Ginseng-YOLO: Integrating Local Attention, Efficient Downsampling, and Slide Loss for Robust Ginseng Grading
Abstract
1. Introduction
- (1)
- Establishment of an understory ginseng dataset: A specialized dataset was constructed containing both fresh and sun-dried understory ginseng. Given the high economic value, long growth cycle, and rarity of wild ginseng, data acquisition is extremely difficult. This dataset fills a gap in existing resources and supports the development of intelligent grading algorithms for high-value medicinal crops.
- (2)
- Development of an efficient detection model, Ginseng-YOLO: This study introduces Ginseng-YOLO, a lightweight yet accurate model tailored for fine-grained ginseng classification. The model incorporates a localized attention block (C2-LWA) for improved feature extraction, an efficient downsampling module (ADown) to reduce redundancy, and a training-phase loss design (Slide Loss) that enhances robustness to irregular target morphology. These components work together to improve both detection precision and inference efficiency.
- (3)
- First edge deployment for understory ginseng classification: Unlike previous works that focused solely on algorithm development, this study successfully deploys the model on the NVIDIA Jetson Orin Nano for real-time inference. To the best of our knowledge, this is the first attempt to implement understory ginseng classification on a resource-constrained edge AI device, demonstrating strong potential for field-level intelligent applications.
2. Materials and Methods
2.1. Dataset Collection and Annotation
2.2. Data Augmentation and Dataset Split
2.3. Model Selection and Enhancement
2.3.1. ADwon
2.3.2. Slide Loss
2.3.3. C2-LWA
2.4. Experimental Environment
2.5. Evaluation Criteria
3. Experimental Part
3.1. Before and After the Experiment
3.2. Ablation Experiments
3.3. Comparison Experiments
3.4. Model Detection
3.5. Loss Function
3.6. Deploy Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shin, M.-S.; Lee, Y.; Cho, I.-H.; Yang, H.-J. Brain plasticity and ginseng. J. Ginseng Res. 2024, 48, 286–297. [Google Scholar] [CrossRef]
- Fan, W.; Fan, L.; Wang, Z.; Mei, Y.; Liu, L.; Li, L.; Yang, L.; Wang, Z. Rare ginsenosides: A unique perspective of ginseng research. J. Adv. Res. 2024, 66, 303–328. [Google Scholar] [CrossRef]
- Tao, L.; Wu, Q.; Liu, H.; Bi, Y.; Song, S.; Wang, H.; Lan, W.; Zhang, J.; Yu, L.; Xiong, B. Improved the physicochemical properties and bioactivities of oligosaccharides by degrading self-extracting/commercial ginseng polysaccharides. Int. J. Biol. Macromol. 2024, 279, 135522. [Google Scholar] [CrossRef]
- Shi, Y.; Zheng, S.; Xie, K.; Xu, S.; Zhong, L.; Hu, Y. Regulatory effects of ginseng polysaccharide on growth restriction and intestinal dysfunction caused by a high cottonseed meal diet in Ctenopharyngodon idella. Int. J. Biol. Macromol. 2025, 322, 146727. [Google Scholar] [CrossRef]
- Ho, P.T.; Rini, I.A.; Hoang, P.T.; Lee, T.K.; Lee, S. Exploring the Potential of Ginseng-Derived Compounds in Treating Cancer Cachexia. J. Ginseng Res. 2025. [Google Scholar] [CrossRef]
- Niu, J.; Zhu, G.; Zhang, J. Ginseng in delaying brain aging: Progress and Perspectives. Phytomedicine 2025, 140, 156587. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Zhang, J.; Lan, W.; Liu, H.; Wu, Q.; Yang, S.; Song, S.; Yu, L.; Bi, Y. Neutral oligosaccharides from ginseng (Panax ginseng) residues vs. neutral ginseng polysaccharides: A comparative study of structure elucidation and biological activity. Food Chem. 2025, 464, 141674. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Z.; Zhang, C.-F.; Zhang, Q.-H.; Yuan, C.-S. Phytochemistry of red ginseng, a steam-processed Panax ginseng. Am. J. Chin. Med. 2024, 52, 35–55. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Cheng, H.; Li, X.; Li, X.; Zhang, M.; Cui, D.; Yang, Y.; Tian, X.; Wang, H.; Yang, W. Phytochemistry, quality control and biosynthesis in ginseng research from 2021 to 2023: A state-of-the-art review concerning advances and challenges. Chin. Herb. Med. 2024, 16, 505–520. [Google Scholar] [CrossRef]
- Kim, Y.W.; Bak, S.B.; Song, Y.R.; Kim, C.-E.; Lee, W.-Y. Systematic exploration of therapeutic effects and key mechanisms of Panax ginseng using network-based approaches. J. Ginseng Res. 2024, 48, 373–383. [Google Scholar] [CrossRef]
- Niu, Z.; Liu, Y.; Shen, R.; Jiang, X.; Wang, Y.; He, Z.; Li, J.; Hu, Y.; Zhang, J.; Jiang, Y. Ginsenosides from Panax ginseng as potential therapeutic candidates for the treatment of inflammatory bowel disease. Phytomedicine 2024, 127, 155474. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Xu, Z.-F.; Zhang, T.; Chen, C.-B.; Liu, C.-S.; Liu, R.; Chen, Y.-Q. Effects of soil microbial ecology on ginsenoside accumulation in Panax ginseng across different cultivation years. Ind. Crops Prod. 2024, 215, 118637. [Google Scholar] [CrossRef]
- Liang, C.; Zhou, F.; Ding, G.; Mu, P.; Zhang, Y.; Liu, N. Aluminum stress alters leaf physiology and endophytic bacterial communities in ginseng (Panax ginseng Meyer). Sci. Hortic. 2025, 350, 114276. [Google Scholar] [CrossRef]
- Zhan, Z.; Zhang, J.; Huang, W.; Huang, J. Transcriptomic strategy provides molecular insights into the growth and ginsenosides accumulation of Panax ginseng. Phytomedicine 2025, 143, 156834. [Google Scholar] [CrossRef]
- Han, J.-E.; Lee, H.-S.; Son, E.-J.; Murthy, H.N.; Park, S.-Y. Changes in the dynamic profile of beneficial metabolites during Panax ginseng somatic embryogenesis. Ind. Crops Prod. 2025, 234, 121535. [Google Scholar] [CrossRef]
- Luo, M.; Chen, A.; Zhao, Z.; Ma, Y.; Zhan, Z.; You, J. Bioimaging analysis reveals the constrained transport of mineral elements from the epidermis in ginseng root with red skin syndrome. Ind. Crops Prod. 2025, 229, 120955. [Google Scholar] [CrossRef]
- Li, P.; Wang, S.; Yu, L.; Liu, A.; Zhai, D.; Yang, Z.; Qin, Y.; Yang, Y. Non-destructive origin and ginsenoside analysis of American ginseng via NIR and deep learning. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 334, 125913. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, S.; Yuan, Y.; Li, X.; Bai, R.; Wan, X.; Nan, T.; Yang, J.; Huang, L. Fast prediction of diverse rare ginsenoside contents in Panax ginseng through hyperspectral imaging assisted with the temporal convolutional network-attention mechanism (TCNA) deep learning. Food Control 2024, 162, 110455. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, S.; Zhu, Q.; Qin, Y.; Zhai, D.; Lian, F.; Li, P. Non-destructive geographical traceability of American ginseng using near-infrared spectroscopy combined with a novel deep learning model. J. Food Compos. Anal. 2024, 136, 106736. [Google Scholar] [CrossRef]
- Zhang, W.; Bai, X.; Zhao, D. A study on the predictive model for ginsenoside content in wild ginseng based on decision tree and ensemble learning algorithms. Microchem. J. 2025, 212, 113318. [Google Scholar] [CrossRef]
- Fu, Z.-Y.; Cui, J.-S. Classification and prediction model of ginseng year based on visible-near infrared spectroscopy and machine learning. Opt. Eng. 2025, 64, 064101. [Google Scholar] [CrossRef]
- Ping, J.; Hao, N.; Guo, X.; Miao, P.; Guan, Z.; Chen, H.; Liu, C.; Bai, G.; Li, W. Rapid and accurate identification of Panax ginseng origins based on data fusion of near-infrared and laser-induced breakdown spectroscopy. Food Res. Int. 2025, 204, 115925. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, S.; Chen, X.; Wu, Z.; Yang, R.; Shi, T.; Zhang, Y.; Zhou, K.; Li, J. Hyperspectral Identification of Ginseng Growth Years and Spectral Importance Analysis Based on Random Forest. Appl. Sci. 2022, 12, 5852. [Google Scholar] [CrossRef]
- You, H.; Wang, H.; Wei, Z.; Bi, C.; Zhang, L.; Li, X.; Yin, Y. VBP-YOLO-prune: Robust apple detection under variable weather via feature-adaptive fusion and efficient YOLO pruning. Alex. Eng. J. 2025, 128, 992–1014. [Google Scholar] [CrossRef]
- Xie, Z.; Yang, Z.; Li, C.; Zhang, Z.; Jiang, J.; Guo, H. YOLO-Ginseng: A detection method for ginseng fruit in natural agricultural environment. Front. Plant Sci. 2024, 15, 1422460. [Google Scholar] [CrossRef]
- Li, D.; Zhao, Z.; Yin, Y.; Zhao, C. Research on the Classification of Sun-Dried Wild Ginseng Based on an Improved ResNeXt50 Model. Appl. Sci. 2024, 14, 10613. [Google Scholar] [CrossRef]
- Gu, J.; Li, Z.; Zhang, L.; Yin, Y.; Lv, Y.; Yu, Y.; Li, D. Research on the Quality Grading Method of Ginseng with Improved DenseNet121 Model. Electronics 2024, 13, 4504. [Google Scholar] [CrossRef]
- Li, D.; Zhai, M.; Piao, X.; Li, W.; Zhang, L. A Ginseng Appearance Quality Grading Method Based on an Improved ConvNeXt Model. Agronomy 2023, 13, 1770. [Google Scholar] [CrossRef]
- Li, D.; Piao, X.; Lei, Y.; Li, W.; Zhang, L.; Ma, L. A Grading Method of Ginseng (Panax ginseng C. A. Meyer) Appearance Quality Based on an Improved ResNet50 Model. Agronomy 2022, 12, 2925. [Google Scholar] [CrossRef]
- Zhang, L.; You, H.; Wei, Z.; Li, Z.; Jia, H.; Yu, S.; Zhao, C.; Lv, Y.; Li, D. DGS-YOLOv8: A Method for Ginseng Appearance Quality Detection. Agriculture 2024, 14, 1353. [Google Scholar] [CrossRef]
- Xue, Q.; Miao, P.; Miao, K.; Yu, Y.; Li, Z. An online automatic sorting system for defective Ginseng Radix et Rhizoma Rubra using deep learning. Chin. Herb. Med. 2023, 15, 447–456. [Google Scholar] [CrossRef]
- Lee, A.; Baek, I.; Kim, J.; Hong, S.-J.; Kim, M.S. Deep learning approaches for bruised mandarin orange classification by fluorescence hyperspectral imaging. Postharvest Biol. Technol. 2025, 230, 113724. [Google Scholar] [CrossRef]
- Khanam, R.; Hussain, M. Yolov11: An overview of the key architectural enhancements. arXiv 2024, arXiv:2410.17725. [Google Scholar] [CrossRef]
- Sohan, M.; Sai Ram, T.; Rami Reddy, C.V. A review on yolov8 and its advancements. In Proceedings of the International Conference on Data Intelligence and Cognitive Informatics, Tirunelveli, India, 18–20 November 2024; pp. 529–545. [Google Scholar]
- Xiao, R.; Wang, H.; Wang, L.; Yuan, H. C3Ghost and C3k2: Performance study of feature extraction module for small target detection in YOLOv11 remote sensing images. In Proceedings of the Second International Conference on Big Data, Computational Intelligence, and Applications (BDCIA 2024), Huanggang, China, 15–17 November 2024; pp. 464–470. [Google Scholar]
- Wang, C.-Y.; Yeh, I.-H.; Mark Liao, H.-Y. Yolov9: Learning what you want to learn using programmable gradient information. In Proceedings of the European Conference on Computer Vision 2024, Milan, Italy, 29 September–4 October 2024; pp. 1–21. [Google Scholar]
- Yu, Z.; Huang, H.; Chen, W.; Su, Y.; Liu, Y.; Wang, X. Yolo-facev2: A scale and occlusion aware face detector. Pattern Recognit. 2024, 155, 110714. [Google Scholar] [CrossRef]
- Vo, X.-T.; Nguyen, D.-L.; Priadana, A.; Jo, K.-H. Efficient vision transformers with partial attention. In Proceedings of the European Conference on Computer Vision 2024, Milan, Italy, 29 September–4 October 2024; pp. 298–317. [Google Scholar]
- Alkhatib, M.Q.; Jamali, A. HSIFormer: An Efficient Vision Transformer Framework for Enhanced Hyperspectral Image Classification Using Local Window Attention. In Proceedings of the 2024 14th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Barcelona, Spain, 12–14 November 2024; pp. 1–5. [Google Scholar]
- Jamali, A.; Roy, S.K.; Bhattacharya, A.; Ghamisi, P. Local Window Attention Transformer for Polarimetric SAR Image Classification. IEEE Geosci. Remote Sens. Lett. 2023, 20, 4004205. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision 2017, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Zhang, H.; Wang, Y.; Dayoub, F.; Sunderhauf, N. Varifocalnet: An iou-aware dense object detector. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2021, Virtual, 19–25 June 2021; pp. 8514–8523. [Google Scholar]
- Kim, M.; Kim, J.; Kim, J.S.; Lim, J.-H.; Moon, K.-D. Automated Grading of Red Ginseng Using DenseNet121 and Image Preprocessing Techniques. Agronomy 2023, 13, 2943. [Google Scholar] [CrossRef]
- Gao, C.; He, B.; Guo, W.; Qu, Y.; Wang, Q.; Dong, W. SCS-YOLO: A real-time detection model for agricultural diseases—A case study of wheat fusarium head blight. Comput. Electron. Agric. 2025, 238, 110794. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Gu, Z.; Dong, T.; Chen, J.; Huang, J.; Gai, J.; Gong, H.; Lu, Z.; He, D. Optimizing edge-enabled system for detecting green passion fruits in complex natural orchards using lightweight deep learning model. Comput. Electron. Agric. 2025, 234, 110269. [Google Scholar] [CrossRef]
- Gu, Z.; He, D.; Huang, J.; Chen, J.; Wu, X.; Huang, B.; Dong, T.; Yang, Q.; Li, H. Simultaneous detection of fruits and fruiting stems in mango using improved YOLOv8 model deployed by edge device. Comput. Electron. Agric. 2024, 227, 109512. [Google Scholar] [CrossRef]
- Shang, X.; Wang, Y. Intelligent Recognition Analysis of Chinese Herbal Medicine Images Using Deep Learning Algorithms. In Proceedings of the 2024 3rd International Conference on Health Big Data and Intelligent Healthcare (ICHIH), Zhuhai, China, 13–15 December 2024; pp. 238–241. [Google Scholar]
- Pan, D.; Guo, Y.; Fan, Y.; Wan, H. Development and Application of Traditional Chinese Medicine Using AI Machine Learning and Deep Learning Strategies. Am. J. Chin. Med. 2024, 52, 605–623. [Google Scholar] [CrossRef]
- Hou, Q.; Yang, W.; Liu, G. Chinese herbal medicine recognition network based on knowledge distillation and cross-attention. Sci. Rep. 2025, 15, 1687. [Google Scholar] [CrossRef]
- Zheng, L.; Long, W.; Yi, J.; Liu, L.; Xu, K. Enhanced Knowledge Distillation for Advanced Recognition of Chinese Herbal Medicine. Sensors 2024, 24, 1559. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Wu, M.; Gao, Y.; Fu, L.; Li, C.; Song, Z.; Jin, Y.; Huang, Z.; Hu, Z.; Yu, Y. Deep learning-based classification of traditional Chinese medicine: A novel approach. Quant. Imaging Med. Surg. 2025, 15, 7483–7496. [Google Scholar] [CrossRef]
- Dai, W.; Ma, Y.; Fan, Y.; Ma, J. A Multi-Scale Feature Extraction Algorithm for Chinese Herbal Medicine Image Classification. Appl. Sci. 2025, 15, 4271. [Google Scholar] [CrossRef]
- Hao, W.; Han, M.; Yang, H.; Hao, F.; Li, F. A novel Chinese herbal medicine classification approach based on EfficientNet. Syst. Sci. Control. Eng. 2021, 9, 304–313. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Y.; Ge, J.; Cui, X.; Xiong, Y. Study on the grading standard of Panax notoginseng seedlings. J. Ginseng Res. 2018, 42, 208–217. [Google Scholar] [CrossRef] [PubMed]
Category | Premium | First-Class | Second-Class |
---|---|---|---|
Growth Years | Over 30 years | Over 25 years | Over 15 years |
Rhizome Neck (Lu) | Three-node neck, tight rhizome bowl, relatively long neck, occasional double or triple necks, complete bud scale | Two-node or three-node neck, tight rhizome bowl, occasional double or triple necks, complete bud scale | One-node or two-node neck, large or distorted rhizome bowl, or with defects such as scars, rust stains, or deformities |
Rootlets (Ting) | Jujube-pit-shaped rootlets, total rootlet weight ≤ 30% of main root, no pulp leakage | Jujube-pit-shaped, garlic-clove-shaped or fine-hair-shaped rootlets, total weight ≤ 50% of main root, no pulp leakage | Fine-hair-shaped, elongated or deformed rootlets, oversized rootlets, or with scars or rust stains |
Main Body | Ling-shaped or nodule-shaped, off-white or light yellowish-white color, tight and delicate skin with luster, natural groin separation between legs, no pulp leakage, no scars | Smooth or beam-shaped body, off-white or light yellowish-white color, tight and delicate skin with luster, natural groin separation between legs, no pulp leakage, no scars | Smooth, bulky, or horizontal body shape, off-white or yellowish-white color, looser skin, smaller body, rootlet deformities, or with scars and rust stains |
Skin Texture (Wrinkles) | Fine and deep annular wrinkles at the upper part of the main body, tight skin (silky texture), fine lines | Distinct annular wrinkles at the upper part of the main body | Incomplete or broken annular wrinkles at the upper part, few or sparse wrinkles |
Fibrous Roots (Hairs) | Thin and long, flexible not brittle, sparse but orderly, visible pearl dots, complete primary roots, rootlets extending downward | Thin and long, flexible not brittle, complete primary roots, rootlets extending downward | Numerous fibrous roots of varying lengths, flexible not brittle, possibly broken or incomplete |
Category | Premium | First-Class | Second-Class |
---|---|---|---|
Growth Years | More than 30 years | More than 25 years | More than 15 years |
Rhizome Neck | Three-node neck with a tight rhizome bowl and relatively long neck; occasional double or triple necks | Two- or three-node neck with a relatively large but tight rhizome bowl; occasional double or triple necks | One- or two-node neck or shortened-neck type; rhizome bowl is coarse, twisted, or defective, with scars or rust stains |
Rootlets | Jujube-pit-shaped rootlets; rootlet weight not exceeding 30% of the main root; no grooves; proper color with luster | Jujube-pit-, garlic-clove-, fine-hair-, or elongated-shaped rootlets; rootlet weight not exceeding 50% of the main root; no grooves; proper color with luster | Large rootlets or absence of rootlets; or with defects, scars, or rust stains |
Main Body | Ling-shaped or knobby body; proper color with luster; off-white or pale yellowish-white; natural crotch between legs; no grooves; no scars; not soaked | Smooth or beam-shaped body; proper color with luster; off-white or pale yellowish-white; natural crotch between legs; no grooves; not soaked | Smooth, bulky, or horizontal body; off-white or pale yellowish-white; loose skin; with grooves; small body; rootlet deformation or presence of scars and rust stains |
Wrinkles | Fine and deep annular wrinkles on the upper part of the body; tight skin with fine lines (silky texture) | Distinct annular wrinkles on the upper part of the body | Incomplete or broken annular wrinkles on the upper part of the body; few or sparse wrinkles |
Fibrous Roots | Thin and long; sparse but well-arranged; flexible, not brittle; visible pearl-like dots; intact primary roots; rootlets extending downward | Thin and long; sparse but well-arranged; flexible, not brittle; intact primary roots; rootlets extending downward | Numerous fibrous roots of varying lengths; flexible, not brittle; possibly damaged or with rust stains |
Quality Grade (Category) | Training (Images/Instances) | Validation (Images/Instances) | Test (Images/Instances) |
---|---|---|---|
Premium (0) | 167/184 | 62/73 | 33/40 |
First-Class (1) | 248/292 | 65/81 | 34/40 |
Second-Class (2) | 196/229 | 50/54 | 20/26 |
Third-Class (3) | 231/261 | 62/74 | 33/39 |
Total | 842/976 | 239/282 | 120/145 |
Parameters | Setup |
---|---|
Epochs | 300 |
Batch Size | 32 |
Optimizer | SGD |
Initial Learning Rate | 0.01 |
Final Learning Rate | 0.01 |
Momentum | 0.937 |
Weight-Decay | 5 × 10−4 |
Close Mosaic | Last ten epochs |
Images | 640 |
workers | 8 |
Mosaic | 1.0 |
Model | Precision (%) | Recall (%) | mAP50% | mAP50% | Parameters | Weight | FLOPs |
---|---|---|---|---|---|---|---|
YOLOv11n | 81.5 | 79.7 | 87.9 | 68.5 | 2.64 | 5.5 | 6.5 |
Ginseng-YOLO | 84.9 | 83.9 | 88.7 | 71.0 | 2.0 | 4.6 | 5.3 |
YOLOv11n | C2-LWA | ADown | Loss | P (%) | R (%) | mAP50 (%) | mAP50-95 (%) | Parameters (M) | Weight (MB) | FLOPs (G) |
---|---|---|---|---|---|---|---|---|---|---|
√ | 84.9 | 83.9 | 88.7 | 71.0 | 2.6 | 5.5 | 6.5 | |||
√ | √ | 78.7 | 80.6 | 84.9 | 65.4 | 2.5 | 5.4 | 6.4 | ||
√ | √ | 81.2 | 80.6 | 88.4 | 71.5 | 2.1 | 5.4 | 5.4 | ||
√ | √ | 79.4 | 81.3 | 87.6 | 68.0 | 2.6 | 5.5 | 6.5 | ||
√ | √ | √ | 85.0 | 73.7 | 86.4 | 68.7 | 2.0 | 4.6 | 5.3 | |
√ | √ | √ | 75.8 | 80.5 | 84.1 | 64.9 | 2.5 | 5.4 | 6.4 | |
√ | √ | √ | 85.3 | 75.8 | 85.3 | 68.5 | 2.1 | 5.4 | 5.4 | |
√ | √ | √ | √ | 81.5 | 79.7 | 87.9 | 68.5 | 2.0 | 4.6 | 5.3 |
Models | P% | R% | mAP50% | mAP50% | Parameters | FLOPs | Weight |
---|---|---|---|---|---|---|---|
YOLOv12n | 61.8 | 63.5 | 67.1 | 45.8 | 2.52 | 6.0 | 5.4 |
YOLOv10n | 78.5 | 72.9 | 82.5 | 65.3 | 2.7 | 8.4 | 5.3 |
YOLOv9t | 85.7 | 73.1 | 86.1 | 68.7 | 2.00 | 7.9 | 4.5 |
YOLOv8n | 76.8 | 70.3 | 83.4 | 65.9 | 3.01 | 8.2 | 6.3 |
YOLOv6 | 76.9 | 74.9 | 81.0 | 59.6 | 4.24 | 11.9 | 8.3 |
YOLOv5n | 79.7 | 78.0 | 85.1 | 67.1 | 1.76 | 4.2 | 3.9 |
YOLOv3-tiny | 68.9 | 71.1 | 73.1 | 40.8 | 8.67 | 13.0 | 17.5 |
YOLOv11n | 81.5 | 79.7 | 87.9 | 68.5 | 2.64 | 5.5 | 6.5 |
Ginseng-YOLO | 84.9 | 83.9 | 88.7 | 71.0 | 2.0 | 4.6 | 5.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Li, D.; Song, S.; You, H.; Zhang, L.; Li, J. Ginseng-YOLO: Integrating Local Attention, Efficient Downsampling, and Slide Loss for Robust Ginseng Grading. Horticulturae 2025, 11, 1010. https://doi.org/10.3390/horticulturae11091010
Yu Y, Li D, Song S, You H, Zhang L, Li J. Ginseng-YOLO: Integrating Local Attention, Efficient Downsampling, and Slide Loss for Robust Ginseng Grading. Horticulturae. 2025; 11(9):1010. https://doi.org/10.3390/horticulturae11091010
Chicago/Turabian StyleYu, Yue, Dongming Li, Shaozhong Song, Haohai You, Lijuan Zhang, and Jian Li. 2025. "Ginseng-YOLO: Integrating Local Attention, Efficient Downsampling, and Slide Loss for Robust Ginseng Grading" Horticulturae 11, no. 9: 1010. https://doi.org/10.3390/horticulturae11091010
APA StyleYu, Y., Li, D., Song, S., You, H., Zhang, L., & Li, J. (2025). Ginseng-YOLO: Integrating Local Attention, Efficient Downsampling, and Slide Loss for Robust Ginseng Grading. Horticulturae, 11(9), 1010. https://doi.org/10.3390/horticulturae11091010