Seasonal Uptake and Partitioning of Macro- and Micronutrients in Yellow-Fleshed Kiwifruit (Actinidia chinensis var. chinensis)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Orchard Description
2.2. Experimental Design and Sample Collection
2.3. Mineral Analysis
2.4. Data Handling
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. 2025. Available online: https://www.statista.com/statistics/812434/production-volume-of-leading-kiwi-producing-countries/ (accessed on 17 March 2025).
- Boyd, L.M.; Barnett, A.M. Manipulation of whole-vine carbon allocation using girdling, pruning, and fruit thinning affects fruit numbers and quality in kiwifruit. HortScience 2001, 46, 590–595. [Google Scholar] [CrossRef]
- Currie, M.; Patterson, K.; Snelgar, W.; Blattmann, P. Girdling kiwifruit vines for commercial advantage: Opportunities and risks. Acta Hortic. 2017, 1218, 405–412. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, D.; Niu, Z.; Yan, J.; Zhou, X.; Kang, X. Effects of combined organic/inorganic fertilizer application on growth, photosynthetic characteristics, yield and fruit quality of Actinidia chinesis cv ‘Hongyang’. Glob. Ecol. Conserv. 2020, 22, e00997. [Google Scholar] [CrossRef]
- Marschner, P. Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Ferguson, I.B.; Thorp, T.G.; Barnett, A.M.; Boyd, L.M.; Triggs, C.M. Inorganic nutrient concentrations and physiological pitting in ‘Hayward’ kiwifruit. J. Hortic. Sci. Biotech. 2003, 78, 497–504. [Google Scholar] [CrossRef]
- Hopkirk, G.; Harker, F.; Harman, J. Calcium and the firmness of kiwifruit. N. Z. J. Crop. Hortic. 1990, 18, 215–219. [Google Scholar] [CrossRef]
- Buwalda, J.G.; Smith, G.S. Accumulation and partitioning of dry matter and mineral nutrients in developing kiwifruit vines. Tree Physiol. 1987, 3, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Tagliavini, M.; Tonon, G.; Scandellari, F.; Quinones, A.; Palmieri, S.; Menarbin, G.; Gioacchini, P.; Masia, A. Nutrient recycling during the decomposition of apple leaves (Malus domestica) and mowed grasses in an orchard. Agric. Ecosyst. Environ. 2007, 118, 191–200. [Google Scholar] [CrossRef]
- Ledgard, S.F.; Smith, G.S.; Sprosen, M.S. Fate of 15N-labelled nitrogen fertilizer applied to kiwifruit (Actinidia deliciosa) vines: I. 15N recovery in plant and soil. Plant Soil 1992, 147, 49–57. [Google Scholar] [CrossRef]
- Baldi, E.; Quartieri, M.; Sorrenti, G.; Toselli, M. Evaluation of nutrients removed and recycled in a commercial peach orchard over a 14-years-production cycle. Italus Hortus 2021, 28, 1–12. [Google Scholar] [CrossRef]
- Quartieri, M.; Polidori, G.; Baldi, E.; Toselli, M. Evaluation of removed and recycled mineral nutrients in Italian commercial persimmon orchards. Horticulturae 2023, 9, 374. [Google Scholar] [CrossRef]
- Quartieri, M.; Toselli, M.; Sorrenti, G.; Baldi, E.; Polidori, G.; Germani, M.A.; Xylogiannis, E. Dynamic of nutrient uptake and partitioning within yellow-fleshed kiwifruit (Actinidia chinensis var. chinensis) organs. Acta Hortic. 2021, 1333, 203–208. [Google Scholar] [CrossRef]
- Fisher, R.L.; Bennet, A.B. Role of cell wall hydrolases in fruit ripening. Ann. Rev. Plant Mol. Biol. 1991, 42, 675–703. [Google Scholar] [CrossRef]
- Polychroniadou, C.; Michailidis, M.; Samiotaki, M.; Adamakis, I.D.S.; Giannoutsou, E.; Skodra, C.; Karagiannis, E.; Bazakos, C.; Molassiotis, A.; Tanou, G. Understanding the effect of calcium in kiwifruit ripening and establishment of early and late response mechanisms through a cross-omics approach. Postharvest Biol. Technol. 2024, 211, 112803. [Google Scholar] [CrossRef]
- Bryla, D.R. 4R nutrient stewardship in fruit crops. In Fruit Crops; Elsevier: Amsterdam, The Netherlands, 2020; pp. 509–519. [Google Scholar] [CrossRef]
- Mills, T.; Boldingh, H.; Blattmann, P.; Green, S.; Meekings, J. Nitrogen application rate and the change in carbohydrate concentration in leaves, fruit, and canes of gold kiwifruit. J. Plant Nutr. 2009, 32, 2140–2157. [Google Scholar] [CrossRef]
- Morton, A.; Woolley, D. Manipulation of fruit water and dry matter content by treatments applied during early and late stages of fruit development in kiwifruit. Acta Hortic. 2010, 913, 309–313. [Google Scholar] [CrossRef]
- Smith, G.S.; Clark, C.J.; Buwalda, J.G. Potassium and Phosphorus: Effect of potassium deficiency on kiwifruit. J. Plant Nutr. 1987, 10, 1939–1946. [Google Scholar] [CrossRef]
- Emilia-Romagna Region. Available online: https://agricoltura.regione.emilia-romagna.it (accessed on 17 March 2025).
- Kingston, H.M. Microwave Assisted Acid Digestion of Siliceous and Organically-Based Matrices, Method 3052; U.S. Environmental Protection Agency IAG DWI-393254-01-0, Quarterly Report, 1 January–31 March; U.S. Environmental Protection Agency: Washington, DC, USA, 1988.
- Schumann, G.E.; Stanley, M.A.; Knudsen, D. Automated total nitrogen analysis of soil and plant samples. Soil Sci. Soc. Am. J. 1973, 37, 480–481. [Google Scholar] [CrossRef]
- Scandellari, F.; Ventura, M.; Malaguti, D.; Ceccon, C.; Menarbin, G.; Tagliavini, M. Net primary production and partitioning of absorbed nutrients in field-grown apple trees. Acta Hortic. 2010, 868, 115–122. [Google Scholar] [CrossRef]
- El-Jendoubi, H.; Abadía, J.; Abadía, A. Assessment of nutrient removal in bearing peach trees (Prunus persica L. Batsch) based on whole tree analysis. Plant Soil. 2013, 369, 421–437. [Google Scholar] [CrossRef]
- Baldi, E.; Toselli, M.; Bonora, A.; Boini, A.; Quartieri, M.; Germani, M.; Polidori, G.; Corelli Grappadelli, L. Agronomic strategies to manipulate kiwifruit calcium content to understand its role in fruit physiology. Horticulturae 2025, 11, 237. [Google Scholar] [CrossRef]
- Perazzoli, B.E.; Pauletti, V.; Quartieri, M.; Toselli, M.; Gotz, L.F. Changes in leaf nutrient content and quality of pear fruits by biofertilizer application in northeastern Italy. Rev. Bras. Frutic. 2020, 42, e-530. [Google Scholar] [CrossRef]
- Buwalda, J.G.; Smith, G.S. Influence of anions on the potassium status and productivity of kiwifruit (Actinidia deliciosa) vines. Plant Soil 1991, 133, 209–218. [Google Scholar] [CrossRef]
- Dreyer, I. Potassium (K+) in plants. J. Plant Physiol. 2017, 171, 655. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, W.H. Potassium transport and signaling in higher plants. Annu. Rev. Plant Biol. 2013, 64, 451–476. [Google Scholar] [CrossRef]
- Ciccarese, A.; Stellacci, A.M.; Gentilesco, G.; Rubino, P. Effectiveness of pre-and post-veraison calcium applications to control decay and maintain table grape fruit quality during storage. Postharvest Biol. Technol. 2013, 75, 135–141. [Google Scholar] [CrossRef]
- Montanaro, G.; Dichio, B.; Xiloyannis, C.; Celano, G. Light influences transpiration and calcium accumulation in fruit of kiwifruit plants (Actinidia deliciosa var. deliciosa). Plant Sci. 2006, 170, 520–527. [Google Scholar] [CrossRef]
- Xie, M.; Jiang, G.H.; Zhang, H.Q.; Kawada, K. Effect of preharvest Ca-chelate treatment on the storage quality of kiwifruit. Acta Hortic. 2002, 610, 317–324. [Google Scholar] [CrossRef]
- Montanaro, G.; Dichio, B.; Lang, A.; Mininni, A.N.; Nuzzo, V.; Clearwater, M.J.; Xiloyannis, C. Internal versus external control of calcium nutrition in kiwifruit. J. Plant Nutr. Soil Sci. 2014, 177, 819–830. [Google Scholar] [CrossRef]
- Retamales, J.; Valdes, C.; Dilley, D.; León, L.; Lepe, V.P. Bitter pit prediction in apples through Mg infiltration. Acta Hortic. 2000, 512, 169–179. [Google Scholar] [CrossRef]
- Granatstein, D.; Sánchez, E. Research knowledge and needs for orchard floor management in organic tree fruit systems. Int. J. Fruit Sci. 2009, 9, 257–281. [Google Scholar] [CrossRef]
- Lu, Y.; Gao, Z.; Mao, J.; Chen, L.; Zhang, X.; Wang, X. Litter decomposition characteristics and variety differences in a kiwifruit orchard in subtropical climate zone of China. Agronomy 2023, 13, 774. [Google Scholar] [CrossRef]
- Ventura, M.; Scandellari, F.; Bonora, E.; Tagliavini, M. Nutrient release during decomposition of leaf litter in a peach (Prunus persica L.) orchard. Nutr. Cycl. Agroecosyst. 2010, 87, 115–125. [Google Scholar] [CrossRef]
- Prescott, C.E. Decomposition and mineralization of nutrients from litter and humus. In Nutrient Acquisition by Plants: An Ecological Perspective; Springer: Berlin/Heidelberg, Germany, 2025; pp. 15–41. [Google Scholar] [CrossRef]
- Hobbie, S.E. Effects of plant species on nutrient cycling. Trends Ecol. Evol. 1992, 7, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yuan, S.; Hu, N.; Lou, Y.; Wang, S. Predicting soil fauna effect on plant litter decomposition by using boosted regression trees. Soil Biol. Biochem. 2015, 82, 81–86. [Google Scholar] [CrossRef]
- Marcolini, G.; Toselli, M.; Quartieri, M.; Gioacchini, P.; Baldi, E.; Sorrenti, G.; Mariani, S. Nitrogen and carbon mineralisation of different Meliaceae derivatives. Plant Soil Environ. 2016, 62, 121–127. [Google Scholar] [CrossRef]
- Carey, P.L.; Benge, J.R.; Haynes, R.J. Comparison of soil quality and nutrient budgets between organic and conventional kiwifruit orchards. Agric. Ecosyst. Environ. 2009, 132, 7–15. [Google Scholar] [CrossRef]
- Sale, P.; Clark, C. On the nutrition of Hayward kiwifruit: Putting it all together-deciding on a nutritional programme. Orchardist 2002, 75, 44–47. [Google Scholar]
Soil Parameters | Unit | Value |
---|---|---|
Sand | g 100 g−1 | 42 |
Silt | g 100 g−1 | 30 |
Clay | g 100 g−1 | 28 |
pH | - | 7.3 |
Ca carbonate | g 100 g−1 | traces |
Organic matter | g 100 g−1 | 1.83 |
Total N | g 100 g−1 | 0.114 |
CEC 1 | meq 100 g−1 | 20.3 |
Exchangeable K | mg kg−1 | 219 |
Exchangeable Ca | mg kg−1 | 2900 |
Exchangeable Mg | mg kg−1 | 560 |
Exchangeable Na | mg kg−1 | 138 |
Available P | mg kg−1 | 26.0 |
Available Fe | mg kg−1 | 36.2 |
Available Mn | mg kg−1 | 44.8 |
Available Cu | mg kg−1 | 14.4 |
Available Zn | mg kg−1 | 4.00 |
Soluble B | mg kg−1 | 0.120 |
EC 2 | mS cm−1 | 0.296 |
ORGAN | N | P | K | Ca | Mg | S |
---|---|---|---|---|---|---|
Thinned fruits | 1.67 ± 0.07 1 | 0.201 ± 0.023 | 1.41 ± 0.160 | 0.327 ± 0.026 | 0.094 ± 0.010 | 0.134 ± 0.017 |
Fruits | 83.0 ± 6.58 | 8.52 ± 1.36 | 80.6 ± 3.64 | 7.99 ± 0.780 | 4.28 ± 0.338 | 6.71 ± 0.242 |
Summer pruning | 5.20 ± 0.859 | 0.516 ± 0.094 | 4.24 ± 0.665 | 6.06 ± 0.886 | 0.898 ± 0.148 | 0.353 ± 0.103 |
Abscised leaves | 37.2 ± 1.13 | 2.57 ± 0.181 | 29.8 ± 3.25 | 187 ± 4.02 | 34.2 ± 4.71 | 5.05 ± 0.845 |
Winter pruning | 34.0 ± 3.41 | 3.13 ± 0.310 | 16.4 ± 1.28 | 19.8 ± 1.13 | 5.71 ± 0.315 | 2.68 ± 0.159 |
Skeleton | 7.80 ± 0.109 | 0.759 ± 0.002 | 3.97 ± 0.180 | 9.71 ± 0.155 | 2.29 ± 0.393 | 0.815 ± 0.014 |
Root | 6.62 ± 2.53 | 0.344 ± 0.110 | 1.40 ± 0.514 | 4.07 ± 1.11 | 0.680 ± 0.190 | 0.646 ± 0.181 |
TOTAL | 175 | 16 | 138 | 235 | 48 | 17 |
ORGAN | B | Cu | Fe | Mn | Zn |
---|---|---|---|---|---|
Thinned fruits | 2.02 ± 0.167 1 | 1.70 ± 0.261 | 2.07 ± 0.222 | 0.503 ± 0.097 | 1.21 ± 0.100 |
Fruits | 73.5 ± 9.21 | 74.7 ± 7.20 | 99.4 ± 8.88 | 15.9 ± 2.41 | 25.6 ± 6.47 |
Summer pruning | 12.1 ± 2.07 | 4.57 ± 0.574 | 13.6 ± 2.66 | 9.45 ± 1.76 | 6.67 ± 1.06 |
Abscised leaves | 119 ± 17.6 | 346 ± 83.6 | 236 ± 10.8 | 234 ± 42.0 | 62.6 ± 1.46 |
Winter pruning | 26.8 ± 2.83 | 182 ± 17.4 | 80.3 ± 5.51 | 35.5 ± 3.76 | 116 ± 7.74 |
Skeleton | 11.1 ± 0.143 | 59.5 ± 13.6 | 4445 ± 1464 | 170 ± 72.3 | 48.6 ± 7.27 |
Root | 2.61 ± 0.508 | 4.79 ± 1.65 | 313 ± 157 | 8.12 ± 4.41 | 2.60 ± 1.00 |
TOTAL | 247 | 673 | 5189 | 473 | 263 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldi, E.; Quartieri, M.; Sorrenti, G.; Mastroleo, M.; Xylogiannis, E.; Toselli, M. Seasonal Uptake and Partitioning of Macro- and Micronutrients in Yellow-Fleshed Kiwifruit (Actinidia chinensis var. chinensis). Horticulturae 2025, 11, 1003. https://doi.org/10.3390/horticulturae11091003
Baldi E, Quartieri M, Sorrenti G, Mastroleo M, Xylogiannis E, Toselli M. Seasonal Uptake and Partitioning of Macro- and Micronutrients in Yellow-Fleshed Kiwifruit (Actinidia chinensis var. chinensis). Horticulturae. 2025; 11(9):1003. https://doi.org/10.3390/horticulturae11091003
Chicago/Turabian StyleBaldi, Elena, Maurizio Quartieri, Giovambattista Sorrenti, Marco Mastroleo, Evangelos Xylogiannis, and Moreno Toselli. 2025. "Seasonal Uptake and Partitioning of Macro- and Micronutrients in Yellow-Fleshed Kiwifruit (Actinidia chinensis var. chinensis)" Horticulturae 11, no. 9: 1003. https://doi.org/10.3390/horticulturae11091003
APA StyleBaldi, E., Quartieri, M., Sorrenti, G., Mastroleo, M., Xylogiannis, E., & Toselli, M. (2025). Seasonal Uptake and Partitioning of Macro- and Micronutrients in Yellow-Fleshed Kiwifruit (Actinidia chinensis var. chinensis). Horticulturae, 11(9), 1003. https://doi.org/10.3390/horticulturae11091003