperature-Induced Phospholipid Degradation in Green Bell Pepper. J. Exp. Bot. 2020, 71, 1078–1091. [Google Scholar] [CrossRef]
- Krčková, Z.; Brouzdová, J.; Daněk, M.; Kocourková, D.; Rainteau, D.; Ruelland, E.; Valentová, O.; Pejchar, P.; Martinec, J. Arabidopsis Non-Specific Phospholipase C1: Characterization and Its Involvement in Response to Heat Stress. Front. Plant Sci. 2015, 6, 165719. [Google Scholar] [CrossRef]
- Zheng, S.Z.; Liu, Y.L.; Li, B.; Shang, Z.L.; Zhou, R.G.; Sun, D.Y. Phosphoinositide-Specific Phospholipase C9 is Involved in the Thermotolerance of Arabidopsis. Plant J. 2012, 69, 689–700. [Google Scholar] [CrossRef]
- Gao, K.; Liu, Y.L.; Li, B.; Zhou, R.G.; Sun, D.Y.; Zheng, S.Z. Arabidopsis Thaliana Phosphoinositide-Specific Phospholipase C Isoform 3 (AtPLC3) and AtPLC9 Have an Additive Effect on Thermotolerance. Plant Cell Physiol. 2014, 55, 1873–1883. [Google Scholar] [CrossRef]
- Wang, K.; Li, Y.L.; Chen, S. Genome-Wide Identification of Phospholipase C Related to Chilling Injury in Peach Fruit. J. Plant Biochem. Biotechnol. 2021, 30, 452–461. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero, P.; Sampedro, R.; Alférez, F.; Lafuente, M.T. Phospholipases in the Response of Fortune Mandarins to Heat and Cold Stress and in the Heat-Induced Cross-Adaption to Chilling. Horticulturae 2025, 11, 1126. https://doi.org/10.3390/horticulturae11091126
Romero P, Sampedro R, Alférez F, Lafuente MT. Phospholipases in the Response of Fortune Mandarins to Heat and Cold Stress and in the Heat-Induced Cross-Adaption to Chilling. Horticulturae. 2025; 11(9):1126. https://doi.org/10.3390/horticulturae11091126
Chicago/Turabian StyleRomero, Paco, Raúl Sampedro, Fernando Alférez, and María T. Lafuente. 2025. "Phospholipases in the Response of Fortune Mandarins to Heat and Cold Stress and in the Heat-Induced Cross-Adaption to Chilling" Horticulturae 11, no. 9: 1126. https://doi.org/10.3390/horticulturae11091126
APA StyleRomero, P., Sampedro, R., Alférez, F., & Lafuente, M. T. (2025). Phospholipases in the Response of Fortune Mandarins to Heat and Cold Stress and in the Heat-Induced Cross-Adaption to Chilling. Horticulturae, 11(9), 1126. https://doi.org/10.3390/horticulturae11091126