Local Climate and Cultivation Practice Shape Total Protein and Phenolic Content of Mulberry (Morus sp.) Leaves in Sub-Mediterranean and Sub-Pannonian Regions of Slovenia
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Method
2.2. Chemicals
2.3. Determination of Total Protein Content
2.4. Extract Preparation for the Analysis of Phenolics
2.5. Determination of Total Phenolic Content
2.6. Determination of Individual Phenolics
2.7. Selected Climatic Parameters
2.8. Statistical Analyses
3. Results
3.1. The Chemotype Analysis of Leaves of Inventoried White and Black Mulberry Trees in Mesoregions of Slovenia
3.2. Comparison of Selected Bioclimatic Parameters in the Sub-Mediterranean and Sub-Pannonian Mesoregions of Sampled Mulberries
3.3. Variations in Protein and Phenolic Content in White Mulberry Leaves Across Sub-Mediterranean and Sub-Pannonian Mesoregions in Slovenia
3.4. Effect of Pruning and Mesoregion on Protein and Phenolics Content in White Mulberry Leaves
3.5. Principal Component Analysis of White Mulberry Basic Descriptors, Biochemical and Selected Bioclimatic Parameters
4. Discussion
4.1. Comparative Analysis of Leaves of Black and White Mulberries
4.2. Correlations Between Protein and Phenolic Contents and Chemotype Variation in Black and White Mulberry Leaves
4.3. Biochemical Profile of White Mulberry Leaves Across Sub-Pannonian and Sub-Mediterranean Mesoregions
4.4. Bioclimatic Comparison Between Sub-Pannonian and Sub-Mediterranean Mesoregions
4.5. Effect of Pruning on Protein and Phenolic Content in White Mulberry Leaves
4.6. Influence of Selected Bioclimatic Factors and Pruning Practices on the Biochemical Composition of White Mulberry Leaves Across Different Mesoregions in Slovenia
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Žontar, J. Svilogojstvo in Svilarstvo na Slovenskem od 16. do 20. Stoletja; Inštitut za zgodovino SAZU: Ljubljana, Slovenia, 1957. [Google Scholar]
- Ipavec, V.M. Murve in Kavalirji: Svilogojstvo na Goriškem; Inštitut za slovensko narodopisje: Ljubljana, Slovenia, 2008. [Google Scholar]
- Urbanek Krajnc, A.; Ugulin, T.; Pausic, A.; Rabensteiner, J.; Bukovac, V.; Mikulic Petkovsek, M.; Janžekovič, F.; Bakonyi, T.; Berčič, R.L.; Felicijan, M. Morphometric and biochemical screening of old mulberry trees (Morus alba L.) in the former sericulture region of Slovenia. Acta Soc. Bot. Pol. 2019, 88, 3614. [Google Scholar] [CrossRef]
- Šelih, M.; Mikulič Petkovšek, M.; Krajnc, D.; Berčič, R.L.; Urbanek Krajnc, A. Screening of leaf metabolites in historical mulberry trees (Morus alba L.) from different eco-geographical regions of Slovenia. Trees 2020, 34, 971–986. [Google Scholar] [CrossRef]
- Qin, D.; Wang, G.; Dong, Z.; Xia, Q.; Zhao, P. Comparative fecal metabolomes of silkworms being fed mulberry leaf and artificial diet. Insects 2020, 11, 851. [Google Scholar] [CrossRef]
- Komac, B.; Ciglič, R.; Pavšek, M.; Kokalj, Ž. Naravne Nesreče v Mestih—Primer Mestnega Toplotnega Otoka [Natural Hazards in Cities—The Case of Urban Heat Island]; Založba ZRC: Ljubljana, Slovenia, 2017. [Google Scholar]
- Ogrin, D. Podnebni tipi v Sloveniji [The climate types of Slovenia]. Geogr. Vestn. 1996, 68, 39–56. [Google Scholar]
- Ogrin, D. Podnebje [Climate]. In The Geography of Slovenia; Perko, D., Ciglič, R., Zorn, M., Eds.; Springer: Berlin/Heidelgerg, Germany; Research Centre of the Slovenian Academy of Sciences and Arts: Ljubljana, Slovenia, 2002; pp. 29–34. [Google Scholar]
- Kadereit, J.W.; Körner, C.; Kost, B.; Sonnewald, U. Lehrbuch der Pflanzenwissenschaften; Springer Spektrum: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Komac, B.; Pavšek, M.; Topole, M. Climate and Weather of Slovenia; World Regional Geography Book Series; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Polatoglu, K. “Chemotypes”–A fact that should not be ignored in natural product studies. Nat. Prod. J. 2013, 3, 10–14. [Google Scholar] [CrossRef]
- Urbanek Krajnc, A.; Senekovič, J.; Cappellozza, S.; Mikulic-Petkovsek, M. The Darker the Better: Identification of Chemotype Profile in Soroses of Local and Introduced Mulberry Varieties with Respect to the Colour Type. Foods 2023, 12, 3985. [Google Scholar] [CrossRef]
- Macflot, M. Vollständige aus Vieljähriger Erfahrung Vollkommen Gegründete Anleitung Sowohl zur Seidenzucht als Auch Zum Pflanzen und Beschneiden der Maulbeerbäume; Hansebooks: Norderstedt, Germany, 1776; p. 84. [Google Scholar]
- Bolle, I. Poduk o Murvoreji; Cesarsko kraljevo kmetijsko društvo: Gorica, Slovenia, 1896. [Google Scholar]
- Bolle, I. Ob Uzgoju Murava; Cesarsko kraljevo kmetijsko društvo: Gorica, Slovenia, 1908. [Google Scholar]
- Zimmermann, P. Štajerski Raj: Savinjska Dolina in Novo Celje; ZKŠT—Zavod za kulturo, šport in turizem: Žalec, Slovenia, 2016. [Google Scholar]
- Hussain, S.; Asghar, R.; Ajaib, M.; Ali, I.; Faheem, M. DNA barcode for phylogenetic analysis of genus Morus species from Azad Jammu and Kashmir. Pak. J. Bot. 2023, 55, 2211–2220. [Google Scholar] [CrossRef] [PubMed]
- Ercisli, S.; Orhan, E. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem. 2007, 103, 1380–1384. [Google Scholar] [CrossRef]
- Yilmaz, H. Determination of fruit chemical properties of Morus nigra L., Morus alba L. and Morus rubra L. by HPLC. Sci. Hortic. 2011, 132, 37–41. [Google Scholar] [CrossRef]
- Erarslan, Z.B.; Kandemir, S.; Kültür, Ş. Comparative Morphological and Anatomical Studies on Morus Species (Moraceae) in Turkey. Turk. J. Pharm. Sci. 2021, 18, 157–166. [Google Scholar] [CrossRef]
- Khadivi, A.; Hosseini, A.S.; Naderi, A. Morphological characterizations of Morus nigra L., M. alba L., and M. alba L. var. nigra. Genet. Resour. Crop Evol. 2024, 71, 1635–1642. [Google Scholar] [CrossRef]
- Browicz, K. Where is the place of origin of Morus nigra (Moraceae)? Fragm. Florist. Geobot. 2000, 45, 273–280. [Google Scholar]
- Švagr, P.; Gallo, J.; Vítámvás, J.; Podrázský, V.; Baláš, M. Potential of Morus nigra in Central Europe focused on micropropagation: A short review. J. For. Sci. 2023, 69, 463–469. [Google Scholar] [CrossRef]
- Kumar, K.; Mohan, M.; Tiwari, N.; Kumar, S. Production potential and leaf quality evaluation of selected mulberry (Morus alba) clones. J. Pharmacogn. Phytochem. 2018, 7, 482–486. [Google Scholar]
- Jelen, Š.; Urbanek Krajnc, A. Composition of Proteins and Phenolics in the Leaves of Different Mulberry Species (Morus alba L., M. alba × rubra, M. australis Poir., M. nigra L.). Agric. Sci. 2023, 20, 23–33. [Google Scholar] [CrossRef]
- Devi, B.; Sharma, N.; Kumar, D.; Jeet, K. Morus alba Linn: A phytopharmacological review. Int. J. Pharm. Pharm. Sci. 2013, 5, 14–18. [Google Scholar]
- Thaipitakwong, T.; Numhom, S.; Aramwit, P. Mulberry leaves and their potential effects against cardiometabolic risks: A review of chemical compositions, biological properties and clinical efficacy. Pharm. Biol. 2018, 56, 109–118. [Google Scholar] [CrossRef]
- Park, E.; Lee, S.M.; Lee, J.E.; Kim, J.-H. Anti-Inflammatory Activity of Mulberry Leaf Extract through Inhibition of NF-κB. J. Funct. Foods 2013, 5, 178–186. [Google Scholar] [CrossRef]
- Zafar, M.S.; Muhammad, F.; Javed, I.; Akhtar, M.; Khaliq, T.; Aslam, B.; Waheed, A.; Yasmin, R.; Zafar, H. White mulberry (Morus alba): A brief phytochemical and pharmacological evaluations account. Int. J. Agric. Biol. 2013, 15, 612–620. [Google Scholar]
- Jeszka-Skowron, M.; Flaczyk, E.; Jeszka, J.; Krejpcio, Z.; Król, E.; Buchowski, M.S. Mulberry leaf extract intake reduces hyperglycaemia in streptozotocin (STZ)-induced diabetic rats fed high-fat diet. J. Funct. Foods 2014, 9, 9–17. [Google Scholar] [CrossRef]
- Yu, Y.; Li, H.; Zhang, B.; Wang, J.; Shi, X.; Huang, J.; Yang, J.; Zhang, Y.; Deng, Z. Nutritional and functional components of mulberry leaves from different varieties: Evaluation of their potential as food materials. Int. J. Food Prop. 2018, 21, 1495–1507. [Google Scholar] [CrossRef]
- He, X.; Chen, X.; Ou, X.; Liyan, M.; Xu, W.; Huang, K. Evaluation of flavonoid and polyphenol constituents in mulberry leaves using HPLC fingerprint analysis. Int. J. Food Sci. Technol. 2020, 55, 526–533. [Google Scholar] [CrossRef]
- Choi, S.W.; Lee, Y.J.; Ha, S.B.; Jeon, Y.H.; Lee, D.H. Evaluation of biological activity and analysis of functional constituents from different parts of mulberry (Morus alba L.) tree. J. Korean Soc. Food Sci. Nutr. 2015, 44, 823–831. [Google Scholar] [CrossRef]
- Urbanek Krajnc, A.; Bakonyi, T.; Ando, I.; Kurucz, E.; Solymosi, N.; Pongrac, P.; Berčič, R.L. The Effect of Feeding with Central European Local Mulberry Genotypes on the Development and Health Status of Silkworms and Quality Parameters of Raw Silk. Insects 2022, 13, 836. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz-Düzyaman, H.; Medina-Alonso, M.G.; Sanz, C.; Pérez, A.G.; de la Rosa, R.; León, L. Influence of genotype and environment on fruit phenolic composition of olive. Horticulturae 2023, 9, 1087. [Google Scholar] [CrossRef]
- Sytar, O.; Živčák, M.; Bruckova, K.; Brestič, M.; Hemmerich, I.; Rauh, C.; Simko, I. Shift in accumulation of flavonoids and phenolic acids in lettuce attributable to changes in ultraviolet radiation and temperature. Sci. Hortic. 2018, 239, 193–204. [Google Scholar] [CrossRef]
- Dias, M.; Pinto, D.; Figueiredo, C.; Santos, C.; Silva, A. Phenolic and lipophilic metabolite adjustments in Olea europaea (olive) trees during drought stress and recovery. Phytochemistry 2021, 185, 112695. [Google Scholar] [CrossRef]
- Mesa-Marín, J.; Mateos-Naranjo, E.; Carreiras, J.; Feijão, E.; Duarte, B.; Matos, A.; Betti, M.; Del Rio, C.; Romero-Bernal, M.; Montaner, J.; et al. Interactive temperature and CO2 rise, salinity, drought, and bacterial inoculation alter the content of fatty acids, total phenols, and oxalates in the edible halophyte Salicornia ramosissima. Plants 2023, 12, 1395. [Google Scholar] [CrossRef]
- Filho, J.M.T.A.; Silva, P.S.; de Oliveira Júnior, R.G.; Silva, F.S.; Almeida, J.R.G.S.; Rolim, L.A.; Araújo, E.C.C. Flavonoids as photoprotective agents: A systematic review. J. Med. Plants Res. 2016, 10, 848–864. [Google Scholar] [CrossRef]
- Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef]
- Sang, M.; Li, Q.; Li, D.; Dang, J.; Lu, C.; Liu, C.; Wu, Q. Heat Stress and Microbial Stress Induced Defensive Phenol Accumulation in Medicinal Plant Sparganium stoloniferum. Int. J. Mol. Sci. 2024, 25, 6379. [Google Scholar] [CrossRef]
- Rao, M.J.; Zhai, B. The Role of Polyphenols in Abiotic Stress Tolerance and Their Antioxidant Properties to Scavenge Reactive Oxygen Species and Free Radicals. Antioxidants 2025, 14, 74. [Google Scholar] [CrossRef]
- Arkorful, E.; Yu, Y.; Chen, C.; Lu, L.; Hu, S.; Yu, H.; Ma, Q.; Thangaraj, K.; Periakaruppan, R.; Jeyaraj, A. Untargeted metabolomic analysis using UPLC-MS/MS identifies metabolites involved in shoot growth and development in pruned tea plants (Camellia sinensis (L.) O. Kuntz). Sci. Hortic. 2020, 264, 109164. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Wang, Y.; Zou, J.; Lin, S.; Chen, M.; Miao, P.; Jia, X.; Cheng, P.; Pang, X. Transcriptomic analysis of the effect of pruning on growth, quality, and yield of Wuyi Rock Tea. Plants 2023, 12, 3625. [Google Scholar] [CrossRef]
- Torrent, M.; Chalancon, G.; De Groot, N.S.; Wuster, A.; Madan Babu, M. Cells alter their tRNA abundance to selectively regulate protein synthesis during stress conditions. Sci. Signal. 2018, 11, eaat6409. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-F.; An, X.-H.; Li, X.-M.; Zhang, H.; Cao, H.-B.; Chen, H.-J.; Tian, Y. Metabolomic and transcriptomic analyses of peach leaves and fruits in response to pruning. BMC Genom. 2024, 25, 666. [Google Scholar] [CrossRef] [PubMed]
- Urbanek Krajnc, A.; Kozmos, M. Deliverable 1.3 ARACNE-Guidance Model to Collect Mulberry Samples; University of Maribor, Faculty of Agriculture and Life Sciences: Maribor, Slovenia, 2023; p. 68. Available online: https://cordis.europa.eu/project/id/.101095188 (accessed on 1 May 2024).
- Perko, D.; Ciglič, R. The Geography of Slovenia; Perko, D., Ciglič, R., Zorn, M., Eds.; World Regional Geography Book Series; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Veberic, R.; Hudina, M.; Misic, E. HPLC-DAD-MS Identification and Quantification of Phenolic Components in Japanese Knotweed and American Pokeweed Extracts and Their Phytotoxic Effect on Seed Germination. Plants 2022, 11, 3053. [Google Scholar] [CrossRef] [PubMed]
- Agencija Republike Slovenije za okolje (ARSO). Podnebni Podatki za Slovenijo. Available online: https://meteo.arso.gov.si/met/sl/climate/tables/ (accessed on 10 July 2023).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 2017, 4, 1–20. [Google Scholar] [CrossRef]
- Esri. World Imagery [basemap]. Sources: Esri, TomTom, FAO, NOAA, USGS, © OpenStreetMap contributors. 2023. Available online: https://www.arcgis.com (accessed on 10 August 2025).
- Quade, D. Rank analysis of covariance. J. Am. Stat. Assoc. 1967, 62, 1187–1200. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, E.M.; Amorós, A.; Hernández, F.; Martínez, J.J. Physicochemical properties of white (Morus alba) and black (Morus nigra) mulberry leaves, a new food supplement. J. Food Nutr. Res. 2017, 5, 253–261. [Google Scholar]
- Iqbal, S.; Younas, U.; Chan, K.W.; Sarfraz, R.A.; Uddin, K. Proximate composition and antioxidant potential of leaves from three varieties of Mulberry (Morus sp.): A comparative study. Int. J. Mol. Sci. 2012, 13, 6651–6664. [Google Scholar] [CrossRef]
- Polumackanycz, M.; Wesolowski, M.; Viapiana, A. Morus alba L. and Morus nigra L. leaves as a promising food source of phenolic compounds with antioxidant activity. Plant Foods Hum. Nutr. 2021, 76, 458–465. [Google Scholar] [CrossRef]
- Alidee, T.; Jales, M.; Hjaij, N.D.; Almouna, A. Estimation of some phytochemical compounds and antioxidant properties of leaves from different mulberry varieties grown in Syria. Complement. Altern. Med. 2023, 2023, 6. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, E.M.; Mena, P.; García-Viguera, C.; Martínez, J.J.; Hernández, F. Phytochemical evaluation of white (Morus alba L.) and black (Morus nigra L.) mulberry fruits, a starting point for the assessment of their beneficial properties. J. Funct. Foods 2015, 12, 399–408. [Google Scholar] [CrossRef]
- Radojković, M.; Zeković, Z.; Vidovic, S.; Kočar, D.; Mašković, P. Free radical scavenging activity and total phenolic and flavonoid contents of mulberry (Morus spp. L., Moraceae) extracts. Hem. Ind. 2012, 66, 547–552. [Google Scholar] [CrossRef]
- Pothinuch, P.; Tongchitpakdee, S. Phenolic analysis for classification of mulberry (Morus spp. leaves according to cultivar and leaf age. J. Food Qual. 2019, 2019, 11. [Google Scholar] [CrossRef]
- Kafkas, E.; Attar, S.H.; Gundesli, M.A.; Ozcan, A.; Ergun, M. Phenolic and fatty acid profile, and protein content of different walnut cultivars and genotypes (Juglans regia L.) grown in the USA. Int. J. Fruit. Sci. 2020, 20, S1711–S1720. [Google Scholar] [CrossRef]
- Cilliers, J.; Singleton, V.; Lamuela-Raventos, R. Total polyphenols in apples and ciders; correlation with chlorogenic acid. J. Food Sci. 1990, 55, 1458–1459. [Google Scholar] [CrossRef]
- Ru, W.; Pang, Y.; Gan, Y.; Liu, Q.; Bao, J. Phenolic compounds and antioxidant activities of potato cultivars with white, yellow, red and purple flesh. Antioxidants 2019, 8, 419. [Google Scholar] [CrossRef]
- Joly, N.; Souidi, K.; Depraetere, D.; Wils, D.; Martin, P. Potato by-products as a source of natural chlorogenic acids and phenolic compounds: Extraction, characterization, and antioxidant capacity. Molecules 2020, 26, 177. [Google Scholar] [CrossRef]
- Li, Z.; Lee, H.W.; Liang, X.; Liang, D.; Wang, Q.; Huang, D.; Ong, C.N. Profiling of phenolic compounds and antioxidant activity of 12 cruciferous vegetables. Molecules 2018, 23, 1139. [Google Scholar] [CrossRef]
- Bataillon, T.; Gauthier, P.; Villesen, P.; Santoni, S.; Thompson, J.D.; Ehlers, B.K. From genotype to phenotype: Genetic redundancy and the maintenance of an adaptive polymorphism in the context of high gene flow. Evol. Lett. 2022, 6, 189–202. [Google Scholar] [CrossRef]
- Yanfang, Z.; Dechang, H.; Jincheng, Z.; Ping, Z.; Zhaohong, W.; Chuanjie, C. Development of a mulberry core collection originated in China to enhance germplasm conservation. Crop Breed. Appl. Biotechnol. 2019, 19, 55–61. [Google Scholar] [CrossRef]
- Putthisawong, N.; Nutthapornnitchakul, S.; Thumthuan, N.; Kuleung, C.; Ngernmuen, A.; Tasanasuwan, P.; Jantasuriyarat, C. Genetic diversity of Thailand reserved mulberry germplasm based on morphological characteristics and newly developed EST-SSR and SRAP markers. Hortic. Environ. Biotechnol. 2024, 65, 679–694. [Google Scholar] [CrossRef]
- Abbas, Z.; Tong, Y.; Wang, J.; Zhang, J.; Wei, X.; Si, D.; Zhang, R. Potential role and mechanism of mulberry extract in immune modulation: Focus on chemical compositions, mechanistic insights, and extraction techniques. Int. J. Mol. Sci. 2024, 25, 5333. [Google Scholar] [CrossRef]
- Al-Kirshi, R.A.; Alimon, A.R.; Zulkifli, I.; Zahari, M.W.; Sazili, A.Q. The chemical composition and nutritive value of mulberry leaf as a protein source in poultry diets. In The 1st International Seminar on Animal Industry; Faculty of Animal Science, Bogor Agricultural University: Bogor, Indonesia, 2009; pp. 98–102. [Google Scholar]
- Andadari, L.; Minarningsih, M.; Suwandi, T. The effect of feeding various species of mulberry (Morus spp.) on the growth of silkworm and quality of cocoon hybrid BS 09. IOP Conf. Ser. Earth Environ. Sci. 2021, 914, 012017. [Google Scholar] [CrossRef]
- Flaczyk, E.; Kobus-Cisowska, J.; Przeor, M.; Korczak, J.; Remiszewski, M.; Korbas, E.; Buchowski, M. Chemical characterization and antioxidative properties of Polish variety of Morus alba L. eaf aqueous extracts from the laboratory and pilot-scale processes. Agric. Sci. 2013, 4, 141. [Google Scholar] [CrossRef]
- Tomczyk, M.; Miłek, M.; Sidor, E.; Kapusta, I.; Litwińczuk, W.; Puchalski, C.; Dżugan, M. The effect of adding the leaves and fruits of Morus alba to rape honey on its antioxidant properties, polyphenolic profile, and amylase activity. Molecules 2019, 25, 84. [Google Scholar] [CrossRef]
- Jang, M.; Kim, G. The cytoprotective effect of chlorogenic acid against oxidative stress-induced cell damage via the ERK and PI3K/Akt-mediated Nrf2/HO-1 signaling pathways. FASEB J. 2017, 31, lb186. [Google Scholar] [CrossRef]
- Mei, Y.; Sun, H.; Du, G.; Wang, X.; Lyu, D. Exogenous chlorogenic acid alleviates oxidative stress in apple leaves by enhancing antioxidant capacity. Sci. Hortic. 2020, 274, 109676. [Google Scholar] [CrossRef]
- Memon, A.A.; Memon, N.; Luthria, D.L.; Bhanger, M.I.; Pitafi, A.A. Phenolic acids profiling and antioxidant potential of mulberry (Morus laevigata W., Morus nigra L., Morus alba L.) leaves and fruits grown in Pakistan. Pol. J. Food Nutr. Sci. 2010, 60, 25–32. [Google Scholar]
- Sugiyama, M.; Katšube, T.; Kôyama, A.; Itamura, H. Seasonal changes in functional component contents in mulberry. Hortic. J. 2017, 86, 534–542. [Google Scholar] [CrossRef]
- Jarienė, E.; Levickienė, D.; Danilčenko, H.; Vaitkevičienė, N.; Kulaitienė, J.; Jakštas, V.; Gajewski, M. Effects of biodynamic preparations on concentration of phenolic compounds in the leaves of two white mulberry cultivars. Biol. Agric. Hortic. 2019, 35, 132–142. [Google Scholar] [CrossRef]
- Lin, Z.; Gan, T.; Huang, Y.; Bao, L.; Liu, S.; Cui, X.; Wang, H.; Jiao, F.; Zhang, M.; Su, C.; et al. Anti-inflammatory activity of mulberry leaf flavonoids in vitro and in vivo. Int. J. Mol. Sci. 2022, 23, 7694. [Google Scholar] [CrossRef] [PubMed]
- Hunyadi, A.; Martins, A.; Hsieh, T.J.; Seres, A.; Zupkó, I. Chlorogenic acid and rutin play a major role in the in vivo anti-diabetic activity of Morus alba leaf extract on type II diabetic rats. PLoS ONE 2012, 7, e50619. [Google Scholar] [CrossRef]
- Waizumi, R.; Hirayama, C.; Tomita, S.; Iizuka, T.; Kuwazaki, S.; Jouraku, A.; Sezutsu, H. A major endogenous glycoside hydrolase mediating quercetin uptake in Bombyx mori. PLoS Genet. 2024, 20, e1011118. [Google Scholar] [CrossRef]
- Preiß, S.; Degenhardt, J.; Gershenzon, J. Plant-Animal Dialogues. In Ecological Biochemistry: Environmental and Interspecies Interactions; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014; pp. 312–330. [Google Scholar]
- Walkowiak-Bródka, A.; Piekuś-Słomka, N.; Wnuk, K.; Kupcewicz, B. Analysis of white mulberry leaves and dietary supplements, ATR-FTIR combined with chemometrics for the rapid determination of 1-deoxynojirimycin. Nutrients 2022, 14, 5276. [Google Scholar] [CrossRef]
- Fatima, M.; Dar, M.A.; Dhanavade, M.J.; Abbas, S.Z.; Bukhari, M.N.; Arsalan, A.; Ouyang, Z. Biosynthesis and pharmacological activities of the bioactive compounds of white mulberry (Morus alba): Current paradigms and future challenges. Biology 2024, 13, 506. [Google Scholar] [CrossRef]
- Maqsood, M.; Saeed, R.; Sahar, A.; Khan, M. Mulberry plant as a source of functional food with therapeutic and nutritional applications: A review. J. Food Biochem. 2022, 46, e14263. [Google Scholar] [CrossRef]
- Samanta, A.; Das, G.; Das, S.K. Roles of flavonoids in plants. Int. J. Pharm. Sci. Tech. 2011, 100, 12–35. [Google Scholar]
- Maenaka, K.; Park, E.Y. Silkworm Biofactory: Silk to Biology; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Zhang, S.; Zhang, L.; Zou, H.; Qiu, L.; Zheng, Y.; Yang, D.; Wang, Y. Effects of light on secondary metabolite biosynthesis in medicinal plants. Front. Plant Sci. 2021, 12, 781236. [Google Scholar] [CrossRef]
- Repe, B. Regions and landscapes. In The Soils of Slovenia; Springer: Berlin/Heidelberg, Germany, 2017; pp. 9–17. [Google Scholar]
- De Luis, M.; Čufar, K.; Saz, M.A.; Longares, L.A.; Ceglar, A.; Kajfež-Bogataj, L. Trends in seasonal precipitation and temperature in Slovenia during 1951–2007. Reg. Environ. Change 2014, 14, 1801–1810. [Google Scholar] [CrossRef]
- Črepinšek, Z.; Žnidaršič, Z.; Pogačar, T. Spatio-temporal analysis of the Universal Thermal Climate Index (UTCI) for the summertime in the period 2000–2021 in Slovenia: The implication of heat stress for agricultural workers. Agronomy 2023, 13, 331. [Google Scholar] [CrossRef]
- Pogačar, T.; Kuk, R.; Kokot, K.; Turnšek, M. Identifying the tourism sector’s exposure to climate change utilizing two different climate datasets: The case of three climatically diverse locations in Slovenia. Int. J. Biometeorol. 2025, 69, 1541–1556. [Google Scholar] [CrossRef] [PubMed]
- Hrvatin, M.; Zorn, M. Climate change impacts on hydrology in the Mediterranean part of Slovenia. In Climate Change in the Mediterranean and Middle Eastern Region; Springer: Berlin/Heidelberg, Germany, 2022; pp. 85–118. [Google Scholar]
- Prapotnik Brdnik, A. Thermal performance optimization of double and triple glazing systems for Slovenian climate conditions. Sustainability 2021, 13, 11857. [Google Scholar] [CrossRef]
- Wang, X.; Wang, K.; Yin, T.; Zhao, Y.; Liu, W.; Shen, Y.; Ding, Y.; Tang, S. Nitrogen fertilizer regulated grain storage protein synthesis and reduced chalkiness of rice under actual field warming. Front. Plant Sci. 2021, 12, 715436. [Google Scholar] [CrossRef] [PubMed]
- The, S.V.; Snyder, R.; Tegeder, M. Targeting nitrogen metabolism and transport processes to improve plant nitrogen use efficiency. Front. Plant Sci. 2021, 11, 628366. [Google Scholar] [CrossRef]
- Yu, Z.; Islam, S.; She, M.; Diepeveen, D.; Zhang, Y.; Tang, G.; Zhang, J.; Juhasz, A.; Yang, R.; Ma, W. Wheat grain protein accumulation and polymerization mechanisms driven by nitrogen fertilization. Plant J. 2018, 96, 1160–1177. [Google Scholar] [CrossRef]
- Lyu, X.; Liu, Y.; Li, N.; Ku, L.; Hou, Y.; Wen, X. Foliar applications of various nitrogen (N) forms to winter wheat affect grain protein accumulation and quality via N metabolism and remobilization. Crop J. 2022, 10, 1165–1177. [Google Scholar] [CrossRef]
- Yang, T.; Li, H.; Tai, Y.; Dong, C.; Cheng, X.; Xia, E.; Chen, Z.; Li, F.; Wan, X.; Zhang, Z. Transcriptional regulation of amino acid metabolism in response to nitrogen deficiency and nitrogen forms in tea plant root (Camellia sinensis L.). Sci. Rep. 2020, 10, 6868. [Google Scholar] [CrossRef]
- Zimmermann, S.E.; Benstein, R.M.; Flores-Tornero, M.; Blau, S.; Anoman, A.D.; Rosa-Téllez, S.; Gerlich, S.C.; Salem, M.A.; Alseekh, S.; Kopriva, S. The phosphorylated pathway of serine biosynthesis links plant growth with nitrogen metabolism. Plant Physio. 2021, 186, 1487–1506. [Google Scholar] [CrossRef] [PubMed]
- Han, M.-L.; Lv, Q.-Y.; Zhang, J.; Wang, T.; Zhang, C.-X.; Tan, R.-J.; Wang, Y.-L.; Zhong, L.-Y.; Gao, Y.-Q.; Chao, Z.-F.; et al. Decreasing nitrogen assimilation under drought stress by suppressing DST-mediated activation of Nitrate Reductase 1.2 in rice. Mol. Plant 2022, 15, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Zhen, S.; Deng, X.; Zhang, M.; Zhu, G.; Lv, D.; Wang, Y.; Zhu, D.; Yan, Y. Comparative phosphoproteomic analysis under high-nitrogen fertilizer reveals central phosphoproteins promoting wheat grain starch and protein synthesis. Front. Plant Sci. 2017, 8, 67. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Gan, Q.; Xu, Y.; Lu, J.K.; Zhong, L.; Wang, M.; Liu, S.; Wang, L. Pruning improves seedling development and bioactive secondary metabolite accumulation in the leaves of Ginkgo biloba. Trees 2022, 36, 953–966. [Google Scholar] [CrossRef]
- Sobuj, N.; Virjamo, V.; Nissinen, K.; Sivadasan, U.; Mehtätalo, L.; Nybakken, L.; Peltola, H.; Julkunen-Tiitto, R. Responses in growth and phenolics accumulation to lateral bud removal in male and female saplings of Populus tremula (L.) under simulated climate change. Sci. Total Environ. 2020, 704, 135462. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Miao, P.; Chen, M.; Du, M.; Pang, X.; Ye, J.; Wang, H.; Jia, X. Effects of pruning on tea tree growth, soil enzyme activity and microbial diversity. Agronomy 2023, 13, 1214. [Google Scholar] [CrossRef]
- Sun, L.; Tao, S.; Zhang, S. Characterization and quantification of polyphenols and triterpenoids in thinned young fruits of ten pear varieties by UPLC-Q TRAP-MS/MS. Molecules 2019, 24, 159. [Google Scholar] [CrossRef] [PubMed]
- Christopoulos, M.V.; Tsantili, E. Participation of phenylalanine ammonia-lyase (PAL) in increased phenolic compounds in fresh cold stressed walnut (Juglans regia L.) kernels. Postharvest Biol. Technol. 2015, 104, 17–25. [Google Scholar] [CrossRef]
- Bai, H.; Jiang, S.; Liu, J.; Tian, Y.; Zheng, X.; Wang, S.; Xie, Y.; Li, Y.; Jia, P. Planting conditions can enhance the bioactivity of mulberry by affecting its composition. Front. Plant Sci. 2023, 14, 1133062. [Google Scholar] [CrossRef]
- Ryan, E.M.; Cleland, E.E. Clinal variation in phenological traits and fitness responses to drought across the native range of California poppy. Clim. Change Ecol. 2021, 2, 100021. [Google Scholar] [CrossRef]
- Mayekar, H.V.; Ramkumar, D.K.; Garg, D.; Nair, A.; Khandelwal, A.; Joshi, K.; Rajpurohit, S. Clinal variation as a tool to understand climate change. Front. Physiol. 2022, 13, 880728. [Google Scholar] [CrossRef]
- Vrábl, D.; Nezval, J.; Pech, R.; Volná, A.; Mašková, P.; Pleva, J.; Kuzniciusová, N.; Provazová, M.; Štroch, M.; Špunda, V. Light drives and temperature modulates: Variation of phenolic compounds profile in relation to photosynthesis in spring barley. Int. J. Mol. Sci. 2023, 24, 2427. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Tu, J.; Han, X.; Zhuo, J.; Liu, G.; Han, Y.; Du, H.; Wang, J.; Xiao, H. Characteristics of mulberry leaf powder enriched with γ-aminobutyric acid and its antioxidant capacity as a potential functional food ingredient. Front. Nutr. 2022, 9, 900718. [Google Scholar] [CrossRef]
- Win, A.; Sankhuan, D.; Chintakovid, W.; Supaibulwatana, K. Bioactive compounds produced in leaves of mulberry (Morus alba L.) transplants under modified environments of root and aerial zones. Plants 2022, 11, 2850. [Google Scholar] [CrossRef]
- Hideg, É.; Jansen, M.A.K.; Strid, Å. UV-B exposure, ROS, and stress: Inseparable companions or loosely linked associates. Trends Plant Sci. 2013, 18, 107–115. [Google Scholar] [CrossRef]
- Schenke, D.; Utami, H.P.; Zhou, Z.; Gallegos, M.T.; Cai, D. Suppression of UV-B stress induced flavonoids by biotic stress: Is there reciprocal crosstalk? Plant Physiol. Biochem. 2019, 134, 53–63. [Google Scholar] [CrossRef]
- Kim, S.; Jeon, J.; Kang, S.; Jung, Y.; Ly, L.; Um, B. Content of antioxidative caffeoylquinic acid derivatives in field-grown Ligularia fischeri (Ledeb.) Turcz and responses to sunlight. J. Agric. Food Chem. 2012, 60, 5597–5603. [Google Scholar] [CrossRef]
- Gloser, V.; Dvořáčková, M.; Mota, D.; Petrović, B.; González, P.; Geilfus, C. Early changes in nitrate uptake and assimilation under drought in relation to transpiration. Front. Plant Sci. 2020, 11, 602065. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Pinheiro, C.; Chaves, M.M. Photosynthesis and drought: Can we make metabolic connections from available data? J. Exp. Bot. 2011, 62, 869–882. [Google Scholar] [CrossRef]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef] [PubMed]
- Nakabayashi, R.; Mori, T.; Saito, K. Alternation of flavonoid accumulation under drought stress in Arabidopsis thaliana. Plant Signal. Behav. 2014, 9, e29518. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of Amaranthus leafy vegetable. BMC Plant Biol. 2018, 18, 258. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, M.; Kordrostami, M.; Mohamadhasani, F.; Chaeikar, S.S. Antioxidant gene expression analysis and evaluation of total phenol content and oxygen-scavenging system in tea accessions under normal and drought stress conditions. BMC Plant Biol. 2021, 21, 494. [Google Scholar] [CrossRef] [PubMed]
Phenolic Compound | Retention Time [Min] | [MH]- | Characteristic m/z of Ions in Negative Ion Mode |
---|---|---|---|
p-coumaric acid hexoside1 | 9.89 | 325 | MS2 → 163 (100), 119 (40); MS3 (163) → 119 (100), 93 (60) |
p-coumaric acid hexoside2 | 12.40 | 325 | MS2 → 163 (100), 119 (40); MS3 (163) → 119 (100), 93 (60) |
chlorogenic acid (trans-5-caffeoylquinic acid) | 12.88 | 353 | MS2 ⟶ 191 (100); MS3 ⟶ 127 (100), 173 (65), 111 (42), 93 (43), 85 (39) |
4-caffeoylquinic acid | 13.67 | 353 | MS2 → 173 (100), 191 (40), 179 (30); MS3 (173) → 111 (100), 93 (60) |
cis-5-caffeoylquinic acid | 14.46 | 353 | MS2 ⟶ 191 (100), 179 (50), 135 (11); MS3 ⟶ 85 (100), 173 (75), 127 (89), 111 (55), 93 (74) |
trans-5-p-coumaroylquinic acid | 15.11 | 337 | MS2 → 191 (100), 163 (100), 173 (40); MS3 (163) → 119 (100), 93 (60) |
cis-5-p-coumaroylquinic acid | 15.88 | 337 | MS2 ⟶ 163 (100), 191 (5), 119 (6); MS3 ⟶ 119 (100) |
3-p-coumaroylquinic acid | 16.69 | 337 | MS2 ⟶ 163 (100), 191 (6), 119 (6); MS3 ⟶ 119 (100) |
quercetin dirhamnosyl-hexoside | 18.09 | 755 | MS2 → 301 (100); MS3 (301) → 179 (100), 151 (70), 121 (50) |
kaempferol dirhamnosyl-hexoside | 18.50 | 739 | MS2 → 285 (100); MS3 (285) → 151 (100), 133 (70), 117 (50) |
quercetin rhamnosyl-hexoside | 19.34 | 609 | MS2 → 301 (100); MS3 (301) → 179 (100), 151 (70), 121 (50) |
rutin | 20.51 | 609 | MS2 ⟶ 301 (100); MS3 ⟶ 179 (100), 273 (20), 257 (14), 151 (94) |
quercetin-3-glucoside | 21.01 | 463 | MS2 ⟶ 301 (100); MS3 ⟶ 179 (100), 273 (22), 257 (10), 151 (76) |
quercetin acetyl-rhamnosyl-hexoside | 21.55 | 651 | MS2 → 301 (100); MS3 (301) → 179 (100), 151 (70), 121 (50) |
kaempferol rhamnosyl-hexoside | 22.20 | 593 | MS2 → 285 (100); MS3 (285) → 151 (100), 133 (70), 117 (50) |
kaempferol acetyl-rhamnosyl-hexoside | 23.07 | 635 | MS2 → 285 (100); MS3 (285) → 151 (100), 133 (70), 117 (50) |
quercetin malonyl-hexoside | 23.27 | 549 | MS2 → 301 (100); MS3 (301) → 179 (100), 151 (70), 121 (50) |
quercetin acetyl-hexoside | 24.33 | 505 | MS2 → 301 (100); MS3 (301) → 179 (100), 151 (70), 121 (50) |
kaempferol acetyl-hexoside | 25.07 | 489 | MS2 → 285 (100); MS3 (285) → 151 (100), 133 (70), 117 (50) |
Mesoregion | Drava Plain | Slovenian Hills | Gorica Hills * | Vipava Hills | Karst Plateau | Koper Hills | Brkini Hills and Reka Valley * |
---|---|---|---|---|---|---|---|
Average air temperature (June–August 2023) [°C] | 21.2 ± 0.1 Ac | 21.0 ± 0.1 Ac | 22.7 ± 0.0 Aab | 22.9 ± 0.3 Aa | 21.4 ± 0.7 Ac | 22.2 ± 0.4 Ab | 21.0 ± 0.0 Ac |
Average air temperature (June–August 1970–2000) [°C] | 18.9 ± 0.1 Bc | 18.7 ± 0.2 Bd | 21.4 ± 0.0 Bab | 21.3 ± 0.3 Ba | 19.7 ± 0.9 Bbc | 21.7 ± 0.5 Ba | 19.0 ± 0.0 Bbc |
Maximum air temperature (June–August 2023) [°C] | 26.1 ± 0.1 Ac | 25.7 ± 0.1 Ac | 27.9 ± 0.0 Aab | 28.4 ± 0.2 Aa | 26.2 ± 0.9 Ac | 27.0 ± 0.6 Ab | 26.0 ± 0.0 Ac |
Maximum air temperature (June–August 1970–2000) [°C] | 24.8 ± 0.1 Bc | 24.5 ± 0.2 Bc | 27.0 ± 0.0 Ba | 26.5 ± 0.4 Ba | 24.8 ± 0.9 Bc | 26.2 ± 0.4 Bb | 24.2 ± 0.0 Bc |
Minimum air temperature (June–August 2023) [°C] | 15.6 ± 0.1 Ac | 15.7 ± 0.2 Ac | 17.2 ± 0.0 Aab | 17.3 ± 0.1 Aa | 16.1 ± 0.8 Ac | 16.9 ± 0.3 Ab | 15.4 ± 0.0 Ac |
Minimum air temperature (June–August 1970–2000) [°C] | 13.0 ± 0.1 Bd | 12.8 ± 0.2 Bd | 15.8 ± 0.0 Bc | 16.1 ± 0.2 Bb | 14.7 ± 0.8 Bc | 17.1 ± 0.5 Aa | 13.9 ± 0.0 Bc |
Precipitation (June–August 2023) [mm] | 438.5 ± 21.2 Ad | 440.9 ± 31.1 Ad | 584.4 ± 0.0 Aa | 612.4 ± 33.8 Aa | 543.9 ± 20.7 Ab | 493.5 ± 21.5 Ac | 550.8 ± 0.0 Ab |
Precipitation (June–August 1970–2000) [mm] | 114.8 ± 2.8 Bb | 110.7 ± 4.2 Bc | 129.7 ± 0.0 Ba | 120.3 ± 2.8 Bb | 124.8 ± 5.0 Ba | 91.7 ± 5.0 Bd | 119.0 ± 0.0 Bb |
Total insolation (June–August 2023) [h] | 786.9 ± 3.5 d | 772.6 ± 5.9 e | 835.8 ± 0.0 c | 839.3 ± 10.6 c | 873.7 ± 4.3 b | 924.7 ± 9.4 a | 864.7 ± 0.0 c |
Solar radiation (June–August 1970–2000) [kJ m−2 day−1] | 19,782.0 ± 112.7 bc | 19,796.0 ± 147.8 bc | 19,724.7 ± 0.0 bc | 19,673.8 ± 47.0 c | 19,801.0 ± 31.6 b | 20,388.3 ± 111.6 a | 19,860.3 ± 0.0 b |
Growing degree days above 10 °C (1980–2010) [°C day] | 1,417.5 ± 12.7 b | 1358.6 ± 47.3 b | 1,732.5 ± 0.0 ab | 1756.4 ± 37.8 a | 1438.9 ± 126.3 b | 1788.6 ± 91.2 a | 1387.3 ± 0.0 b |
Growing season length (1980–2010) [day] | 296.0 ± 4.6 b | 290.5 ± 10.0 b | 365.0 ± 0.0 a | 365.0 ± 0.0 a | 365.0 ± 0.0 a | 365.0 ± 0.0 a | 365.0 ± 0.0 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jelen, Š.; Kozmos, M.; Senekovič, J.; Ivajnšič, D.; Cappellozza, S.; Urbanek Krajnc, A. Local Climate and Cultivation Practice Shape Total Protein and Phenolic Content of Mulberry (Morus sp.) Leaves in Sub-Mediterranean and Sub-Pannonian Regions of Slovenia. Horticulturae 2025, 11, 1096. https://doi.org/10.3390/horticulturae11091096
Jelen Š, Kozmos M, Senekovič J, Ivajnšič D, Cappellozza S, Urbanek Krajnc A. Local Climate and Cultivation Practice Shape Total Protein and Phenolic Content of Mulberry (Morus sp.) Leaves in Sub-Mediterranean and Sub-Pannonian Regions of Slovenia. Horticulturae. 2025; 11(9):1096. https://doi.org/10.3390/horticulturae11091096
Chicago/Turabian StyleJelen, Špela, Martin Kozmos, Jan Senekovič, Danijel Ivajnšič, Silvia Cappellozza, and Andreja Urbanek Krajnc. 2025. "Local Climate and Cultivation Practice Shape Total Protein and Phenolic Content of Mulberry (Morus sp.) Leaves in Sub-Mediterranean and Sub-Pannonian Regions of Slovenia" Horticulturae 11, no. 9: 1096. https://doi.org/10.3390/horticulturae11091096
APA StyleJelen, Š., Kozmos, M., Senekovič, J., Ivajnšič, D., Cappellozza, S., & Urbanek Krajnc, A. (2025). Local Climate and Cultivation Practice Shape Total Protein and Phenolic Content of Mulberry (Morus sp.) Leaves in Sub-Mediterranean and Sub-Pannonian Regions of Slovenia. Horticulturae, 11(9), 1096. https://doi.org/10.3390/horticulturae11091096