Mycorrhization of Black Crowberry (Empetrum nigrum L.) After In Vitro Propagation with Mineral Fertilizers
Abstract
1. Introduction
2. Materials and Methods
2.1. In Vitro Culture Conditions
2.2. Adaptation Conditions
2.3. Experimental Treatments
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Muravnik, L.E.; Shavarda, A.L. Leaf glandular trichomes in Empetrum nigrum: Morphology, histochemistry, ultrastructure and secondary metabolites. Nord. J. Bot. 2012, 30, 470–481. [Google Scholar] [CrossRef]
- Szmidt, A.E.; Nilsson, M.-C.; Briceño, E.; Zackrisson, O.; Wang., X.-R. Establishment and genetic structure of Empetrum hermaphroditum populations in northern Sweden. J. Veg. Sci. 2002, 13, 627–634. [Google Scholar] [CrossRef]
- Hagerup, O. Studies on the Empetraceae. Biol. Meddr. 1946, 20, 1–49. [Google Scholar]
- Lorion, J.; Small, E. Crowberry (Empetrum): A chief arctic traditional indigenous fruit in need of economic and ecological management. Bot. Rev. 2021, 87, 259–310. [Google Scholar] [CrossRef]
- Mazurenko, M.T. Heather Shrubs of the Far East (Structure and Morphogenesis); Khokhryakov, A.P., Ed.; Nauka: Moscow, Russia, 1982; p. 184. (In Russian) [Google Scholar]
- Sulavik, J.; Auestad, I.; Boudreau, S.; Halvorsen, R.; Rydgren, K. Population re-establishment and spatial dynamics of crowberry (Empetrum nigrum ssp. hermaphroditum), a foundation species in restored alpine ecosystems. Ecol. Evol. 2024, 14, e70242. [Google Scholar] [CrossRef]
- Zverev, V.E.; Zvereva, E.L.; Kozlov, M.V. Slow growth of Empetrum nigrum in industrial barrens: Combined effect of pollution and age of explant plants. Environ. Pollut. 2008, 156, 454–460. [Google Scholar] [CrossRef]
- Tuomi, M.W.; Utsi, T.A.; Yoccoz, N.G.; Armstrong, C.W.; Gonzalez, V.; Hagen, S.B.; Jónsdóttir, I.S.; Pugnaire, F.I.; Shea, K.; Wardle, D.A.; et al. The increase of an allelopathic and unpalatable plant undermines reindeer pasture quality and current management in the Norwegian tundra. Commun. Earth Environ. 2024, 5, 414. [Google Scholar] [CrossRef]
- Tybirk, K.; Nilsson, M.-C.; Michelsen, A.; Kristensen, H.L.; Shevtsova, A.; Strandberg, M.T.; Johansson, M.; Nielsen, K.E.; Riis-Nielsen, T.; Strandberg, B.; et al. Nordic Empetrum dominated ecosystems: Function and susceptibility to environmental changes. AMBIO A J. Hum. Environ. 2000, 29, 90–97. [Google Scholar] [CrossRef]
- Bråthen, K.A.; Fodstad, C.H.; Gallet, C. Ecosystem disturbance reduces the allelopathic effects of Empetrum hermaphroditum humus on tundra plants. J. Veg. Sci. 2010, 21, 786–795. [Google Scholar] [CrossRef]
- Parkinson, L.V.; Mulder, C.P.H.; Putman, M.; Ruggles, A.; Sousa, E.E.; Spellman, K.V. Crowberry in a changing climate: Threats and opportunities. In Berries in Alaska’s Changing Environment Series: Empetrum nigrum; Institute of Arctic Biology and International Arctic Research Center, University of Alaska Fairbanks: Fairbanks, AK, USA; 2024; pp. 1–19. [Google Scholar]
- Ruotsalainen, A.L.; Markkola, A.M.; Kozlov, M.V. Birch effect on root fungal colonisation of crowberry are uniform along different environmental gradients. Basic Appl. Ecol. 2010, 11, 459–467. [Google Scholar] [CrossRef]
- Wollenweber, E.; Dörr, M.; Stelzer, R.; Arriaga-Giner, F.A. Lepophilic phenolics from the leaves of Empetrum nigrum—Chemical structures and exudate localization. Bot. Acta 1992, 105, 300–305. [Google Scholar] [CrossRef]
- Kochkin, R.A.; Lobanov, A.A.; Andronov, S.V.; Kostricin, V.V.; Popov, A.A.; Lobanova, L.P.; Kobelkova, I.V.; Kambarov, A.O. Efficiency of black crowberry (Empetrum nigrum L.) in correction of cold stress. J. New Med. Technol. 2017, 24, 66–72. (In Russian) [Google Scholar] [CrossRef]
- Seeram, N.P. Berry fruits: Compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J. Agric. Food Chem. 2008, 56, 627–629. [Google Scholar] [CrossRef]
- Laaksonen, O.; Sandell, M.; Järvinen, R.; Kallio, H. Orosensory contributing compounds in crowberry (Empetrum nigrum) press-byproducts. Food Chem. 2011, 124, 1514–1524. [Google Scholar] [CrossRef]
- Svanberg, I.; Ægisson, S. Edible wild plant use in the Faroe Islands and Iceland. Acta Soc. Bot. Pol. 2012, 81, 233–238. [Google Scholar] [CrossRef]
- Manninen, O.H.; Peltola, R. Effects of picking methods on the berry production of bilberry (Vaccinium myrtillus), lingonberry (V. vitis-idaea) and crowberry (Empetrum nigrum ssp. hermaphroditum) in Northern Finland. Silva Fenn. 2013, 47, 972. [Google Scholar] [CrossRef][Green Version]
- Jurikova, T.; Mlcek, J.; Skrovankova, S.; Balla, S.; Sochor, J.; Baron, M.; Sumczynski, D. Black Crowberry (Empetrum nigrum L.) Flavonoids and Their Health Promoting Activity. Molecules 2016, 21, 1685. [Google Scholar] [CrossRef] [PubMed]
- Isaeva, M.A. Development of technology for dry extract of the black crowberry herb. In Proceedings of the Young Pharmacy—Potential of the Future 2022, St. Petersburg, Russia, 5–6 May 2022; Conference Abstract. pp. 709–712. (In Russian). [Google Scholar]
- Bezverkhniaia, E.A.; Povet’eva, T.N.; Kadyrova, T.V.; Suslov, N.I.; Nesterova, Y.V.; Afanas’eva, O.G.; Kul’pin, P.V.; Yusova, Y.G.; Ermilova, E.V.; Miroshnichenko, A.G.; et al. Screening Study for Anticonvulsive Activity of Lipophilic Fractions from Empetrum nigrum L. Res. Results Pharmacol. 2020, 6, 67–73. [Google Scholar] [CrossRef]
- Hagen, D. Propagation of native Arctic and alpine species with a restoration potential. Polar Res. 2002, 21, 37–47. [Google Scholar] [CrossRef]
- Bell, J.N.; Tallis, J.H. Empetrum nigrum L. J. Ecol. 1973, 61, 289–305. [Google Scholar] [CrossRef]
- Baskin, C.C.; Zackrisson, O.; Baskin, J.M. Role of warm stratification in promoting germination of seeds of Empetrum hermaphroditum (Empetraceae), a circumboreal species with a stony endocarp. Am. J. Bot. 2002, 89, 486–493. [Google Scholar] [CrossRef]
- Qarachoboogh, A.F.; Alijanpour, A.; Hosseini, B.; Shafiei, A.B. Efficient and reliable propagation and rooting of foetid juniper (Juniperus foetidissima Willd.), as an endangered plant under in vitro condition. In Vitro Cell. Dev. Biol.-Plant 2022, 58, 399–406. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Jiang, Z.; Yang, X.; Liu, X.; Ou, X.; Su, W.; Chen, R. Establishment and Optimization of Micropropagation System for Southern Highbush Blueberry. Horticulturae 2023, 9, 893. [Google Scholar] [CrossRef]
- Hanus-Fajerska, E.; Wiszniewska, A.; Czaicki, P. Effectiveness of Daphne L. (Thymelaeaceae) in vitro propagation, rooting of microshoots and acclimatization of plants. Acta Agrobot. 2012, 65, 21–28. [Google Scholar] [CrossRef][Green Version]
- Nechiporenko, I.; Kazakov, P.; Palamarchuk, D. Prospects for obtaining planting material of a less widespread berry crop—Black crowberry (Empetrum nigrum L.) in vitro conditions. BIO Web Conf. 2024, 139, 01008. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, Y.-W.; Moon, H.-K. Practical factors controlling in vitro multiplication and rooting in Empetrum nigrum var. japonicum, an endangered woody species. Korean J. Plant Res. 2012, 25, 739–744. [Google Scholar] [CrossRef][Green Version]
- Wei, X.; Chen, J.; Zhang, C.; Wang, Z. In vitro shoot culture of Rhododendron fortunei: An important plant for bioactive phytochemicals. Ind. Crops Prod. 2018, 126, 456–465. [Google Scholar] [CrossRef]
- Tseplyaev, A.N.; Treshchevskaya, E.I.; Turtanova, E.N. Experience of growth in containers of the planting material received by the method of clonal propagation in vitro. For. Eng. J. 2018, 8, 124–130. (In Russian) [Google Scholar] [CrossRef]
- Chizhik, O.V.; Filipenia, V.L.; Gorbatsevich, V.I. Development of technology for growing clonal material of promising species of woody shrub species of the Vaccinium genus using microbial preparations. In Biotechnological Methods in Conservation of Biodiversity and Plant Breeding Proceeding of the International Scientific Conference Minsk, Minsk, Belarus, 18–20 August 2014; Reshetnikov, V.N., Titok, V.V., Spiridovich, E.V., Fomenko, T.I., Kuzovkova, A.A., Eds.; National Academy of Sciences of Belarus The Central Botanical Gardens: Minsk, Belarus, 2014; pp. 250–252. (In Russian) [Google Scholar]
- Clapa, D.; Fira, A.; Vescan, L.A. Aspects regarding the in vitro culture and ex vitro rooting in Vaccinium macrocarpon cultivar ‘Piligrim’. Bull. UASVM Anim. Sci. Biotechnol. 2012, 69, 226–234. [Google Scholar] [CrossRef]
- Grzelak, M.; Pacholczak, A.; Nowakowska, K. Challenges and insights in the acclimatization step of micropropagated woody plants. Plant Cell Tiss. Organ Cult. 2024, 159, 72. [Google Scholar] [CrossRef]
- Chandra, S.; Bandopadhyay, R.; Kumar, V.; Chandra, R. Acclimatization of tissue cultured plantlets: From laboratory to land. Biotechnol. Lett. 2010, 32, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Chen, J.; Zhang, C.; Liu, H.; Zheng, X.; Mu, J. Ericoid mycorrhizal fungus enhances microcutting rooting of Rhododendron fortunei and subsequent growth. Hortic. Res. 2020, 7, 140. [Google Scholar] [CrossRef]
- Sergeeva, K.; Nechiporenko, I.; Popletaeva, S. Effect of MF3 (peptidyl-prolyl cis/trans isomerase) protein from Pseudomonas fluorescens on ex vitro adaptation and post-adaptation of hardy kiwi (Actinidia arguta Planch. ex Miq.) plants. BIO Web Conf. 2024, 139, 01010. [Google Scholar] [CrossRef]
- Song, G.Q. Blueberry (Vaccinium corymbosum L.). In Agrobacterium Protocols: Methods in Molecular Biology, Volume 1224; Wang, K., Ed.; Springer: New York, NY, USA, 2015; pp. 121–132. [Google Scholar] [CrossRef]
- Shiwani, K.; Sharma, D.; Kumar. Improvement of plant survival and expediting acclimatization process. In Commercial Scale Tissue Culture for Horticulture and Plantation Crops; Gupta, S., Chaturvedi, P., Eds.; Springer: Singapore, 2022; pp. 227–291. [Google Scholar] [CrossRef]
- Kosolapov, V.M.; Cherniavskih, V.I.; Dumacheva, E.V.; Sajfutdinova, L.D.; Zhuchenko, A.A.; Glinushkin, A.P.; Grishina, H.V.; Kalinitchenko, V.P.; Akimova, S.V.; Semenova, N.A.; et al. Using microorganismal consortium and bioactive substances to treat seeds of two scots pine ecotypes as a technique to increase re-afforestation efficiency on chalk outcrops. Forest 2023, 14, 1093. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Habib, M.M.; Akqarawi, A.A.; Alshahrani, T.S.; Alaizari, A.A.; Malik, J.A.; Alwahibi, M.S.; Murthy, H.N. Mycorrhization enhances vegetative growth, leaf gas exchange, and root development of micropropagated Philodendron bipinnatifidum Schott ex Endl. plantlets during acclimatization. Horticulturae 2023, 9, 276. [Google Scholar] [CrossRef]
- Vohník, M. Ericoid mycorrhizal symbiosis: Theoretical background and methods for its comprehensive investigation. Mycorrhiza 2020, 30, 671–695. [Google Scholar] [CrossRef] [PubMed]
- Baba, T.; Hirose, D.; Sasaki, N.; Watanabe, N.; Kobayashi, N.; Kurashige, Y.; Karimi, F.; Ban, T. Mycorrhizal formation and diversity of endophytic fungi in hair roots of Vaccinium oldhamii Miq. in Japan. Microbes Environ. 2016, 31, 186–189. [Google Scholar] [CrossRef]
- Martin, F.M.; van der Heijden, M.G.A. The mycorrhizal symbiosis: Research frontiers in genomics, ecology, and agricultural application. New Phytol. 2024, 242, 1486–1506. [Google Scholar] [CrossRef]
- Olsrud, M.; Michelsen, A.; Wallander, H. Ergosterol content in ericaceous hair roots correlates with dark septate endophytes but not with ericoid mycorrhizal colonization. Soil Biol. Biochem. 2007, 39, 1218–1221. [Google Scholar] [CrossRef]
- Walker, J.F.; Aldrich-Wolfe, L.; Riffel, A.; Barbare, H.; Simpson, N.B.; Trowbridge, J.; Jumpponen, A. Diverse Helotiales associated with the roots of three species of arctic Ericaceae provide no evidence for host specificity. New Phytol. 2011, 191, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Nordin, A.; Näsholm, T. Nitrogen storage forms in nine boreal understory plant species. Oecologia 1997, 110, 487–492. [Google Scholar] [CrossRef]
- Read, D.J.; Perez-Moreno, J. Mycorrhizas and nutrient cycling in ecosystems—A journey toward relevance? New Phytol. 2003, 157, 475–492. [Google Scholar] [CrossRef]
- Dunleavy, H.R.; Mack, M.C. Nonlinear responses of ericaceous and ectomycorrhizal Arctic shrubs across a long-term experimental nutrient gradient. Ecosphere 2024, 15, e4888. [Google Scholar] [CrossRef]
- Hupperts, S.F.; Islam, K.S.; Gundale, M.J.; Kardol, P.; Sundqvist, M.K. Warming influences carbon and nitrogen assimilation between a widespread ericaceous shrub and root-associated fungi. New Phytol. 2024, 241, 1062–1073. [Google Scholar] [CrossRef]
- Monaci, F.; Leidi, E.O.; Mingorance, M.D.; Valdés, B.; Oliva, S.R.; Bargagli, R. Selective uptake of major and trace elements in Erica andevalensis, an endemic species to extreme habitats in the Iberian Pyrite Belt. J. Environ. Sci. 2011, 23, 444–452. [Google Scholar] [CrossRef]
- Geel, M.V.; Jacquemyn, H.; Peeters, G.; van Asker, K.; Honnay, O.; Ceulemans, T. Diversity and community structure of ericoid mycorrhizal fungi in European bogs and heathlands across a gradient of nitrogen deposition. New Phytol. 2020, 228, 1640–1651. [Google Scholar] [CrossRef]
- Cairney, J.W.G.; Ashfold, A.E. Biology of mycorrhizal associations of epacrids (Ericaceae). New Phytol. 2002, 154, 305–326. [Google Scholar] [CrossRef] [PubMed]
- Watkinson, S.C. Mutualistic symbiosis between fungi and autotrophs. In The Fungi, 3rd ed.; Watkinson, S.C., Boddy, L., Money, N.P., Eds.; Elsevier Science & Technology: Amsterdam, The Netherlands, 2015; pp. 205–243. [Google Scholar] [CrossRef]
- Grelet, G.-A.; Johnson, D.; Vrålstad, T.; Alexander, I.J.; Anderson, I.C. New insights into the mycorrhizal Rhizoscyphus ericae aggregate: Spatial structure and co-colonization of ectomycorrhizal and ericoid roots. New Phytol. 2010, 188, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Zhang, W.; Zulfiqar, F.; Zhang, C.; Chen, J. Ericoid mycorrhizal fungi as biostimulants for improving propagation and production of ericaceous plants. Front. Plant Sci. 2022, 13, 1027390. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Qiu, Y.L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 2006, 16, 299–363. [Google Scholar] [CrossRef]
- Ouhaddou, R.; Anli, M.; Ben-Laouane, R.; Boutasknit, A.; Baslam, M.; Meddich, A. The Importance of the Glomus Genus as a Potential Candidate for Sustainable Agriculture Under Arid Environments: A Review. Int. J. Plant Biol. 2025, 16, 32. [Google Scholar] [CrossRef]
- Kokkoris, V.; Banchini, C.; Paré, L.; Abdellatif, L.; Séguin, S.; Hubberd, K.; Findlay, W.; Dalpé, Y.; Dettman, J.; Corradi, N.; et al. Rhizophagus irregularis, the model fungus in arbuscular mycorrhiza research, forms dimorphic spores. New Phytol. 2024, 242, 1771–1784. [Google Scholar] [CrossRef] [PubMed]
- Sheikh-Assadi, M.; Khandan-Mirkohi, A.; Taheri, M.R.; Babalar, M.; Sheikhi, H.; Nicola, S. Arbuscular mycorrhizae contribute to growth, nutrient uptake, and ornamental characteristics of statice (Limonium sinuatum [L.] Mill.) subject to appropriate inoculum and optimal phosphorus. Horticulturae 2023, 9, 564. [Google Scholar] [CrossRef]
- Hodge, A.; Storer, K. Arbuscular mycorrhiza and nitrogen: Implications for individual plants through to ecosystems. Plant Soil 2015, 386, 1–19. [Google Scholar] [CrossRef]
- Toljander, J.F.; Lindahl, B.D.; Paul, L.R.; Elfstrand, M.; Finlay, R.D. Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol. Ecol. 2007, 61, 295–304. [Google Scholar] [CrossRef]
- Bortolot, M.; Buffoni, B.; Mazzarino, S.; Hoff, G.; Martino, E.; Fiorilli, V.; Salvioli Di Fossalunga, A. The Importance of Mycorrhizal Fungi and Their Associated Bacteria in Promoting Crops’ Performance: An Applicative Perspective. Horticulturae 2024, 10, 1326. [Google Scholar] [CrossRef]
- Eccher, T.; Martinelli, M. Inoculation of Rhododendron cultivars in vitro with different strains of ericoid endomycorrhizae. Acta Hortic. 2010, 865, 327–332. [Google Scholar] [CrossRef]
- Corkidi, L.; Evans, M.; Bohn, J. Infectivity and effectiveness of arbuscular mycorrhizal fungi in horticultural practices. Comb. Proc.-Int. Plant Propag. Soc. 2008, 58, 241–244. [Google Scholar]
- Bubier, J.L.; Smith, R.; Juutinen, S.; Moore, T.R.; Minocha, R.; Long, S.; Minocha, S. Effect of nutrient addition on leaf chemistry, morphology, and photosynthetic capacity of three bog shrubs. Oecologia 2011, 167, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Marty, C.; Lévesque, J.-A.; Bradley, R.L.; Lafond, J.; Paré, M.C. Lowbush blueberry fruit yield and growth response to inorganic and organic N-fertilization when competing with two common weed species. PLoS ONE 2019, 14, e0226619. [Google Scholar] [CrossRef]
- Hazard, C.; Gosling, P.; Mitchell, D.K.; Doohan, F.M.; Bending, G.D. Diversity of fungi associated with hair roots of ericaceous plants is affected by land use. FEMS Microbiol. Ecol. 2014, 87, 586–600. [Google Scholar] [CrossRef]
- Vohník, M.; Réblová, M. Fungi in hair roots of Vaccinium spp. (Ericaceae) growing on decomposing wood: Colonization patterns, identity, and in vitro symbiotic potential. Mycorrhiza 2023, 33, 69–86. [Google Scholar] [CrossRef]
- Chaudhary, A.; Poudyal, S.; Kaundal, A. Role of arbuscular mycorrhizal fungi in maintaining sustainable agroecosystems. Appl. Microbiol. 2025, 5, 6. [Google Scholar] [CrossRef]
- Jarosz, Z.; Michałojć, Z.; Pitura, K.; Dzida, K.; Koter, M. Influence of fertilization and mycorrhizae on the nutritional status of rhododendron (Rhododendron hybridum) in a nursery. Agriculture 2021, 11, 538. [Google Scholar] [CrossRef]
- Williams, A. Current nursery practice with regard to mycorrhizae and the propagation of New Zealand’s native plants. Ecol. Manag. Restor. 2010, 11, 220–223. [Google Scholar] [CrossRef]
- Lloyd, G.; McCown, B. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb. Proc.-Int. Plant Propag. Soc. 1980, 30, 421–426. [Google Scholar]
- Cabrera-Ariza, A.M.; Silva-Flores, P.; González-Ortega, M.; Acevedo-Tapia, M.; Cartes-Rodríguez, E.; Palfner, G.; Ramos, P.; Santelices-Moya, R.E. Early effects of mycorrhizal fungal inoculum and fertilizer on morphological and physiological variables of nursery-grown Nothofagus alessandrii plants. Plants 2023, 12, 1521. [Google Scholar] [CrossRef]
- Trejo, D.; Sangabriel-Conde, W.; Gavito-Pardo, M.E.; Banuelos, J. Mycorrhizal inoculation and chemical fertilizer interactions in pineapple under field conditions. Agriculture 2021, 11, 934. [Google Scholar] [CrossRef]
- Michałojć, Z.; Koter, M. Effect of fertilization and mycorrhization on growth and nutritional status of cranberry (Vaccinium macrocarpon Ait.) in the nursery. J. Hortic. Res. 2014, 23, 49–56. [Google Scholar] [CrossRef]
- Zinati, G.M.; Dighton, J.; Both, A.-J. Fertilizer, irrigation, and natural ericaceous root and soil inoculum (NERS): Effect on container-grown ericaceous nursery crop biomass, tissue nutrient concentration, and leachate nutrient quality. HortScience 2011, 46, 799–807. [Google Scholar] [CrossRef]
- Koizumi, T.; Nara, K. Communities of putative ericoid mycorrhizal fungi isolated from alpine dwarf shrubs in Japan: Effect of host identity and microhabitat. Microbes Environ. 2017, 32, 147–153. [Google Scholar] [CrossRef]
- Kjøller, R.; Olsrud, M.; Michelsen, A. Co-existing ericaceous plant species in a subarctic mire community share fungal root endophytes. Fungal Ecol. 2010, 3, 205–214. [Google Scholar] [CrossRef]
- Lareau, M.J. Rooting and establishment of in vitro blueberry plantlets in the presence of mycorrhizal fungi. Acta Hort. 1985, 165, 197–202. [Google Scholar] [CrossRef]
- Nieuwdorp, P.J. Some investigations on the mycorrhiza of Calluna, Erica and Vaccinium. Acta Bot. Neerl. 1969, 18, 180–196. [Google Scholar] [CrossRef]
- Hagerup, O. Studies on the significance of polyploidy (IV. Oxycoccus). Hereditas 1940, 26, 399–410. [Google Scholar] [CrossRef]
- Sidorovich, E.A.; Kudinov, M.A.; Ruban, N.N.; Sherstenikina, A.V.; Rupasova, Z.A.; Shapiro, D.K.; Gorbenko, S.V. Large-Fruited Cranberries in Belarus; Nauka i technika: Minsk, Belarus, 1987; p. 238. (In Russian) [Google Scholar]
- Darnell, R.L.; Stutte, G.W.; Martin, G.C.; Lang, G.A.; Early, J.D. Development physiology of rabbiteye blueberry. In Horticultural Reviews, Volume 13; Janick, J., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1992; pp. 339–406. [Google Scholar] [CrossRef]
- Medappa, K.C.; Dana, M.N. Influence of pH, calcium, iron, and aluminum on the uptake of radiophosphorus by cranberry plant. Soil Sci. Soc. Amer. Proc. 1968, 32, 381–383. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, S.; Mohapatra, T. Interaction between macro- and micro-nutrients in plants. Front. Plant. Sci. 2021, 12, 1–9. [Google Scholar] [CrossRef]
- Esposti, M.D.D.; de Siqueira, D.L.; Pereira, P.R.G.; Venegas, V.H.A.; Salomão, L.C.C.; Filho, J.A.M. Assessment of nitrogenized nutrition of citrus rootstock using chlorophyll concentration in the leaf. J. Plant Nutr. 2003, 26, 1287–1299. [Google Scholar] [CrossRef]
- Boorboori, M.R.; Lackóová, L. Arbuscular mycorrhizal fungi and salinity stress mitigation in plants. Front. Plant Sci. 2025, 15, 1504970. [Google Scholar] [CrossRef]
- Maffia, A.; Oliva, M.; Marra, F.; Mallamaci, C.; Nardi, S.; Muscolo, A. Humic substances: Bridging ecology and agriculture for a greener future. Agronomy 2025, 15, 410. [Google Scholar] [CrossRef]
- Fuentes-Quiroz, A.; Herrera, H.; Alvarado, R.; Sagredo-Saez, C.; Isabel-Mujica, M.; Vohník, M.; Rolli, E. Cultivable root-symbiotic bacteria of a pioneer ericaceous dwarf shrub colonizing volcanic deposits and their potential to promote host fitness. J. Soil Sci. Plant Nutr. 2024, 24, 3355–3363. [Google Scholar] [CrossRef]
- Pani, S.; Kumar, A.; Sharma, A. Trichoderma harzianum: An overview. Bull. Environ. Pharmacol. Life Sci. 2021, 10, 32–39. [Google Scholar]
- Yao, X.; Guo, H.; Zhang, K.; Zhao, M.; Ruan, J.; Chen, J. Trichoderma and its role in biological control of plant fungal and nematode disease. Front. Microbiol. 2023, 14, 1160551. [Google Scholar] [CrossRef]
- Sagar, A.; Yadav, S.S.; Sayyed, R.Z.; Sharma, S.; Ramteke, P.W. Bacillus subtilis: A multifarious plant growth promoter, biocontrol agent, and bioalleviator of abiotic stress. In Bacilli in Climate Resilient Agriculture and Bioprospecting; Islam, M.T., Rahman, M., Pandey, P., Eds.; Springer: Cham, Switzerland, 2022; pp. 561–580. [Google Scholar] [CrossRef]
- Ortiz, A.; Sansinenea, E. 5—Bacillus sp. as biofertilizers applied in horticultural crops. In Bio-Inoculants in Horticultural Crops. Advances in Bio-Inoculant Sciences, Volume 3; Rakshit, A., Meena, V.S., Fraceto, L.F., Parihar, M., Mendon, A.B., Singh, H.B., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2024; pp. 97–108. [Google Scholar] [CrossRef]
- Silva, L.I.; Pereira, M.C.; Carvalho, A.M.X.; Buttrós, V.H.; Pasqual, M.; Dória, J. Phosphorus-solubilizing microorganisms: A key to sustainable agriculture. Agriculture 2023, 12, 462. [Google Scholar] [CrossRef]
- Taylor, T.B.; Silby, M.W.; Jackson, R.W. Pseudomonas fluorescens. Trends Microbiol. 2025, 33, 250–251. [Google Scholar] [CrossRef]
- Mohan, V.; Wibisono, R.; Chalke, S.; Fletcher, G.; Leroi, F. The anti-listeria Activity of Pseudomonas fluorescens isolated from the horticultural environment in New Zealand. Pathogens 2023, 12, 349. [Google Scholar] [CrossRef] [PubMed]
- Mukhina, M.T.; Borovik, R.A.; Korshunov, A.A. Slow-and control-release fertilizers: Brief history and modern ternts. Plodorodie 2021, 77–82. (In Russian) [Google Scholar] [CrossRef]
- Kassem, I.; Ablouh, E.-H.; Bouchtaoui, F.-Z.E.; Jaouahar, M.; Achaby, M.E. Polymer coated slow/ controlled release granular fertilizers: Fundamentals and research trends. Prog. Mater. Sci. 2024, 144, 101269. [Google Scholar] [CrossRef]
- Oertli, J.J.; Lunt, O.R. Controlled release of fertilizer minerals by incapsulating membranes: I. factors influencing the rate of release. Soil Sci. Soc. Am. J. 1962, 26, 579–583. [Google Scholar] [CrossRef]
- Christianson, C.B. Factors affecting N release of urea from reactive layer coated urea. Fertil Res. 1988, 16, 273–284. [Google Scholar] [CrossRef]
- Wardle, D.A.; Nilsson, M.-C.; Gallet, C.; Zackrisson, O. An ecosystem-level perspective of allelopathy. Biol. Rev. 1998, 73, 305–319. [Google Scholar] [CrossRef]
- Nilsson, M.-C.; Gallet, C.; Wallstedt, A. Temporal variability of phenolics and batatasin-Ill in Empetrum hermaphroditum leaves over an eight-year period: Interpretations of ecological function. OIKOS 1998, 81, 6–16. [Google Scholar] [CrossRef]
- Lawrencia, D.; Wong, S.K.; Low, D.Y.S.; Goh, B.H.; Goh, J.K.; Ruktanonchai, U.R.; Soottitantawat, A.; Lee, L.H.; Tang, S.Y. Controlled release fertilizers: A review on coating materials and mechanism of release. Plants 2021, 10, 238. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Ravi, P.; Tam, K.C. PH-responsive polymers: Synthesis, properties and applications. Soft Matter 2008, 4, 435–449. [Google Scholar] [CrossRef] [PubMed]
- Kocak, G.; Tuncer, C.; Bütün, V. PH-responsive polymers. Polym. Chem. 2017, 8, 144–176. [Google Scholar] [CrossRef]
- Majeed, Z.; Ramli, N.K.; Mansor, N.; Man, Z. A comprehensive review on biodegradable polymers and their blends used in controlled- release fertilizer processes. Rev. Chem. Eng. 2015, 31, 69–95. [Google Scholar] [CrossRef]
- Tanan, W.; Panichpakdee, J.; Suwanakood, P.; Saengsuwan, S. Biodegradable hydrogels of cassava starch-g-polyacrylic acid/natural rubber/polyvinyl alcohol as environmentally friendly and highly efficient coating material for slow-release urea fertilizers. J. Ind. Eng. Chem. 2021, 101, 237–252. [Google Scholar] [CrossRef]
- Januszkiewicz, R.; Kulczycki, G.; Samoraj, M. Foliar fertilization of crop plants in Polish agriculture. Agriculture 2023, 13, 1715. [Google Scholar] [CrossRef]
- Zydlik, Z.; Zydlik, P.; Kafkas, N.E.; Yesil, B.; Cieśliński, S. Foliar application of some macronutrients and micronutrients improves yield and fruit quality of highbush blueberry (Vaccinium corymbosum L.). Horticulturae 2022, 8, 664. [Google Scholar] [CrossRef]
- Gahan, J.; Schmalenberger, A. The role of bacteria and mycorrhiza on plant sulfur supply. Front. Plant Sci. 2014, 5. [Google Scholar] [CrossRef]
- Ma, W.; Tang, S.; Dengzeng, Z.; Zhang, D.; Zhang, T.; Ma, X. Root exudates contribute to belowground ecosystem hotspots: A review. Front. Microbiol. 2022, 13, 937940. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.-J.; Tausz, M.; De Kok, L.J. Role of sulfur for plant production in agricultural and natural ecosystems. In Sulfur Metabolism in Phototrophic Organisms. Advances in Photosynthesis and Respiration, Volume 27; Hell, R., Dahl, C., Knaff, D., Leustek, T., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 417–435. [Google Scholar] [CrossRef]
- Cooper, R.M.; Williams, J.S. Elemental sulphur as an induced antifungal substance in plant defence. J. Exp. Bot. 2004, 55, 1947–1953. [Google Scholar] [CrossRef] [PubMed]
- Zenda, T.; Liu, S.; Dong, A.; Duan, H. Revisiting sulphur-the once neglected nutrient: It’s roles in plant growth, metabolism, stress tolerance and crop production. Agriculture 2021, 11, 626. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, H.; Huang, Y.; Jiao, S.; Zheng, X.; Lu, W.; Jiang, W.; Bai, X. Impact of sulfur deficiency and excess on the growth and development of soybean seedlings. Int. J. Mol. Sci. 2024, 25, 11253. [Google Scholar] [CrossRef]
- Alhendawi, R.A.; Kirkby, E.A.; Pilbeam, D.J. Evidence that sulfur deficiency enhances molybdenum transport in xylem sap of tomato plants. J. Plant Nutr. 2005, 28, 1347–1353. [Google Scholar] [CrossRef]
- Astolfi, S.; Zuchi, S.; Hubberten, H.M.; Pinton, R.; Hoefgen, R. Supply of sulphur to S-deficient young barley seedlings restores their capability to cope with iron shortage. J. Exp. Bot. 2010, 61, 799–806. [Google Scholar] [CrossRef] [PubMed]
Mycorrhiza and Fertilizers | Composition | Application Method | Concentration (g/L) |
---|---|---|---|
Mycorrhiza forming additives | |||
Kormilitsa | Granular mycorrhizae containing mycelium and spores of fungi of the genus Glomus, colonized root fragments, natural organic fillers, humic substances | Substrate application | 6 |
Mycofriend | Powdered preparation containing fungi (Glomus sp., Trichoderma harzianum); microorganisms that support the formation of mycorrhizae and plant rhizosphere (Streptomyces sp., Pseudomonas fluorescens); phosphate-solubilizing bacteria with fungicidal and bactericidal properties (Bacillius megaterium var. phosphaticum, Bacillus subtilis, Bacillus muciloginosus, Enterobacter sp.); total number of viable cells (1.0–1.5) × 108 CFU/g; biologically active substances (phytohormones, vitamins, amino acids) | Substrate application | 0.4 |
Mineral fertilizers | |||
Plantafol | N—20% (N-NO3—4%, N-NH4—2%, N-NH2—14%), P2O5—20%, K2O—20%, microelement chelates with EDTA (B-0.02%; Fe-0.01%; Mn-0.05%; Cu-0.005) | Foliar application | 2 |
Rastvorin | N—20%, P2O5—16%, K2O—10%, S-5.5%, Microelements: B-0.01%; Mn-0.1%; Cu-0.01%; Zn-0.01%; Mo-0.001% | Direct application to substrate | 2 |
Osmocote PRO | N—19% (N-NO3—6.6%, N-NH4—9%, N-NH2—1.4%), P2O5—9%, K2O—10%, MgO-2%, Microelements: B-0.01%; Fe-0.007%; Mn-0.04%; Cu-0.023%; Zn-0.011%; Mo-0.01%, | Substrate application | 2 |
Treatment Variant | Mycorrhiza | Mineral Fertilizers | |||
---|---|---|---|---|---|
Kormilitsa | Mycofriend | Plantafol | Rastvorin | Osmocote PRO | |
T1 | |||||
T2 | + | ||||
T3 | + | ||||
T4 | + | ||||
T5 | + | ||||
T6 | + | ||||
T7 | + | + | |||
T8 | + | + | |||
T9 | + | + | |||
T10 | + | + | |||
T11 | + | + | |||
T12 | + | + |
Variant | Plant Survival, % | ||||||
---|---|---|---|---|---|---|---|
14th Day | 28th Day | 42nd Day | 56th Day | 70th Day | 84th Day | 98th Day | |
T1 | 100.0 ± 0 ns | 100.0 ± 0 c | 100.0 ± 0 d | 100.0 ± 0 e | 100.0 ± 0 e | 100.0 ± 0 e | 100.0 ± 0 e |
T2 | 100.0 ± 0 ns | 100.0 ± 0 c | 100.0 ± 0 d | 100.0 ± 0 e | 100.0 ± 0 e | 100.0 ± 0 e | 100.0 ± 0 e |
T3 | 100.0 ± 0 ns | 95.8 ± 4.2 b | 95.8 ± 4.2 cd | 95.8 ± 4.2 de | 95.8 ± 4.2 de | 95.8 ± 4.2 de | 95.8 ± 4.2 de |
T4 | 100.0 ± 0 ns | 100.0 ± 0 c | 100.0 ± 0 d | 100.0 ± 0 e | 100.0 ± 0 e | 100.0 ± 0 e | 100.0 ± 0 e |
T5 | 100.0 ± 0 ns | 79.2 ± 8.5 a | 58.3 ± 10.3 b | 45.8 ± 10.4 b | 41.6 ± 10.1 b | 37.5 ± 10.1 b | 37.5 ± 10.1 b |
T6 | 100.0 ± 0 ns | 95.8 ± 4.2 b | 95.8 ± 4.2 cd | 95.8 ± 4.2 de | 95.8 ± 4.2 de | 95.8 ± 4.2 de | 95.8 ± 4.2 de |
T7 | 100.0 ± 0 ns | 95.8 ± 4.2 b | 91.7 ± 5.8 c | 91.7 ± 5.8 d | 91.7 ± 5.8 d | 91.7 ± 5.8 d | 91.7 ± 5.8 d |
T8 | 100.0 ± 0 ns | 79.2 ± 8.5 a | 37.5 ± 10.1 a | 37.5 ± 10.1 a | 33.3 ± 9.8 a | 29.2 ± 9.5 a | 29.2 ± 9.5 a |
T9 | 100.0 ± 0 ns | 100.0 ± 0 c | 100.0 ± 0 d | 100.0 ± 0 e | 100.0 ± 0 e | 100.0 ± 0 e | 100.0 ± 0 e |
T10 | 100.0 ± 0 ns | 100.0 ± 0 c | 100.0 ± 0 d | 100.0 ± 0 e | 100.0 ± 0 e | 100.0 ± 0 e | 100.0 ± 0 e |
T11 | 100.0 ± 0 ns | 95.8 ± 4.2 b | 95.8 ± 4.2 cd | 83.3 ± 7.8 c | 83.3 ± 7.8 c | 75.0 ± 9.0 c | 75.0 ± 9.0 c |
T12 | 100.0 ± 0 ns | 100.0 ± 0 c | 100.0 ± 0 d | 100.0 ± 0 e | 100.0 ± 0 e | 100.0 ± 0 e | 100.0 ± 0 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nechiporenko, I.; Akimova, S.; Semenova, N. Mycorrhization of Black Crowberry (Empetrum nigrum L.) After In Vitro Propagation with Mineral Fertilizers. Horticulturae 2025, 11, 1063. https://doi.org/10.3390/horticulturae11091063
Nechiporenko I, Akimova S, Semenova N. Mycorrhization of Black Crowberry (Empetrum nigrum L.) After In Vitro Propagation with Mineral Fertilizers. Horticulturae. 2025; 11(9):1063. https://doi.org/10.3390/horticulturae11091063
Chicago/Turabian StyleNechiporenko, Ivan, Svetlana Akimova, and Natalia Semenova. 2025. "Mycorrhization of Black Crowberry (Empetrum nigrum L.) After In Vitro Propagation with Mineral Fertilizers" Horticulturae 11, no. 9: 1063. https://doi.org/10.3390/horticulturae11091063
APA StyleNechiporenko, I., Akimova, S., & Semenova, N. (2025). Mycorrhization of Black Crowberry (Empetrum nigrum L.) After In Vitro Propagation with Mineral Fertilizers. Horticulturae, 11(9), 1063. https://doi.org/10.3390/horticulturae11091063