In Vitro Propagation of the Endangered Kosteletzkya pentacarpos (L.) Ledeb: Conservation Applications and Horticultural Prospects
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Effect of TDZ and 1-Naphthaleneacetic Acid (NAA)
2.3. Effect of NaCl on In Vitro Morphogenesis
2.4. In Vitro Rooting and Effect of NaCl on In Vitro Rooting
2.5. In Vitro Culture Conditions
2.6. Acclimatisation
2.7. Data Collection and Statistical Analysis
3. Results
3.1. Effect of Thidiazuron
3.2. In Vitro Rooting and Effect of NaCl on In Vitro Rooting
3.3. Acclimatisation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ciftcioglu, G.C.; Ebedi, S.; Abak, K. Evaluation of the relationship between ornamental plants–based ecosystem services and human wellbeing: A case study from Lefke Region of North Cyprus. Ecol. Indic. 2019, 102, 278–288. [Google Scholar] [CrossRef]
- Koriesh, E.M. Ornamental plants and climate change: Carbon dioxide and atmospheric temperature. Sci. J. Flowers Ornam. Plants 2020, 7, 71–76. [Google Scholar] [CrossRef]
- Erikson, E.; Patch, H.M.; Grozinger, C.M. Herbaceous perennial ornamental plants can support complex pollinator communities. Sci. Rep. 2021, 11, 17352. [Google Scholar] [CrossRef]
- Francini, A.; Romano, D.; Toscano, S.; Ferrante, A. The Contribution of Ornamental Plants to Urban Ecosystem Services. Earth 2022, 3, 1258–1274. [Google Scholar] [CrossRef]
- Kisvaga, S.; Horotán, K.; Wani, M.A.; Orlóci, L. Plant Responses to Global Climate Change and Urbanization: Implications for Sustainable Urban Landscapes. Horticulturae 2023, 9, 1051. [Google Scholar] [CrossRef]
- Mariotti, M.; Bonomi, C.; Magrini, S.; Bacchetta, S.; Bavcon, J.; Casolo, V.; Ceriani, R.M.; Di Martino, L.; Dixon, L.; Fabrini, G.; et al. Using selected Habitat European Directive species as garden plants: Challenges and opportunities. Acta Hortic. 2023, 1383, 315–326. [Google Scholar] [CrossRef]
- Sahu, D.; Sahu, J.K.; Kumar, V.; Gupta, P. Role of Floriculture in Promoting Biodiversity and Enhancing Ecosystems: A Comprehensive Review. Int. J. Environ. Clim. Chang. 2023, 13, 2077–2084. [Google Scholar] [CrossRef]
- Monder, M.J.; Pacholczak, A.; Zajaczkowska, M. Directions in Ornamental Herbaceous Plant Selection in the Central European Temperate Zone in the Time of Climate Change: Benefits and Threats. Agriculture 2024, 14, 2328. [Google Scholar] [CrossRef]
- Zhang, P.; He, D.; Zhou, J.; Yang, Y.; Li, F. Much more than a pretty thing: Harnessing floral plants’ functional diversity to achieve the sustainability of the floriculture industry. Agrobiodiversity 2024, 1, 23–27. [Google Scholar]
- Mou, S.S.; Haus, M.J.; Hayden, Z.D.; Patterson, E.L.; Saha, D. Climate-driven challenges in weed management for ornamental crop production in the United States: A review. Front. Agron. 2025, 7, 1556418. [Google Scholar] [CrossRef]
- Soriano, P.; Mora, R.; Estrelles, E.; Martinez-Nieto, M.I. Comparison of the Climate Change Tolerance of Native and Non-Native Species Used or Potentially Used as Ornamentals in Mediterranean Areas. Horticulturae 2024, 10, 620. [Google Scholar] [CrossRef]
- Toscano, S.; Romano, D.; Lazzeri, V.; Leotta, L.; Bretzel, F. How Can Plants Used for Ornamental Purposes Contribute to Urban Biodiversity? Sustainability 2025, 17, 4061. [Google Scholar] [CrossRef]
- De, L.C. Impact of Climate Change on Floriculture and Landscape Gardening. Int. J. Agric. Sci. 2018, 10, 6253–6256. Available online: https://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BPJ0000217 (accessed on 10 August 2025).
- Gush, M.B.; Blanuša, T.; Chalmin-Pui, L.S.; Griffiths, A.; Larsen, E.K.; Prasad, R.; Redmile-Gordon, M.; Sutcliffe, C. Environmental horticulture for domestic and community gardens—An integrated and applied research approach. Plants People Planet 2024, 6, 254–270. [Google Scholar] [CrossRef]
- Pomatto, E.; Larcher, F.; Caser, M.; Gaino, W.; Devecchi, M. Evaluation of Different Combinations of Ornamental Perennials for Sustainable Management in Urban Greening. Plants 2023, 12, 3293. [Google Scholar] [CrossRef]
- Jagadeeswari, V.V.; Prathyusha, N.; Pavan Kumar, A.; Ruchitha, P. Impact of Climate Change on Floriculture. In Climate Change and Agriculture—Its Impact and Mitigation Potential; Dey, S., Verma, K., Rohit, Zine, P.L., Balo, S., Kumar, H., Eds.; Kripa-Drishti Publications: Pune, India, 2024; Volume 19, pp. 219–230. [Google Scholar]
- Pooja Murthy, S.; Abass, M.; Nazir, M.; Teotia, J.; Farooq, H.; Balan, A.S.; Singh, A.P. The Impact of Climate Change on Flowering Patterns and Productivity in Floriculture: A Comprehensive Review. J. Sci. Res. Rep. 2024, 30, 577–590. [Google Scholar] [CrossRef]
- Dragovic, M.J.O. Selection and domestication of endemic species from Macaronesia with ornamental value. Acta Hortic. 2015, 1097, 193–198. [Google Scholar] [CrossRef]
- Heywood, V. Conservation and sustainable use of wild species as sources of new ornamentals. Acta Hortic. 2003, 598, 43–53. [Google Scholar] [CrossRef]
- EEA (European Environment Agency). Conservation Status of Habitat Types and Species: Datasets from Article 17, Habitats Directive 92/43/EEC reporting (2013–2018). 2020. Available online: https://www.eea.europa.eu/en/datahub/datahubitem-view/d8b47719-9213-485a-845b-db1bfe93598d (accessed on 10 August 2025).
- Pino, J.; De Roa, E. Population biology of Kosteletzkya pentacarpos (Malvaceae) in the Llobregat delta (Catalonia, NE of Spain). Plant Ecol. 2007, 188, 1–16. [Google Scholar] [CrossRef]
- Zhou, M.; Lutts, S.; Han, R. Kosteletzkya pentacarpos: A Potential Halophyte Candidate for Phytoremediation in the Meta(loid)s Polluted Saline Soils. Plants 2021, 10, 2495. [Google Scholar] [CrossRef]
- Justice, W.S.; Bell, C.R.; Lindsey, A.H. Wildflowers of North Carolina, 2nd ed.; University of North Carolina Press: Chapel Hill, NC, USA, 2005; p. 150. [Google Scholar]
- Webb, D.A. Malvaceae. In Flora Europaea; Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A., Eds.; Cambridge University Press: Cambridge, UK, 1964; pp. 248–256. [Google Scholar]
- Kikvidze, Z.; Ohsawa, M. Richness of Colchic vegetation: Comparison between refugia of south-western and East Asia. BMC Ecol. 2001, 1, 6. [Google Scholar] [CrossRef] [PubMed]
- Moser, B.R.; Seliskar, D.M.; Gallagher, J.L. Fatty acid composition of fourteen seashore mallow (Kosteletzkya pentacarpos) seed oil accessions collected from the Atlantic and Gulf coasts of the United States. Ind. Crops Prod. 2016, 87, 20–26. [Google Scholar] [CrossRef]
- He, Z.; Ruan, C.; Qin, P.; Seliskar, D.M.; Gallagher, J.L. Kosteletzkya virginica, a halophytic species with potential for agroecotechnology in Jiangsu Province, China. Ecol. Eng. 2003, 21, 271–276. [Google Scholar] [CrossRef]
- Matchutadze, I. Kosteletzkya pentacarpos. The IUCN Red List of Threatened Species 2014: E.T161916A22569735. [CrossRef]
- Blanchard, O.J., Jr. Innovations in Hibiscus and Kosteletzkya (Malvaceae, Hibisceae). Novon A J. Bot. Nomencl. 2008, 18, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Corli, A.; Gerdol, F.; Orsenigo, S.; Rossi, G.; Abeli, T.; Iacumin, P.; Marchesini, R.; Brancaleoni, L. Relative importance of site selection and aftercare for successful reintroduction of the policy species Kosteletzkya pentacarpos. Pl. Biosyst. 2022, 157, 80–88. [Google Scholar] [CrossRef]
- Abideen, Z.; Qasim, M.; Rizvi, R.F.; Gul, B.; Ansari, R.; Khan, M.A. Oilseed Halophytes: A Potential Source of Biodiesel Using Saline Degraded Lands. Biofuels 2015, 6, 241–248. [Google Scholar] [CrossRef]
- Qin, P.; Han, R.; Zhou, M.; Zhang, H.; Fan, L.; Seliskar, D.M.; Gallagher, J.L. Ecological Engineering through the Biosecure Introduction of Kosteletzkya virginica (Seashore Mallow) to Saline Lands in China: A Review of 20 Years of Activity. Ecol. Eng. 2015, 74, 174–186. [Google Scholar] [CrossRef]
- Han, R.M.; Lefèvre, I.; Ruan, C.J.; Qin, P.; Lutts, S. NaCl differently interferes with Cd and Zn toxicities in the wetland halophyte species Kosteletzkya virginica (L.) Presl. Plant Growth Regul. 2012, 68, 97–109. [Google Scholar] [CrossRef]
- Pino, J.; Pico, F.X.; De Roa, E. Population dynamics of the rare plant Kosteletzkya pentacarpos (Malvaceae): A nine-year study. Bot. J. Linn. Soc. 2007, 153, 455–462. [Google Scholar] [CrossRef]
- Pignatti, S.; Guarino, R.; La Rosa, M. Flora d’Italia; Edagricole: Bologna, Italy, 2017; Volume 2, pp. 1083–1084. [Google Scholar]
- Buffa, G.; Carpenè, B.; Casarotto, N.; Da Pozzo, M.; Filesi, L.; Lasen, C.; Marcucci, R.; Masin, R.; Prosser, F.; Tasinazzo, S.; et al. Lista Rossa Regionale Delle Piante Vascolari. Regione del Veneto; Regione del Veneto, Europrint s.r.l.: Quinto di Treviso, Italy, 2016; pp. 150–151. [Google Scholar]
- Scoppola, A.; Spampinato, G. Atlante Delle Specie a Rischio di Estinzione; CDROM SBI, Palombi: Roma, Italy, 2005. [Google Scholar]
- Ercole, S.; Giacanelli, V.; Bertani, G.; Brancaleoni, L.; Croce, A.; Fabrini, G.; Gerdol, R.; Ghirelli, L.; Masin, R.; Mion, D.; et al. Kosteletzkya pentacarpos (L.) Ledeb. Inf. Bot. Ital. 2013, 45, 159–162. [Google Scholar]
- Moreno Saiz, J.C.; Iriondo Alegría, J.M.; Martínez García, F.; Martínez Rodríguez, J.; Salazar Mendías, C. (Eds.) Atlas y Libro Rojo de la Flora Vascular Amenazada de España. Adenda 2017. Ministerio para la Transición Ecológica; Sociedad Española de Biología de la Conservación de Plantas: Madrid, Espana, 2019; pp. 1–220. [Google Scholar]
- Rossi, G.; Montagnani, C.; Gargano, D.; Peruzzi, L.; Abeli, T.; Ravera, S.; Cogoni, A.; Fenu, G.; Magrini, S.; Gennai, M.; et al. (Eds.) Lista Rossa della Flora Italiana. 1. Policy Species e Altre Specie Minacciate; Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare: Roma, Italy, 2013; pp. 1–58. Available online: http://www.iucn.it/pdf/Comitato_IUCN_Lista_Rossa_della_flora_italiana_policy_species.pdf (accessed on 10 August 2025).
- Bilz, M.; Kell, S.P.; Maxted, N.; Lansdown, R.V. European Red List of Vascular Plants; Publications Office of the European Union: Luxembourg, 2011; pp. 1–142. [Google Scholar] [CrossRef]
- Freipica, I.; Ievinsh, G. Relative NaCl tolerance of rare and endangered coastal plant species in conditions of tissue culture. Envir. Exp. Biol. 2010, 8, 35–42. [Google Scholar]
- Paraskevopoulou, A.; Bertsouklis, K.; Meleggoglou, K.-E. In vitro propagation of Limbarda crithmoides (L.) Dumort. and the effect of NaCl. Acta Hortic. 2025, 1417, 221–228. [Google Scholar] [CrossRef]
- Bettoni, J.C.; Wang, M.-R.; Wang, Q.-C. In Vitro Regeneration, Micropropagation and Germplasm Conservation of Horticultural Plants. Horticulturae 2024, 10, 45. [Google Scholar] [CrossRef]
- Werden, L.K.; Sugii, N.C.; Weisenberger, L.; Keir, M.J.; Koob, G.; Zahawi, R.A. Ex-situ conservation of threatened plant species in island biodiversity hotspots: A case study from Hawaii. Biol. Conserv. 2020, 613, 108435. [Google Scholar] [CrossRef]
- Martini, A.N.; Papafotiou, M. In Vitro Propagation and NaCl Tolerance of the Multipurpose Medicinal Halophyte Limoniastrum monopetalum. HortScience 2020, 55, 436–443. [Google Scholar] [CrossRef]
- Shi, X.L.; Han, H.P.; Shi, W.L.; Li, Y.X. NaCl and TDZ are two key factors for the improvement of in vitro regeneration of rate of Salicornia europaea L. J. Integr. Plant Biol. 2006, 48, 1185–1189. [Google Scholar] [CrossRef]
- Joshi, M.; Mishra, A.; Jha, B. NaCl plays a key role for in vitro micropropagation of Salicornia brachiata, an extreme halophyte. Ind. Crops Prod. 2012, 35, 313–316. [Google Scholar] [CrossRef]
- Grigoriadou, K.; Maloupa, E. Micropropagation and salt tolerance of in vitro grown Crithmum maritimum L. Plant Cell Tiss. Organ Cult. 2008, 94, 209–217. [Google Scholar] [CrossRef]
- Piovan, A.; Caniato, R.; Cappelletti, E.M.; Filippini, R. Organogenesis from shoot segments and via callus of endangered Kosteletzkya pentacarpos (L.) Ledeb. Plant Cell Tiss. Organ Cult. 2010, 100, 309–315. [Google Scholar] [CrossRef]
- Ruan, C.-J.; Li, H.; Guo, Y.-Q.; Qin, P.; Gallagher, J.L.; Seliskar, D.M.; Lutts, S.; Mahy, G. Kosteletzkya virginica, an agroecoengineering halophytic species for alternative agricultural production in China’s east coast: Ecological adaptation and benefits, seed yield, oil content, fatty acid and biodiesel properties. Ecol. Eng. 2008, 32, 320–328. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Bertsouklis, K.; Arfani, K.-S.; Ntoulas, N.; Hatzilazarou, S.; Kostas, S.; Villani, M. In vitro response of Kosteletzkya pentacarpos on media containing acetylsalicylic or salicylic acid. Acta Hortic. 2025, 1417, 207–214. [Google Scholar] [CrossRef]
- Ali, H.M.; Khan, T.; Khan, M.A.; Ullah, N. The multipotent thidiazuron: A mechanistic overview of its roles in callogenesis and other plant cultures in vitro. Biotechnol. Appl. Biochem. 2022, 69, 2624–2640. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination; Academic Press: San Diego, CA, USA, 1998; pp. 1–666. [Google Scholar]
- Bertsouklis, K.; Vazaka-Vodena, D.; Ntoulas, N.; Dima, E.; Hatzilazarou, S.; Kostas, S.; Villani, M. The effect of different nutrient media on in vitro propagation of vulnerable Kostelekzya pentacarpos (L.) Ledeb. In In Proceedings of the International Symposium on Biotechnological Tools in Horticulture, Rimini, Italy, 5–9 May 2025; p. 24. [Google Scholar]
- Bertsouklis, K.; Vazaka-Vodena, D.; Bazanis, A.-E.; Papafotiou, M. Studies on Seed Germination and Micropropagation of Ebenus sibthorpii, an Endemic Shrub of Greece with Potential Ornamental Use. Horticulturae 2023, 9, 1300. [Google Scholar] [CrossRef]
- Siddique, I.; Anis, M. Rapid micropropagation of Ocimum basilicum using shoot tip explants pre-cultured in thidiazuron supplemented in liquid medium. Biol. Plant 2007, 51, 787–790. [Google Scholar] [CrossRef]
- Faisal, M.; Alatar, A.A.; Hegazy, A.K.; Alharbi, S.A.; El-Sherikh, M.; Okla, M.K. Thidiazuron induced in vitro multiplication of Mentha arvensis and evaluation of genetic stability by flow cytometry and molecular markers. Ind. Crop Prod. 2014, 62, 100–106. [Google Scholar] [CrossRef]
- Park, H.Y.; Kim, D.H.; Saini, R.K.; Gopal, J.; Keum, Y.-S.; Sivanesan, I. Micropropagation and Quantification of Bioactive Compounds in Mertensia maritima (L.) Gray. Int. J. Mol. Sci. 2019, 20, 2141. [Google Scholar] [CrossRef]
- Marco-Medina, A.; Casas, J.L. In vitro multiplication and essential oil composition of Thymus moroderi Pau ex Martinez, an endemic Spanish plant. Plant Cell Tiss. Organ Cult. 2015, 120, 99–108. [Google Scholar] [CrossRef]
- Juan-Vicedo, J.; Ramírez-Luna, J.E.; Piqueras, A.; Casas, J.L. Micropropagation and cryopreservation by vitrification of the Spanish endemic medicinal plant Sideritis leucantha Cav. subsp. leucantha (Lamiaceae). Vitr. Cell. Dev. Biol. Plant 2021, 57, 1057–1065. [Google Scholar] [CrossRef]
- Martini, A.N.; Papafotiou, M. Effects of plant growth regulators and environmental factors on in vitro propagation of ×Malosorbus florentina L. Propag. Ornam. Plants 2013, 13, 112–122. [Google Scholar]
- Erişen, S.; Öncel, Z. In vitro propagation of the threatened plant Sphaerophysa kotschyana (Fabaceae): Inter simple-sequence-repeat (ISSR) analysis and salt tolerance of the regenerants. Aust. J. Bot. 2013, 61, 67–72. [Google Scholar] [CrossRef]
- Huetteman, C.A.; Preece, J.E. Thidiazuron: A potent cytokinin for woody plant tissue culture. Plant Cell Tiss. Organ Cult. 1993, 33, 105–119. [Google Scholar] [CrossRef]
- Erland, L.A.E.; Giebelhaus, R.T.; Victor, J.M.R.; Murch, S.J.; Saxena, P.K. The Morphoregulatory Role of Thidiazuron: Metabolomics-Guided Hypothesis Generation for Mechanisms of Activity. Biomolecules 2020, 10, 1253. [Google Scholar] [CrossRef] [PubMed]
- Trigka, M.; Papafotiou, M. In vitro propagation of Anthyllis barba-jovis from seedling tissues. Acta Hortic. 2017, 1189, 473–476. [Google Scholar] [CrossRef]
- Bazanis, A.-E.; Papafotiou, M. In Vitro Germination, Micropropagation and Addressing the Hyperhydricity of the Balkan Native Dianthus cruentus, a Plant with High Ornamental and Xeriscaping Potential. Horticulturae 2024, 10, 813. [Google Scholar] [CrossRef]
- Soontornyatara, S.; Klammorn, P. Effect of Different Combinations of NAA and TDZ for Shoot Induction in Vitro Culture of Aglaonema simplex (Blume) Blume. Acta Hortic. 2020, 1298, 485–490. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Murthy, H.N.; Ammar, M.H.; Alghamdi, S.S.; Al-Suhaibani, N.A.; Alsadon, A.A.; Paek, K.Y. In vitro rooting of leguminous plants: Difficulties, alternatives, and strategies for improvement. Hortic. Environ. Biotechnol. 2016, 57, 311–322. [Google Scholar] [CrossRef]
- Custódio, L.; Charles, G.; Magné, C.; Barba-Espín, G.; Piqueras, A.; Hernández, J.A.; Ben Hamed, K.; Castañeda-Loaiza, V.; Fernandes, E.; Rodrigues, M.J. Application of In Vitro Plant Tissue Culture Techniques to Halophyte Species: A Review. Plants 2023, 12, 126. [Google Scholar] [CrossRef]
- Rafiq, S.; Wagay, N.A.; Bhat, I.A.; Kaloo, Z.A.; Rashid, S.; Lin, F.; El-Abedin, T.K.Z.; Wani, S.H.; Mahmoud, E.A.; Almutairi, K.F.; et al. In vitro propagation of Aconitum chasmanthum Stapf Ex Holmes: An endemic and critically endangered plant species of the western Himalaya. Horticulturae 2021, 7, 586. [Google Scholar] [CrossRef]
- Bertsouklis, K.; Tsopela, S. In Vitro Propagation of Three Populations of the Endangered, Greek Endemic Cerastium candidissimum and Short-Term Storability of Alginate-Encapsulated Shoot Explants for Exploitation and Conservation. Horticulturae 2023, 9, 273. [Google Scholar] [CrossRef]
- Bertsouklis, K.; Theodorou, P.; Aretaki, P.-E. In Vitro Propagation of the Mount Parnitha Endangered Species Sideritis raeseri subsp. Attica. Horticulturae 2022, 8, 1114. [Google Scholar] [CrossRef]
- Wang, J.; Seliskar, D.M.; Gallagher, J.L. Tissue Culture and Plant Regeneration of the Salt Marsh Monocots Juncus roemerianus and Juncus gerardi. Vitr. Cell. Dev. Biol. Plant 2005, 41, 274–280. [Google Scholar] [CrossRef]
- Hazarika, B.N. Morpho-physiological disorders in in vitro culture of plants. Sci. Horticult. 2006, 108, 105–120. [Google Scholar] [CrossRef]
- Vlachou, G.; Papafotiou, M.; Bertsouklis, K. Seed germination, micropropagation from adult and juvenile origin explants and address of hyperhydricity of the Cretan endemic herb Calamintha cretica. Not. Bot. Horti Agrobot. Cluj-Na. 2020, 48, 1504–1518. [Google Scholar] [CrossRef]
- Sereda, M.; Petrenko, V.; Kapralova, O.; Chokheli, V.; Varduni, T.; Dmitriev, P.; Minkina, T.; Sushkova, S.; Barbashev, A.; Dudnikova, T.; et al. Establishment of an In Vitro Micropropagation Protocol for Hibiscus moscheutos L. ‘Berry Awesome’. Horticulturae 2024, 10, 21. [Google Scholar] [CrossRef]
- Christensen, B.; Sriskandarajah, S.; Serek, M.; Müller, R. In vitro culture of Hibiscus rosa-sinensis L.: Influence of iron, calcium and BAP on establishment and multiplication. Plant Cell Tiss. Organ Cult 2008, 93, 151–161. [Google Scholar] [CrossRef]
- Voutsina, N.; Seliskar, D.M.; Gallagher, J.L. The Facilitative Role of Kosteletzkya pentacarpos in Transitioning Coastal Agricultural Land to Wetland During Sea Level Rise. Estuaries Coasts 2015, 38, 35–44. [Google Scholar] [CrossRef]
- Chacar, S.; Ahmed, N.; Hu, X. Future-proofing ornamental plants: Cutting-edge strategies for drought resistance and sustainability. Physiol Plant. 2025, 177, e70255. Available online: https://onlinelibrary.wiley.com/doi/10.1111/ppl.70255?af=R (accessed on 23 August 2024). [CrossRef] [PubMed]
Stage A; Initial Culture: Culture on MS Containing Various TDZ Concentrations | |||||||
TDZ (mg L−1) | Response (%) | LS † Number | SS †† Number | LS Length (cm) | Node Number | MI ††† | Callus Formation (%) |
-(control) | 100.0 | 1.1 b | 1.5 b | 6.5 a | 3.5 a | 11.9 a | 40.0 b |
0.01 | 100.0 | 1.9 a | 1.5 b | 1.5 b | 1.6 b | 4.8 b | 100.0 a |
0.05 | 100.0 | 0 | 2.5 a | <0.5 | - | - | 100.0 a |
0.1 †††† | 17.0 | - | 1.0 | <0.5 | - | - | 100.0 a |
0.5 †††† | 17.0 | - | 1.0 | <0.5 | - | - | 100.0 a |
FONE-WAY ANOVA | - | * | * | *** | *** | *** | *** |
Stage B; Effect of Origin Medium on Subculture Response: Explants Excised from Each Stage A (Initial Culture) Treatment Were Transferred to Hf, MS Media | |||||||
Origin TDZ (mg L−1) | Response (%) | LS number | SS number | LS length (cm) | Node number | MI | Callus Formation (%) |
-(control) | 100.0 a | 1.1 b | 1.3 b | 6.2 b | 3.8 b | 11.4 b | 30.0 b |
0.01 | 90.0 b | 1.4 a | 1.1 b | 9.0 a | 6.0 a | 18.9 a | 20.0 b |
0.05 | 30.0 c | 1.2 b | 7.5 a | 1.6 c | 1.3 c | 0.8 c | 100.0 a |
0.1 †††† | - | - | - | - | - | - | 100.0 a |
0.5 †††† | - | - | - | - | - | - | 100.0 a |
FONE-WAY ANOVA | *** | * | *** | ** | *** | *** | *** |
NAA (mg L−1) | TDZ (mg L−1) | Response (%) | LS † Number | SS †† Number | LS Length (cm) | Node Number | MI ††† | Callus Formation (%) |
---|---|---|---|---|---|---|---|---|
- | - | 100.0 | 1.2 | 2.0 b | 7.5 a | 4.0 a | 15.0 a | 40.0 c |
0.1 | - | 100.0 | 1.0 | 1.4 b | 3.5 b | 2.8 b | 5.8 c | 80.0 b |
0.1 | 0.01 | 100.0 | 1.0 | 1.7 b | 1.8 b | 1.5 c | 3.0 c | 100.0 a |
0.1 | 0.005 | 100.0 | 1.0 | 1.5 b | 1.8 b | 1.0 d | 3.0 c | 100.0 a |
0.5 | - | 100.0 | 1.0 | 1.1 b | 4.9 b | 3.9 a | 8.2 b | 80.0 b |
0.5 | 0.01 | 100.0 | 1.0 | 2.8 b | 1.7 b | 1.6 c | 2.8 c | 100.0 a |
0.5 | 0.005 | 100.0 | 1.2 | 5.6 a | 2.4 b | 2.0 c | 4.8 c | 100.0 a |
FONE-WAY ANOVA | - | ns | *** | *** | *** | *** | *** |
NaCl (g L−1) | Response (%) | Shoot Number | Shoot Length (cm) | Node Number | Spontaneous Rooting (%) | Root Number | Root Length (cm) |
---|---|---|---|---|---|---|---|
0 | 100.0 a | 1.1 | 3.9 a | 3.2 a | 65.0 a | 2.3 | 3.6 |
1.0 | 100.0 a | 1.0 | 2.8 a | 3.2 a | 60.0 a | 2.1 | 3.0 |
5.0 | 100.0 a | 1.0 | 1.4 b | 2.5 ab | 40.0 b | 1.6 | 2.6 |
10.0 | 75.0 b | 1.0 | 0.5 b | 1.0 c | - | - | - |
15.0 | 45.0 c | 1.0 | 0.2 b | 1.0 c | - | - | - |
20.0 | 25.0 d | 1.0 | 0.1 b | - | - | - | - |
25.0 | 30.0 d | 1.0 | 0.1 b | - | - | - | - |
FONE-WAY ANOVA | *** | ns | *** | *** | *** | ns | ns |
ΙΒA (mg L−1) | Rooting Percentage (%) | Root Number | Root Length (cm) |
---|---|---|---|
0 | 100.0 | 1.9 | 2.5 |
0.5 | 100.0 | 2.5 | 1.6 |
1.0 | 100.0 | 1.9 | 1.9 |
2.0 | 100.0 | 2.2 | 1.9 |
FONE-WAY ANOVA | - | ns | ns |
NaCl (g L−1) | Rooting Percentage (%) | Root Number | Root Length (cm) |
---|---|---|---|
0 | 100.0 a | 2.5 | 3 |
1.0 | 100.0 a | 2.4 | 3.2 |
5.0 | 80.0 b | 1.9 | 2.1 |
10.0 | - | - | - |
15.0 | - | - | - |
20.0 | - | - | - |
FONE-WAY ANOVA | ** | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertsouklis, K.; Dima, E.; Arfani, K.-S.; Bazanis, A.-E.; Ntoulas, N.; Kostas, S.; Hatzilazarou, S.; Villani, M. In Vitro Propagation of the Endangered Kosteletzkya pentacarpos (L.) Ledeb: Conservation Applications and Horticultural Prospects. Horticulturae 2025, 11, 1086. https://doi.org/10.3390/horticulturae11091086
Bertsouklis K, Dima E, Arfani K-S, Bazanis A-E, Ntoulas N, Kostas S, Hatzilazarou S, Villani M. In Vitro Propagation of the Endangered Kosteletzkya pentacarpos (L.) Ledeb: Conservation Applications and Horticultural Prospects. Horticulturae. 2025; 11(9):1086. https://doi.org/10.3390/horticulturae11091086
Chicago/Turabian StyleBertsouklis, Konstantinos, Eireni Dima, Konstantina-Stamatina Arfani, Apostolos-Emmanouil Bazanis, Nikolaos Ntoulas, Stefanos Kostas, Stefanos Hatzilazarou, and Mariacristina Villani. 2025. "In Vitro Propagation of the Endangered Kosteletzkya pentacarpos (L.) Ledeb: Conservation Applications and Horticultural Prospects" Horticulturae 11, no. 9: 1086. https://doi.org/10.3390/horticulturae11091086
APA StyleBertsouklis, K., Dima, E., Arfani, K.-S., Bazanis, A.-E., Ntoulas, N., Kostas, S., Hatzilazarou, S., & Villani, M. (2025). In Vitro Propagation of the Endangered Kosteletzkya pentacarpos (L.) Ledeb: Conservation Applications and Horticultural Prospects. Horticulturae, 11(9), 1086. https://doi.org/10.3390/horticulturae11091086