Advances in Berry Harvesting Robots
Abstract
1. Introduction
2. Overview of Berry Harvesting Robots
3. Fruit Detection and Localization Technology
4. Motion Planning Technology
5. Fruit Fixation and Separation Techniques
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barkaoui, S.; Madureira, J.; Boudhrioua, N.; Cabo Verde, S. Berries: Effects on Health, Preservation Methods, and Uses in Functional Foods: A Review. Eur. Food Res. Technol. 2023, 249, 1689–1715. [Google Scholar] [CrossRef]
- Golovinskaia, O.; Wang, C.-K. Review of Functional and Pharmacological Activities of Berries. Molecules 2021, 26, 3904. [Google Scholar] [CrossRef] [PubMed]
- Petruskevicius, A.; Viskelis, J.; Urbonaviciene, D.; Viskelis, P. Anthocyanin Accumulation in Berry Fruits and Their Antimicrobial and Antiviral Properties: An Overview. Horticulturae 2023, 9, 288. [Google Scholar] [CrossRef]
- Gui, H.; Dai, J.; Tian, J.; Jiang, Q.; Zhang, Y.; Ren, G.; Song, B.; Wang, M.; Saiwaidoula, M.; Dong, W.; et al. The Isolation of Anthocyanin Monomers from Blueberry Pomace and Their Radical-Scavenging Mechanisms in DFT Study. Food Chem. 2023, 418, 135872. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Feng, Y.; Diao, T.; Zeng, W.; Zuo, Y. Experimental and Theoretical Study on Antioxidant Activity of the Four Anthocyanins. J. Mol. Struct. 2020, 1204, 127509. [Google Scholar] [CrossRef]
- Mottaghipisheh, J.; Doustimotlagh, A.H.; Irajie, C.; Tanideh, N.; Barzegar, A.; Iraji, A. The Promising Therapeutic and Preventive Properties of Anthocyanidins/Anthocyanins on Prostate Cancer. Cells 2022, 11, 1070. [Google Scholar] [CrossRef]
- Reis, J.F.; Monteiro, V.V.S.; de Souza Gomes, R.; do Carmo, M.M.; da Costa, G.V.; Ribera, P.C.; Monteiro, M.C. Action Mechanism and Cardiovascular Effect of Anthocyanins: A Systematic Review of Animal and Human Studies. J. Transl. Med. 2016, 14, 315. [Google Scholar] [CrossRef]
- Wallace, T.; Slavin, M.; Frankenfeld, C. Systematic Review of Anthocyanins and Markers of Cardiovascular Disease. Nutrients 2016, 8, 32. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Veberic, R.; Hudina, M.; Zorenc, Z.; Koron, D. Fruit Quality Characteristics and Biochemical Composition of Fully Ripe Blackberries Harvested at Different Times. Foods 2021, 10, 1581. [Google Scholar] [CrossRef]
- Çolak, A.M.; Okatan, V.; Polat, M.; Güçlü, S.F. Different Harvest Times Affect Market Quality of Lyciumbarbarum L. Berries. Turk. J. Agric. For. 2019, 43, 326–333. [Google Scholar] [CrossRef]
- Guo, J.; Yang, Z.; Karkee, M.; Jiang, Q.; Feng, X.; He, Y. Technology Progress in Mechanical Harvest of Fresh Market Strawberries. Comput. Electron. Agric. 2024, 226, 109468. [Google Scholar] [CrossRef]
- Suresh Kumar, M.; Mohan, S. Selective Fruit Harvesting: Research, Trends and Developments towards Fruit Detection and Localization—A Review. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2023, 237, 1405–1444. [Google Scholar] [CrossRef]
- Pu, Y.; Wang, S.; Yang, F.; Ehsani, R.; Zhao, L.; Li, C.; Xie, S.; Yang, M. Recent Progress and Future Prospects for Mechanized Harvesting of Fruit Crops with Shaking Systems. Int. J. Agric. Biol. Eng. 2023, 16, 1–13. [Google Scholar] [CrossRef]
- Brondino, L.; Borra, D.; Giuggioli, N.R.; Massaglia, S. Mechanized Blueberry Harvesting: Preliminary Results in the Italian Context. Agriculture 2021, 11, 1197. [Google Scholar] [CrossRef]
- Malladi, A.; Vashisth, T.; NeSmith, S. Development and Evaluation of a Portable, Handheld Mechanical Shaker to Study Fruit Detachment in Blueberry. Hortscience 2013, 48, 394–397. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, C.; Gao, Y.; Lei, Y.; Ma, L.; Qu, A. Design and Testing of an Integrated Lycium barbarum L. Harvester. Agriculture 2024, 14, 1370. [Google Scholar] [CrossRef]
- Sargent, S.A.; Takeda, F.; Williamson, J.G.; Berry, A.D. Harvest of Southern Highbush Blueberry with a Modified, over-the-Row Mechanical Harvester: Use of Soft-Catch Surfaces to Minimize Impact Bruising. Agronomy 2021, 11, 1412. [Google Scholar] [CrossRef]
- Sargent, S.A.; Takeda, F.; Williamson, J.G.; Berry, A.D. Harvest of Southern Highbush Blueberry with a Modified, over-the-Row Mechanical Harvester: Use of Handheld Shakers and Soft Catch Surfaces. Agriculture 2020, 10, 4. [Google Scholar] [CrossRef]
- Yu, P.; Li, C.; Rains, G.; Hamrita, T. Development of the Berry Impact Recording Device Sensing System: Software. Comput. Electron. Agric. 2011, 77, 195–203. [Google Scholar] [CrossRef]
- Xiong, Y.; Peng, C.; Grimstad, L.; From, P.J.; Isler, V. Development and Field Evaluation of a Strawberry Harvesting Robot with a Cable-Driven Gripper. Comput. Electron. Agric. 2019, 157, 392–402. [Google Scholar] [CrossRef]
- Liu, X.; Li, P.; Hu, B.; Yin, H.; Wang, Z.; Li, W.; Xu, Y.; Li, B. The Identification, Separation, and Clamp Function of an Intelligent Flexible Blueberry Picking Robot. Processes 2024, 12, 2591. [Google Scholar] [CrossRef]
- Johan From, P.; Grimstad, L.; Hanheide, M.; Pearson, S.; Cielniak, G. RASberry—Robotic and Autonomous Systems for Berry Production. Mech. Eng. 2018, 140, S14–S18. [Google Scholar] [CrossRef]
- Williams, H.A.M.; Jones, M.H.; Nejati, M.; Seabright, M.J.; Bell, J.; Penhall, N.D.; Barnett, J.J.; Duke, M.D.; Scarfe, A.J.; Ahn, H.S.; et al. Robotic Kiwifruit Harvesting Using Machine Vision, Convolutional Neural Networks, and Robotic Arms. Biosyst. Eng. 2019, 181, 140–156. [Google Scholar] [CrossRef]
- Hayashi, S.; Yamamoto, S.; Tsubota, S.; Ochiai, Y.; Kobayashi, K.; Kamata, J.; Kurita, M.; Inazumi, H.; Peter, R. Automation Technologies for Strawberry Harvesting and Packing Operations in Japan. J. Berry Res. 2014, 4, 19–27. [Google Scholar] [CrossRef]
- Vrochidou, E.; Tziridis, K.; Nikolaou, A.; Kalampokas, T.; Papakostas, G.A.; Pachidis, T.P.; Mamalis, S.; Koundouras, S.; Kaburlasos, V.G. An Autonomous Grape-Harvester Robot: Integrated System Architecture. Electronics 2021, 10, 1056. [Google Scholar] [CrossRef]
- Qiu, A.; Young, C.; Gunderman, A.L.; Azizkhani, M.; Chen, Y.; Hu, A.-P. Tendon-Driven Soft Robotic Gripper with Integrated Ripeness Sensing for Blackberry Harvesting. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 11831–11837. [Google Scholar]
- Wang, C.; Pan, W.; Zou, T.; Li, C.; Han, Q.; Wang, H.; Yang, J.; Zou, X. A Review of Perception Technologies for Berry Fruit-Picking Robots: Advantages, Disadvantages, Challenges, and Prospects. Agriculture 2024, 14, 1346. [Google Scholar] [CrossRef]
- Maharshi, V.; Sharma, S.; Prajesh, R.; Das, S.; Agarwal, A.; Mitra, B. A Novel Sensor for Fruit Ripeness Estimation Using Lithography Free Approach. IEEE Sensors J. 2022, 22, 22192–22199. [Google Scholar] [CrossRef]
- Krishnan, A.; Swarna, S.; Balasubramany, H.S. Robotics, IoT, and AI in the Automation of Agricultural Industry: A Review. In Proceedings of the 2020 IEEE Bangalore Humanitarian Technology Conference (B-HTC), Vijayapur, India, 8–10 October 2020; pp. 1–6. [Google Scholar]
- Lytridis, C.; Bazinas, C.; Kalathas, I.; Siavalas, G.; Tsakmakis, C.; Spirantis, T.; Badeka, E.; Pachidis, T.; Kaburlasos, V.G. Cooperative Grape Harvesting Using Heterogeneous Autonomous Robots. Robotics 2023, 12, 147. [Google Scholar] [CrossRef]
- Buayai, P.; Tan, Y.S.; Kamarudzaman, M.F.B.; Makino, K.; Nishizaki, H.; Mao, X. Automating Grape Thinning: Predicting Robotic Arm End-Effector Positions Using Depth Sensing Technology and Neural Networks. In Proceedings of the 2023 IEEE International Workshop on Metrology for Agriculture and Forestry (Metroagrifor), Pisa, Italy, 6–8 November 2023; pp. 76–80. [Google Scholar]
- Verbiest, R.; Ruysen, K.; Vanwalleghem, T.; Demeester, E.; Kellens, K. Automation and Robotics in the Cultivation of Pome Fruit: Where Do We Stand Today? J. Field Rob. 2021, 38, 513–531. [Google Scholar] [CrossRef]
- Bogue, R. Fruit Picking Robots: Has Their Time Come? Ind. Robot Int. J. Robot. Res. Appl. 2020, 47, 141–145. [Google Scholar] [CrossRef]
- De Preter, A.; Anthonis, J.; De Baerdemaeker, J. Development of a Robot for Harvesting Strawberries. IFAC-PapersOnLine 2018, 51, 14–19. [Google Scholar] [CrossRef]
- Hambling, D. WE: ROBOT: The Robots That Already Rule Our World; Aurum: Gunsan, Republic of Korea, 2018; ISBN 1-78131-805-0. [Google Scholar]
- Cao, L.; Chen, Y.; Jin, Q. Lightweight Strawberry Instance Segmentation on Low-Power Devices for Picking Robots. Electronics 2023, 12, 3145. [Google Scholar] [CrossRef]
- Shigehiko, H.; Satoshi, Y.; Masago, T.; Kobayashi, L.; Junzo, K.; Rajendra, P.; Kazuhiro, Y. Development and practical application of a stationary strawberry harvesting robot integrated with mobile cultivation system. J. Agric. Food Eng. 2017, 79, 415–425. [Google Scholar] [CrossRef]
- Kolhalkar, N.R.; Pandit, A.A.; Kedar, S.A.; Yedukondalu, G. Artificial Intelligence Algorithms for Robotic Harvesting of Agricultural Produce. In Proceedings of the 2025 1st International Conference on AIML-Applications for Engineering & Technology (ICAET), Pune, India, 16 January 2025; pp. 1–6. [Google Scholar]
- Parsa, S.; Debnath, B.; Khan, M.A.; Ghalamzan, E.A. Modular Autonomous Strawberry Picking Robotic System. J. Field Rob. 2024, 41, 2226–2246. [Google Scholar] [CrossRef]
- Pal, A.; Leite, A.C.; From, P.J. A Novel End-to-End Vision-Based Architecture for Agricultural Human–Robot Collaboration in Fruit Picking Operations. Robot. Auton. Syst. 2024, 172, 104567. [Google Scholar] [CrossRef]
- Zeeshan, S.; Aized, T.; Riaz, F. In-Depth Evaluation of Automated Fruit Harvesting in Unstructured Environment for Improved Robot Design. Machines 2024, 12, 151. [Google Scholar] [CrossRef]
- Yang, L.; Noguchi, T.; Hoshino, Y. Development of a Pumpkin Fruits Pick-and-Place Robot Using an RGB-D Camera and a YOLO Based Object Detection AI Model. Comput. Electron. Agric. 2024, 227, 109625. [Google Scholar] [CrossRef]
- Mack, J.; Schindler, F.; Rist, F.; Herzog, K.; Töpfer, R.; Steinhage, V. Semantic Labeling and Reconstruction of Grape Bunches from 3D Range Data Using a New RGB-D Feature Descriptor. Comput. Electron. Agric. 2018, 155, 96–102. [Google Scholar] [CrossRef]
- Kurtser, P.; Ringdahl, O.; Rotstein, N.; Berenstein, R.; Edan, Y. In-Field Grape Cluster Size Assessment for Vine Yield Estimation Using a Mobile Robot and a Consumer Level RGB-D Camera. IEEE Robot. Autom. Lett. 2020, 5, 2031–2038. [Google Scholar] [CrossRef]
- Yoshida, T.; Kawahara, T.; Fukao, T. Fruit Recognition Method for a Harvesting Robot with RGB-D Cameras. ROBOMECH J. 2022, 9, 15. [Google Scholar] [CrossRef]
- Petter Wold, J.; Vejle Andersen, P.; Aaby, K.; Fagertun Remberg, S.; Hansen, A.; O’Farrell, M.; Tschudi, J. Inter Seasonal Validation of Non-Contact NIR Spectroscopy for Measurement of Total Soluble Solids in High Tunnel Strawberries. Spectrochim. Acta Part A 2024, 309, 123853. [Google Scholar] [CrossRef]
- Gongal, A.; Amatya, S.; Karkee, M.; Zhang, Q.; Lewis, K. Sensors and Systems for Fruit Detection and Localization: A Review. Comput. Electron. Agric. 2015, 116, 8–19. [Google Scholar] [CrossRef]
- Pothen, Z.S.; Nuske, S. Texture-Based Fruit Detection via Images Using the Smooth Patterns on the Fruit. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; Okamura, A., Menciassi, A., Ude, A., Burschka, D., Lee, D., Arrichiello, F., Liu, H., Moon, H., Neira, J., Sycara, K., et al., Eds.; IEEE: Piscataway, NJ, USA; 2016; pp. 5171–5176. [Google Scholar]
- Bai, Y.; Mao, S.; Zhou, J.; Zhang, B. Clustered Tomato Detection and Picking Point Location Using Machine Learning-Aided Image Analysis for Automatic Robotic Harvesting. Precis. Agric. 2023, 24, 727–743. [Google Scholar] [CrossRef]
- Kavitha, M.; Nirmala, P. Analysis and Comparison of SVM-RBF Algorithms for Colorectal Cancer Detection over Convolutional Neural Networks with Improved Accuracy. J. Pharm. Negat. Results 2022, 13, 94–103. [Google Scholar] [CrossRef]
- Zabawa, L.; Kicherer, A.; Klingbeil, L.; Töpfer, R.; Roscher, R.; Kuhlmann, H. Image-Based Analysis of Yield Parameters in Viticulture. Biosyst. Eng. 2022, 218, 94–109. [Google Scholar] [CrossRef]
- Kasinathan, T.; Uyyala, S.R. Detection of Fall Armyworm (Spodoptera Frugiperda) in Field Crops Based on Mask R-CNN. Signal Image Video Process. 2023, 17, 2689–2695. [Google Scholar] [CrossRef]
- Mekhalfi, M.L.; Nicolò, C.; Bazi, Y.; Al Rahhal, M.M.; Al Maghayreh, E. Detecting Crop Circles in Google Earth Images with Mask R-CNN and YOLOv3. Appl. Sci. 2021, 11, 2238. [Google Scholar] [CrossRef]
- Altaheri, H.; Alsulaiman, M.; Muhammad, G. Date Fruit Classification for Robotic Harvesting in a Natural Environment Using Deep Learning. IEEE Access 2019, 7, 117115–117133. [Google Scholar] [CrossRef]
- Ma, Z.; Dong, N.; Gu, J.; Cheng, H.; Meng, Z.; Du, X. STRAW-YOLO: A Detection Method for Strawberry Fruits Targets and Key Points. Comput. Electron. Agric. 2025, 230, 109853. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, K.; Yang, L.; Zhang, D. Fruit Detection for Strawberry Harvesting Robot in Non-Structural Environment Based on Mask-RCNN. Comput. Electron. Agric. 2019, 163, 104846. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, D.; Yang, L.; Cui, T.; He, X.; Zhang, K.; Zhang, Z. Development, Integration, and Field Evaluation of a Dual-arm Ridge Cultivation Strawberry Autonomous Harvesting Robot. J. Field Rob. 2024, 42, 1783–1798. [Google Scholar] [CrossRef]
- Lawal, O.M. Study on Strawberry Fruit Detection Using Lightweight Algorithm. Multimed. Tools Appl. 2024, 83, 8281–8293. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Chen, K.; Li, H.; Duan, Y.; Wu, W.; Shi, Y.; Guo, W. Lightweight Fruit-Detection Algorithm for Edge Computing Applications. Front. Plant Sci. 2021, 12, 740936. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.; Cho, B.-H.; Kim, K.-C. Development of Monitoring Robot System for Tomato Fruits in Hydroponic Greenhouses. Agronomy 2021, 11, 2211. [Google Scholar] [CrossRef]
- Magalhães, S.A.; Castro, L.; Moreira, G.; dos Santos, F.N.; Cunha, M.; Dias, J.; Moreira, A.P. Evaluating the Single-Shot MultiBox Detector and YOLO Deep Learning Models for the Detection of Tomatoes in a Greenhouse. Sensors 2021, 21, 3569. [Google Scholar] [CrossRef] [PubMed]
- Sozzi, M.; Cantalamessa, S.; Cogato, A.; Kayad, A.; Marinello, F. Automatic Bunch Detection in White Grape Varieties Using YOLOv3, YOLOv4, and YOLOv5 Deep Learning Algorithms. Agronomy 2022, 12, 319. [Google Scholar] [CrossRef]
- Ciarfuglia, T.A.; Motoi, I.M.; Saraceni, L.; Fawakherji, M.; Sanfeliu, A.; Nardi, D. Weakly and Semi-Supervised Detection, Segmentation and Tracking of Table Grapes with Limited and Noisy Data. Comput. Electron. Agric. 2023, 205, 107624. [Google Scholar] [CrossRef]
- Zhou, X.; Zou, X.; Tang, W.; Yan, Z.; Meng, H.; Luo, X. Unstructured Road Extraction and Roadside Fruit Recognition in Grape Orchards Based on a Synchronous Detection Algorithm. Front. Plant Sci. 2023, 14, 1103276. [Google Scholar] [CrossRef]
- Chen, X.; Hu, D.; Cheng, Y.; Chen, S.; Xiang, J. EDT-YOLOv8n-Based Lightweight Detection of Kiwifruit in Complex Environments. Electronics 2025, 14, 147. [Google Scholar] [CrossRef]
- Yang, C.; Liu, J.; He, J. A Lightweight Waxberry Fruit Detection Model Based on YOLOv5. IET Image Proc. 2024, 18, 1796–1808. [Google Scholar] [CrossRef]
- Lei, H.; Li, C.; Tang, Y.; Zhong, Z.; Jiao, Z. Accurate and Rapid Image Segmentation Method for Bayberry Automatic Picking via Machine Learning. Int. J. Agric. Biol. Eng. 2023, 16, 246–254. [Google Scholar] [CrossRef]
- Akiva, P.; Dana, K.; Oudemans, P.; Mars, M. Finding Berries: Segmentation and Counting of Cranberries Using Point Supervision and Shape Priors. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 219–228. [Google Scholar]
- Ni, X.; Li, C.; Jiang, H.; Takeda, F. Three-Dimensional Photogrammetry with Deep Learning Instance Segmentation to Extract Berry Fruit Harvestability Traits. ISPRS J. Photogramm. Remote Sens. 2021, 171, 297–309. [Google Scholar] [CrossRef]
- Onishi, Y.; Yoshida, T.; Kurita, H.; Fukao, T.; Arihara, H.; Iwai, A. An Automated Fruit Harvesting Robot by Using Deep Learning. ROBOMECH J. 2019, 6, 13. [Google Scholar] [CrossRef]
- Ge, Y.; Xiong, Y.; Tenorio, G.L.; From, P.J. Fruit Localization and Environment Perception for Strawberry Harvesting Robots. IEEE Access 2019, 7, 147642–147652. [Google Scholar] [CrossRef]
- Mehta, S.S.; Ton, C.; Asundi, S.; Burks, T.F. Multiple Camera Fruit Localization Using a Particle Filter. Comput. Electron. Agric. 2017, 142, 139–154. [Google Scholar] [CrossRef]
- Oikawa, Y.; Ohya, A.; Yorozu, A. Pre-Planning of Trajectory and Orbiting around Greenhouses to Shorten Operation Time for Fruit-Set-Reagent Spraying Robot. In Proceedings of the 2024 10th International Conference on Mechatronics and Robotics Engineering (ICMRE), Milan, Italy, 27 February 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 105–109. [Google Scholar]
- Sarabu, H.; Ahlin, K.; Hu, A.-P. Graph-Based Cooperative Robot Path Planning in Agricultural Environments. In Proceedings of the 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Hong Kong, China, 8–12 July 2019; pp. 519–525. [Google Scholar]
- Zeeshan, S.; Aized, T. Performance Analysis of Path Planning Algorithms for Fruit Harvesting Robot. J. Biosyst. Eng. 2023, 48, 178–197. [Google Scholar] [CrossRef]
- Chen, B.; Gong, L.; Yu, C.; Du, X.; Chen, J.; Xie, S.; Le, X.; Li, Y.; Liu, C. Workspace Decomposition Based Path Planning for Fruit-Picking Robot in Complex Greenhouse Environment. Comput. Electron. Agric. 2023, 215, 108353. [Google Scholar] [CrossRef]
- Luo, L.; Wen, H.; Lu, Q.; Huang, H.; Chen, W.; Zou, X.; Wang, C. Collision-free Path-planning for six-DOF Serial Harvesting Robot Based on Energy Optimal and Artificial Potential Field. Complexity 2018, 2018, 3563846. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, J.; Wang, J.; Li, W.; Peng, Y.; Shan, H. Development of a Dual-Arm Rapid Grape-Harvesting Robot for Horizontal Trellis Cultivation. Front. Plant Sci. 2022, 13, 881904. [Google Scholar] [CrossRef]
- Xiong, Y.; Ge, Y.; From, P.J. An Obstacle Separation Method for Robotic Picking of Fruits in Clusters. Comput. Electron. Agric. 2020, 175, 105397. [Google Scholar] [CrossRef]
- Rong, J.; Hu, L.; Zhou, H.; Dai, G.; Yuan, T.; Wang, P. A Selective Harvesting Robot for Cherry Tomatoes: Design, Development, Field Evaluation Analysis. J. Field Rob. 2024, 41, 2564–2582. [Google Scholar] [CrossRef]
- Vrochidou, E.; Tsakalidou, V.N.; Kalathas, I.; Gkrimpizis, T.; Pachidis, T.; Kaburlasos, V.G. An Overview of End Effectors in Agricultural Robotic Harvesting Systems. Agriculture 2022, 12, 1240. [Google Scholar] [CrossRef]
- Wang, X.; Hao, W.; Zhang, J.; He, Z.; Ding, X.; Cui, Y. Development and Evaluation of a Soft End Effector for Kiwifruit Harvesting. N. Z. J. Crop Hortic. Sci. 2025, 1–29. [Google Scholar] [CrossRef]
- Fang, W.; Wu, Z.; Li, W.; Sun, X.; Mao, W.; Li, R.; Majeed, Y.; Fu, L. Fruit Detachment Force of Multiple Varieties Kiwifruit with Different Fruit-Stem Angles for Designing Universal Robotic Picking End-Effector. Comput. Electron. Agric. 2023, 213, 108225. [Google Scholar] [CrossRef]
- Ochoa, E.; Mo, C. Design and Field Evaluation of an End Effector for Robotic Strawberry Harvesting. Actuators 2025, 14, 42. [Google Scholar] [CrossRef]
- Navas, E.; Shamshiri, R.R.; Dworak, V.; Weltzien, C.; Fernández, R. Soft Gripper for Small Fruits Harvesting and Pick and Place Operations. Front. Rob. AI 2024, 10, 1330496. [Google Scholar] [CrossRef]
- Navas, E.; Fernández, R.; Sepúlveda, D.; Armada, M.; Gonzalez-de-Santos, P. Soft Grippers for Automatic Crop Harvesting: A Review. Sensors 2021, 21, 2689. [Google Scholar] [CrossRef]
- Gunderman, A.L.; Collins, J.A.; Myers, A.L.; Threlfall, R.T.; Chen, Y. Tendon-Driven Soft Robotic Gripper for Blackberry Harvesting. IEEE Robot. Autom. Lett. 2022, 7, 2652–2659. [Google Scholar] [CrossRef]
- Chiu, Y.-C.; Yang, P.-Y.; Chen, S. Development of the End-Effector of a Picking Robot for Greenhouse-Grown Tomatoes. Appl. Eng. Agric. 2013, 29, 1001–1009. [Google Scholar] [CrossRef]
- Visentin, F.; Castellini, F.; Muradore, R. A Soft, Sensorized Gripper for Delicate Harvesting of Small Fruits. Comput. Electron. Agric. 2023, 213, 108202. [Google Scholar] [CrossRef]
- Elfferich, J.F.; Shahabi, E.; Santina, C.D.; Dodou, D. BerryTwist: A Twisting-Tube Soft Robotic Gripper for Blackberry Harvesting. IEEE Robot. Autom. Lett. 2025, 10, 429–435. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, J.; Wang, J.; Cai, L.; Jin, Y.; Zhao, S.; Xie, B. Realtime Picking Point Decision Algorithm of Trellis Grape for High-Speed Robotic Cut-and-Catch Harvesting. Agronomy 2023, 13, 1618. [Google Scholar] [CrossRef]
- Mu, L.; Cui, G.; Liu, Y.; Cui, Y.; Fu, L.; Gejima, Y. Design and Simulation of an Integrated End-Effector for Picking Kiwifruit by Robot. Inf. Process. Agric. 2020, 7, 58–71. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, F.; Zhang, J.; Yuan, T.; Yin, J.; Guo, H.; Yang, C. Development and Evaluation of a Pneumatic Finger-like End-Effector for Cherry Tomato Harvesting Robot in Greenhouse. Comput. Electron. Agric. 2022, 197, 106879. [Google Scholar] [CrossRef]
- Milojević, A.; Linß, S.; Ćojbašić, Ž.; Handroos, H. A Novel Simple, Adaptive, and Versatile Soft-Robotic Compliant Two-Finger Gripper with an Inherently Gentle Touch. J. Mech. Rob. 2021, 13, 11015. [Google Scholar] [CrossRef]
- Dzedzickis, A.; Petronienė, J.J.; Petkevičius, S.; Bučinskas, V. Soft Grippers in Robotics: Progress of Last 10 Years. Machines 2024, 12, 887. [Google Scholar] [CrossRef]
- Graham, S.S.; Zong, W.; Feng, J.; Tang, S. Design and Testing of a Kiwifruit Harvester End-Effector. Trans. ASABE 2018, 61, 45–51. [Google Scholar] [CrossRef]
- Bhattarai, U.; Karkee, M. A Weakly-Supervised Approach for Flower/Fruit Counting in Apple Orchards. Comput. Ind. 2022, 138, 103635. [Google Scholar] [CrossRef]
- Denarda, A.R.; Crocetti, F.; Costante, G.; Valigi, P.; Fravolini, M.L. MangoDetNet: A Novel Label-Efficient Weakly Supervised Fruit Detection Framework. Precis. Agric. 2024, 25, 3167–3188. [Google Scholar] [CrossRef]
- Bac, C.W.; Van Henten, E.J.; Hemming, J.; Edan, Y. Harvesting Robots for High-value Crops: State-of-the-art Review and Challenges Ahead. J. Field Rob. 2014, 31, 888–911. [Google Scholar] [CrossRef]
- Kapach, K.; Barnea, E.; Mairon, R.; Edan, Y.; Shahar, O.B. Computer Vision for Fruit Harvesting Robots State of the Art and Challenges Ahead. Int. J. Comput. Vis. Robot. 2012, 3, 4. [Google Scholar] [CrossRef]
- Singh, R.; Nisha, R.; Naik, R.; Upendar, K.; Nickhil, C.; Deka, S.C. Sensor Fusion Techniques in Deep Learning for Multimodal Fruit and Vegetable Quality Assessment: A Comprehensive Review. J. Food Meas. Charact. 2024, 18, 8088–8109. [Google Scholar] [CrossRef]
- Barreto-Cubero, A.J.; Gómez-Espinosa, A.; Escobedo Cabello, J.A.; Cuan-Urquizo, E.; Cruz-Ramírez, S.R. Sensor Data Fusion for a Mobile Robot Using Neural Networks. Sensors 2021, 22, 305. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, B.; Zhou, J.; Xiong, Y.; Gu, B.; Yang, X. Automatic Recognition of Ripening Tomatoes by Combining Multi-Feature Fusion with a Bi-Layer Classification Strategy for Harvesting Robots. Sensors 2019, 19, 612. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; He, Z.; Zhu, Y.; Jia, L.; Wang, Y.; Ding, X.; Cui, Y. A Method of Grasping Detection for Kiwifruit Harvesting Robot Based on Deep Learning. Agronomy 2022, 12, 3096. [Google Scholar] [CrossRef]
- Uppalapati, N.K.; Walt, B.; Havens, A.J.; Mahdian, A.; Chowdhary, G.; Krishnan, G. A Berry Picking Robot with A Hybrid Soft-Rigid Arm: Design and Task Space Control. In Proceedings of the Robotics: Science and Systems, Corvalis, OR, USA, 12–16 July 2020; Robotics: Science and Systems Foundation: College Station, TX, USA, 2020; p. 95. [Google Scholar]
- Du, X.; Meng, Z.; Ma, Z.; Lu, W.; Cheng, H. Tomato 3D Pose Detection Algorithm Based on Keypoint Detection and Point Cloud Processing. Comput. Electron. Agric. 2023, 212, 108056. [Google Scholar] [CrossRef]
- Tafuro, A.; Adewumi, A.; Parsa, S.; Amir, G.E.; Debnath, B. Strawberry Picking Point Localization Ripeness and Weight Estimation. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 2295–2302. [Google Scholar]
- Cheng, C.; Fu, J.; Su, H.; Ren, L. Recent Advancements in Agriculture Robots: Benefits and Challenges. Machines 2023, 11, 48. [Google Scholar] [CrossRef]
- Kaleem, A.; Hussain, S.; Aqib, M.; Cheema, M.J.M.; Saleem, S.R.; Farooq, U. Development Challenges of Fruit-Harvesting Robotic Arms: A Critical Review. Agriengineering 2023, 5, 2216–2237. [Google Scholar] [CrossRef]
- Li, T.; Xie, F.; Qiu, Q.; Feng, Q. Multi-Arm Robot Task Planning for Fruit Harvesting Using Multi-Agent Reinforcement Learning. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 4176–4183. [Google Scholar]
- Shome, R.; Bekris, K.E. Anytime Multi-Arm Task and Motion Planning for Pick-and-Place of Individual Objects via Handoffs. In Proceedings of the 2019 International Symposium on Multi-robot and Multi-agent Systems (MRS), New Brunswick, NJ, USA, 22–23 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 37–43. [Google Scholar]
- Mateu-Gomez, D.; Martínez-Peral, F.J.; Perez-Vidal, C. Multi-Arm Trajectory Planning for Optimal Collision-Free Pick-and-Place Operations. Technologies 2024, 12, 12. [Google Scholar] [CrossRef]
- Chu, X.; Hu, Q.; Zhang, J. Path Planning and Collision Avoidance for a Multi-Arm Space Maneuverable Robot. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 217–232. [Google Scholar] [CrossRef]
Berry Applied | Basic Model | Detection Rate (%) | Inference Speed (ms/Image) | Reference |
---|---|---|---|---|
Strawberry | YOLOv8 | 96.0 | 92@640 × 480 px | [55] |
Mask R-CNN | 98.41 | - | [56] | |
YOLOv5 | 98.0 | 83@640 × 480 px | [57] | |
YOLOv5 | 89.7 | 7.30@512 × 512 px | [58] | |
Tomato | CSPNet | 84.7 | 40.32@416 × 416 | [59] |
Faster R-CNN | 88.6 | 180@416 × 416 | [60] | |
SSD | 85.31 | 24.75@300 × 300 px | [61] | |
Grape | YOLO | 79.6 | 31.25@416 × 416 px | [62] |
YOLOv5 | 90.5 | 10.1@1280 × 720 px | [63] | |
YOLOv7 | 93.4 | 1.596@1024 × 473 | [64] | |
Kiwi fruit | YOLOv8 | 91.5 | - | [65] |
Type of Berry | End-Effector Type | Harvest Speed | Harvest Success Rate | Reference |
---|---|---|---|---|
Strawberry | Soft gripper | - | 82% | [89] |
Cable-driven gripper | 7.5 s/fruit | 59.0% | [20] | |
Pneumatic gripper | 2.8 s/fruit | 94.74% | [84] | |
Grape | Cut-clip end-effector | 8.45 s/cluster | 83% | [78] |
Disc knife cutting end-effector | 6.18 s/cluster | 92.78% | [91] | |
Blackberry | Twisting-tube soft gripper | - | 82% | [90] |
Tendon-driven soft gripper | - | 88% | [26] | |
Soft gripper | 4.8 s/fruit | 95.24% | [87] | |
Kiwifruit | Cavity clamping end-effector | 5 s/fruit | 94.2% | [92] |
Soft end-effector | 6.7 s/fruit | 86.36% | [82] | |
Tomato | Soft gripper with negative pressure suction | 74.6 s/fruit | 95.3% | [88] |
Cavity clamping end-effector | 6.4 s/fruit | 69.4% | [93] | |
Blueberry | Soft gripper with two-finger | 7.5 s/fruit | - | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Wang, S.; Zhang, B.; Zhang, Z.; Wang, S.; Ding, X.; Wang, S.; Qi, P.; Yang, H. Advances in Berry Harvesting Robots. Horticulturae 2025, 11, 1042. https://doi.org/10.3390/horticulturae11091042
Shi X, Wang S, Zhang B, Zhang Z, Wang S, Ding X, Wang S, Qi P, Yang H. Advances in Berry Harvesting Robots. Horticulturae. 2025; 11(9):1042. https://doi.org/10.3390/horticulturae11091042
Chicago/Turabian StyleShi, Xiaojie, Shaowei Wang, Bo Zhang, Zixuan Zhang, Shucheng Wang, Xinbing Ding, Shubo Wang, Peng Qi, and Huawei Yang. 2025. "Advances in Berry Harvesting Robots" Horticulturae 11, no. 9: 1042. https://doi.org/10.3390/horticulturae11091042
APA StyleShi, X., Wang, S., Zhang, B., Zhang, Z., Wang, S., Ding, X., Wang, S., Qi, P., & Yang, H. (2025). Advances in Berry Harvesting Robots. Horticulturae, 11(9), 1042. https://doi.org/10.3390/horticulturae11091042