Nutrient Concentration in Leaves, Branches, and Reproductive Organs of Coffea canephora Genotypes in Three Phenophases
Abstract
1. Introduction
2. Materials and Methods
2.1. Characterization of the Experimental Area and Plant Material
2.2. Identification and Sampling of Plagiotropic Branches
2.3. Nutritional Analysis
2.4. Statistical Analysis
3. Results
3.1. Dry Matter Percentage and Accumulation in Leaves, Branches, and Reproductive Organs
3.2. Nutrient Concentrations in Leaves, Branches, and Reproductive Organs in Three Phenophases
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, A.P.; Rakotonasolo, F. Six new species of coffee (Coffea) from northen Madagascar. Kew Bull. 2021, 76, 497–511. [Google Scholar] [CrossRef]
- ICO—International Coffee Organization. Trade Statistics. 2024. Available online: https://ico.org/resources/about-economics-and-statistics/ (accessed on 19 July 2024).
- Salvador, H.P.; Berilli, A.P.C.G.; Rodrigues, W.P.; Mazzafera, P.; Partelli, F.L. A climate change perspective on the selection, development, and management of Coffea canephora genotypes. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Bunn, C.; Laderach, P.; Ovalle Rivera, O.; Kirschke, D. A bitter cup: Climate change profile of global production of Arabica and Robusta coffee. Clim. Change 2015, 129, 89–101. [Google Scholar] [CrossRef]
- Camargo, ÂP.D.; Camargo, M.B.P. Definição e esquematização das fases fenológicas do cafeeiro arábica nas condições tropicais do Brasil. Bragantia 2001, 60, 65–68. [Google Scholar] [CrossRef]
- Rakocevic, M.; Matsunaga, F.T.; Baroni, D.F.; Campostrini, E.; Costes, E. Multiscale analyses of growth and berry distributions along four branching orders and vertical profile of Coffea arabica L. cultivated under high-density planting systems. Sci. Hortic. 2021, 281, 109934. [Google Scholar] [CrossRef]
- Rodrigues, M.J.L.; Silva, C.A.; Braun, H.; Partelli, F.L. Nutritional balance and genetic diversity of Coffea canephora genotypes. Plants 2023, 12, 1451. [Google Scholar] [CrossRef] [PubMed]
- Oliosi, G.; Partelli, F.L.; Silva, C.A.; Dubberstein, D.; Gontijo, I.; Tomaz, M.A. Seasonal variation in leaf nutrient concentration of conilon coffee genotypes. J. Plant Nutr. 2020, 44, 74–85. [Google Scholar] [CrossRef]
- Ramirez-Builes, V.H.; Küsters, J.; Thiele, E.; Leal-Varon, L.A. Boron nutrition in coffee improves drought stress resistance and, together with calcium, improves long-term productivity and seed composition. Agronomy 2024, 14, 474. [Google Scholar] [CrossRef]
- Martins, L.D.; Machado, L.D.S.; Tomaz, M.A.; Amaral, J.F.T. The nutritional efficiency of Coffea spp. A review. Afr. J. Biotec 2015, 14, 728–734. [Google Scholar] [CrossRef]
- Laviola, B.G.; Martinez, H.E.P.; de Souza, R.B.; Salomão, L.C.C.; Cruz, C.D. Macronutrient accumulation in coffee fruits at Brazilian Zona da Mata conditions. J. Plant Nutr. 2009, 32, 980–995. [Google Scholar] [CrossRef]
- DaMatta, F.M.; Ronchi, C.P.; Maestri, M.; Barros, R.S. Ecophysiology of coffee growth and production. Braz. J. Plant Physiol. 2009, 19, 485–510. [Google Scholar] [CrossRef]
- Carréra, J.C.; Resende, T.B.; Vicente Campos, A.A.; de Souza, R.R.; Oliveira, I.M.M.; Alves Ribeiro, C.; Gavilanes, M.L.; Guimarães, R.J.; Mori, F.A. Anatomic characteristics of branches related to the vegetative growth of coffee tree (Coffea arabica L., Rubiaceae) under nutritional variation. J. Plant Nutr. 2023, 46, 4594–4605. [Google Scholar] [CrossRef]
- López, M.E.; Santos, I.S.; de Oliveira, R.R.; Lima, A.A.; Cardon, C.H.; Chalfun-Junior, A. An overview of the endogenous and environmental factors related to the Coffea arabica flowering process. Bev. Plant Res. 2021, 1, 13. [Google Scholar] [CrossRef]
- Poltronieri, Y.; Martinez, H.E.; Cecon, P.R. Effect of zinc and its form of supply on production and quality of coffee beans. J. Sci. Food Agric. 2011, 91, 2431–2436. [Google Scholar] [CrossRef] [PubMed]
- Dubberstein, D.; Partelli, F.L.; Espindula, M.C.; Dias, J.R.M. Concentration and accumulation of micronutrients in robust coffee. Acta Sci. Agron. 2019, 41, e42685. [Google Scholar] [CrossRef]
- Clemente, J.M.; Martinez, H.E.P.; Alves, L.C.; Finger, F.L.; Cecon, P.R. Effects of nitrogen and potassium on the chemical composition of coffee beans and on beverage quality. Acta Sci. Agron. 2015, 37, 297–305. [Google Scholar] [CrossRef]
- Silva, C.D.; Silva, L.F.V.; Barbosa, G.M.D.; Franco, M.F.S.; Delgado, E.U.A.; Fariña, P.R.V.; Aquino, L.A. Diagnosis of the nutritional status of coffee tree according to fruit phenology. Res. Soc. Dev. 2022, 11, e1311628591. [Google Scholar] [CrossRef]
- Neto, A.P.; Favarin, J.L.; Almeida, R.E.M.; Santos Dias, C.T.; Tezotto, T.; Alves, A.L.G.; Moraes, M.F. Changes of nutritional status during a phenological cycle of coffee under high nitrogen supply by fertigation. Commun. Soil. Sci. Plant Anal. 2011, 42, 2414–2425. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Lima, H.N.; Marques, F.A.; et al. Brazilian Soil Classification System, 6th ed.; Embrapa: Brasília, Brazil, 2025; p. 393. [Google Scholar]
- Partelli, F.L.; Oliveira, H.F.; Gomes, W.S.; Oliosi, G.; Salvador, H.P. Registro fotográfico e Caracterização de 41 Genótipos de Café Conilon; Khas Editora: São Matheus, Brazil, 2022. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Irrigation and Drainage Paper; United Nations Food and Agriculture Organization, FAO: Rome, Italy, 1998; p. 300. [Google Scholar]
- Paye, H.S.; Partelli, F.L.; Martins, A.G.; Siebeneichler, E.A. Recomendação de adubação e calagem. In Café Conilon: Conhecimento Para Superar Desafios; Partelli, F.L., Espindula, M.C., Eds.; CAUFES: Alegre, ES, Brazil, 2019; pp. 75–98. [Google Scholar]
- Silva, F.C. Manual de Análises Químicas de Solos, Plantas e Fertilizantes, 2nd ed.; Embrapa Informação Tecnológica: Rio de Janeiro, Brazil; Embrapa Solos: Brasília, Brazil, 2009; p. 627. [Google Scholar]
- SAS Institute. SAS/STAT: User’s Guide, Version 9.2.; SAS Institute: Cary, CA, USA, 2009. [Google Scholar]
- León-Burgos, A.F.; Sáenz, J.R.R.; Quinchua, L.C.I.; Toro-Herrera, M.A.; Unigarro, C.A.; Osorio, V.; Balaguera-López, H.E. Increased fruit load influences vegetative growth, dry mass partitioning, and bean quality attributes in full-sun coffee cultivation. Front. Sustain. Food Syst. 2024, 8, 1379207. [Google Scholar] [CrossRef]
- Bote, A.D.; Jan, V. Branch growth dynamics, photosynthesis, yield and bean size distribution in response to fruit load manipulation in coffee trees. Trees 2016, 30, 1275–1285. [Google Scholar] [CrossRef]
- Colodetti, T.V.; Rodrigues, W.N.; Martins, L.D.; Tomaz, M.A. Differential tolerance between genotypes of conilon coffee (‘Coffea canephora’) to low availability of nitrogen in the soil. Aust. J. Crop Sci. 2014, 8, 1648–1657. [Google Scholar]
- Alberto, N.J.; Ramalho, J.C.; Ribeiro-Barros, A.I.; Viana, A.P.; Krohling, C.A.; Moiane, S.S.; Alberto, Z.; Rodrigues, W.P.; Partelli, F.L. Diversity in Coffea arabica cultivars in the Mountains of Gorongosa National Park, Mozambique, regarding bean and leaf nutrient accumulation and physical fruit traits. Agronomy 2023, 13, 1162. [Google Scholar] [CrossRef]
- Sousa, J.S.; Neves, J.C.L.; Martinez, H.E.P.; Alvarez, V.H.V. Relationship between coffee leaf analysis and soil chemical analysis. Rev. Bras. Ciênc Solo 2018, 42, e0170109. [Google Scholar] [CrossRef]
- Zabini, A.V.; Martinez, H.E.P.; Neves, J.C.L.; Cruz, C.D.; Valadares, S.V. Chemical analyses of flowers and leaves for nutritional diagnoses of coffee trees. Ciênc. Rural. 2021, 51, e20190796. [Google Scholar] [CrossRef]
- Torres, J.D.; de Araújo, L.F.B.; Espindula, M.C.; Campanharo, M.; Rocha, R.B. Export of macronutrients for coffee fruits submitted to different doses of formulation 20-00-20. J. Plant Nutr. 2022, 45, 2737–2747. [Google Scholar] [CrossRef]
- Bragança, S.M.; Martinez, H.E.P.; Leite, H.G.; Santos, L.P.; Lane, J.A.; Sediyama, C.S.; Venegas, V.H.A. Accumulation of macronutrients for the Conilon coffee tree. J. Plant Nutr. 2007, 31, 103–120. [Google Scholar] [CrossRef]
- Khalajabadi, S.S.; Poveda, V.C.D.; Sáenz, J.R.R. Coffee productive branch growth, development and nutrient accumulation from flowering to harvest under Colombian conditions. Coffee Sci. 2025, 20, e202274. [Google Scholar] [CrossRef]
- Verdin Filho, A.C.; Tomaz, M.A.; Ferrão, R.G.; Ferrão, M.A.G.; Fonseca, A.F.A.D.; Rodrigues, W.N. Conilon coffee yield using the programmed pruning cycle and different cultivation densities. Coffee Sci. 2014, 9, 489–494. [Google Scholar]
- Lacerda, J.S.; Martinez, H.E.; Pedrosa, A.W.; Clemente, J.M.; Santos, R.H.; Oliveira, G.L.; Jifon, J.L. Importance of zinc for arabica coffee and its effects on the chemical composition of raw grain and beverage quality. Crop Sci. 2018, 58, 1360–1370. [Google Scholar] [CrossRef]
- Martins, A.C.; Krum, B.N.; Queirós, L.; Tinkov, A.A.; Skalny, A.V.; Bowman, A.B.; Aschner, M. Manganese in the diet: Bioaccessibility, adequate intake, and neurotoxicological effects. J. Agric. Food Chem. 2020, 68, 12893–12903. [Google Scholar] [CrossRef] [PubMed]
- Espinelli Junior, J.B.D.S.; Wesz, I.S.; Araujo, I.D.S.; Furlong, E.B.; Carapelli, R. Chemical fractionation of manganese in commercial coffee samples from conventional and organic cultivation systems. Anal. Lett. 2025, 58, 1479–1494. [Google Scholar] [CrossRef]
- Martinez, H.E.P.; Souza, R.B.; Bayona, J.A.; Venegas, V.H.A.; Sanz, M. Coffee-tree floral analysis as a mean of nutritional diagnosis. J. Plant Nutr. 2003, 26, 1467–1482. [Google Scholar] [CrossRef]
Phenophases | Organs | Genotypes | ||||
---|---|---|---|---|---|---|
A1 | Clementino | K61 | Pirata | Verdim TA | ||
Flowering | Leaves | 26.94 abA | 35.68 aA | 23.57 bA | 27.66 abA | 16.26 bA |
Branches | 9.43 aA | 12.82 aB | 9.78 aB | 11.16 aB | 4.54 bA | |
Flowers | 10.09 abC | 12.58 aB | 8.88 abB | 9.11 abC | 6.03 bB | |
Fruit development | Leaves | 19.36 bAB | 30.34 aA | 21.14 abA | 15.52 bB | 12.14 bA |
Branches | 14.15 aA | 17.36 aAB | 14.62 aB | 15.84 aAB | 6.35 bA | |
Fruits | 58.71 aB | 48.52 aB | 45.57 aB | 57.03 aB | 41.98 aB | |
Fruit ripening | Leaves | 10.31 abB | 12.14 aB | 9.23 abB | 11.88 abB | 8.03 aA |
Branches | 13.70 abA | 20.99 aA | 21.23 aA | 20.12 aA | 6.61 bA | |
Fruits | 130.4 abA | 185.3 aA | 169.5 abA | 162.2 abA | 103.2 bA |
Genotypes | N | P | K | Ca | Mg | S | Fe | Cu | Mn | Zn | B |
---|---|---|---|---|---|---|---|---|---|---|---|
-----------------------g Kg−1------------------------ | ---------------------mg Kg−1------------------- | ||||||||||
Flowering (leaf) | |||||||||||
A1 | 21.0 b | 1.83 a | 17.7 ab | 18.2 ab | 3.73 a | 2.97 b | 286 a | 61.7 a | 35.1 ab | 9.23 ab | 80.6 a |
Clementino | 23.6 ab | 1.63 ab | 16.7 b | 20.5 a | 4.50 a | 2.33 b | 168 a | 47.9 ab | 43.9 ab | 14.9 a | 73.0 a |
K61 | 26.4 a | 1.50 bc | 18.1 ab | 15.2 b | 4.00 a | 2.73 b | 280 a | 27.5 b | 47.5 a | 8.80 b | 80.3 a |
Pirata | 24.7 ab | 1.63 ab | 20.1 a | 16.6 ab | 4.03 a | 3.77 a | 278 a | 30.8 ab | 39.5 ab | 8.50 b | 84.8 a |
Verdim TA | 25.4 ab | 1.30 c | 17.6 ab | 16.7 ab | 3.33 a | 2.47 b | 242 a | 35.2 ab | 23.1 b | 8.20 b | 89.7 a |
CV (%) | 7.80 | 7.35 | 6.61 | 9.55 | 12.41 | 8.69 | 20.96 | 27.95 | 19.90 | 20.34 | 17.51 |
Fruit development (leaf) | |||||||||||
A1 | 19.6 a | 1.33 ab | 17.6 a | 26.3 a | 4.80 a | 2.30 b | 241 a | 14.4 ab | 33.6 ab | 6.93 b | 115 a |
Clementino | 21.9 a | 1.70 a | 17.2 a | 25.0 a | 5.20 a | 2.73 ab | 120 b | 18.8 a | 42.40 b | 11.6 a | 78.7 b |
K61 | 21.7 a | 1.40 ab | 19.5 a | 17.8 b | 3.87 b | 2.60 ab | 158 ab | 12.2 ab | 56.8 a | 8.43 ab | 83.6 b |
Pirata | 23.8 a | 1.30 b | 21.7 a | 19.5 b | 3.53 b | 3.27 a | 199 ab | 9.87 b | 38.4 ab | 7.63 b | 89.4 b |
Verdim TA | 22.6 a | 1.03 b | 18.2 a | 26.9 a | 4.97 a | 2.27 b | 137 ab | 13.7 ab | 20.9 b | 8.23 b | 94.4 b |
CV (%) | 10.46 | 9.91 | 9.39 | 5.39 | 5.93 | 9.59 | 23.59 | 17.98 | 25.57 | 13.41 | 7.84 |
Fruit ripening (leaf) | |||||||||||
A1 | 16.3 d | 1.30 ab | 14.4 b | 1.96 b | 31.2 a | 4.97 a | 6.27 a | 205 a | 30.2 ab | 7.03 ab | 147 a |
Clementino | 18.9 cd | 1.40 a | 15.6 b | 2.47 b | 29.9 ab | 4.50 a | 8.60 a | 90.3 a | 36.2 ab | 7.90 ab | 104 b |
K61 | 22.2 ab | 1.27 ab | 16.5 b | 2.30 b | 22.6 bc | 4.87 a | 7.87 a | 141 a | 54.1 a | 9.53 a | 117 ab |
Pirata | 20.1 bc | 1.30 ab | 23.9 a | 3.30 a | 20.1 c | 2.80 b | 6.57 a | 202 a | 32.8 ab | 6.70 ab | 1167 ab |
Verdim TA | 23.6 a | 1.06 b | 17.6 b | 2.10 b | 30.4 ab | 5.17 a | 8.63 a | 161 a | 23.6 b | 5.00 b | 105 b |
CV (%) | 5.22 | 7.49 | 8.75 | 8.29 | 10.63 | 10.72 | 14.20 | 29.36 | 25.05 | 15.07 | 12.07 |
Genotypes | N | P | K | Ca | Mg | S | Fe | Cu | Mn | Zn | B |
---|---|---|---|---|---|---|---|---|---|---|---|
-----------------------g Kg−1------------------------ | ---------------------mg Kg−1------------------- | ||||||||||
Flowering (branches) | |||||||||||
A1 | 10.7 a | 2.30 a | 10.4 a | 9.50 bc | 3.10 a | 1.10 b | 88.0 a | 29.2 a | 11.2 a | 22.9 ab | 16.5 a |
Clementino | 12.6 a | 2.20 a | 12.4 a | 7.10 d | 2.63 ab | 1.23 b | 44.4 b | 19.2 b | 11.1 a | 26.4 a | 11.8 bc |
K61 | 13.5 a | 2.43 a | 11.1 a | 8.00 cd | 2.97 a | 1.23 b | 45.2 b | 17.8 b | 17.8 a | 12.5 b | 11.2 c |
Pirata | 10.7 a | 2.17 a | 11.4 a | 10.5 ab | 3.17 a | 1.67 a | 66.1 ab | 25.0 ab | 18.5 a | 18.2 ab | 13.4 abc |
Verdim TA | 13.3 a | 1.77 a | 13.5 a | 11.4 a | 2.13 b | 1.37 ab | 75.1 ab | 31.2 a | 20.1 a | 26.8 a | 16.0 ab |
CV (%) | 10.90 | 20.57 | 12.39 | 6.27 | 9.54 | 8.91 | 23.15 | 12.28 | 29.92 | 18.59 | 11.86 |
Fruit development (branches) | |||||||||||
A1 | 11.0 ab | 1.53 a | 12.3 a | 9.07 a | 1.97 a | 1.10 b | 79.2 a | 14.9 ab | 11.4 b | 19.5 ab | 14.4 a |
Clementino | 7.93 b | 1.40 a | 13.1 a | 6.53 a | 1.73 a | 1.20 b | 16.3 bc | 10.7 b | 8.90 b | 17.8 a bc | 11.0 a |
K61 | 12.4 ab | 1.47 a | 13.6 a | 8.80 a | 1.57 a | 1.06 b | 15.2 c | 10.4 b | 28.7 a | 9.47 c | 12.9 a |
Pirata | 11.0 ab | 1.27 a | 13.4 a | 10.4 a | 1.57 a | 1.53 a | 53.0 ab | 13.7 ab | 16.7 ab | 16.4 bc | 11.6 a |
Verdim TA | 14.9 a | 1.20 a | 14.3 a | 9.03 a | 1.80 a | 1.30 ab | 23.2 bc | 16.2 a | 14.0 b | 25.9 a | 11.1 a |
CV (%) | 14.23 | 20.31 | 10.73 | 16.46 | 16.65 | 9.43 | 35.58 | 14.80 | 32.64 | 17.11 | 15.22 |
Fruit ripening (branches) | |||||||||||
A1 | 10.3 a | 1.10 a | 13.4 a | 1.07 a | 10.3 b | 1.43 b | 8.93 ab | 24.9 abc | 10.1 b | 8.77 b | 14.4 ab |
Clementino | 10.3 a | 1.20 a | 14.5 a | 1.13 a | 10.0 b | 1.27 b | 9.03 ab | 16.1 bc | 14.8 b | 19.3 ab | 14.7 ab |
K61 | 12.8 a | 1.67 a | 15.8 a | 1.17 a | 10.8 ab | 1.27 b | 8.60 b | 26.7 ab | 34.3 a | 10.7 ab | 15.2 ab |
Pirata | 12.6 a | 1.13 a | 14.6 a | 1.17 a | 8.2 b | 1.03 b | 8.07 b | 14.3 c | 13.2 b | 14.8 ab | 10.6 b |
Verdim TA | 15.2 a | 1.13 a | 14.3 a | 1.33 a | 13.2 a | 2.07 a | 13.40 a | 35.2 a | 15.2 b | 22.2 a | 15.5 a |
CV (%) | 14.84 | 13.46 | 8.66 | 9.90 | 9.57 | 10.59 | 17.18 | 16.93 | 16.71 | 29.03 | 11.66 |
Genotypes | N | P | K | Ca | Mg | S | Fe | Cu | Mn | Zn | B |
---|---|---|---|---|---|---|---|---|---|---|---|
-----------------------g Kg−1------------------------ | ---------------------mg Kg−1------------------- | ||||||||||
Flowering (flowers) | |||||||||||
A1 | 31.5 b | 3.20 ab | 24.9 c | 8.77 a | 2.53 a | 2.20 b | 86.9 a | 33.3 ab | 19.4 b | 13.3 ab | 26.7 b |
Clementino | 37.1 a | 3.30 ab | 27.4 b | 7.90 ab | 2.70 a | 2.33 b | 78.1 a | 32.6 ab | 29.2 a | 15.1 a | 39.1 a |
K61 | 36.4 a | 3.10 b | 27.5 b | 6.73 ab | 2.50 a | 2.33 b | 77.3 a | 28.5 b | 25.8 ab | 11.4 b | 43.4 a |
Pirata | 34.3 ab | 3.87 a | 30.1 a | 6.57 ab | 2.87 a | 2.77 a | 66.4 a | 35.3 ab | 23.0 ab | 14.9 a | 38.0 ab |
Verdim TA | 37.1 a | 3.17 ab | 29.2 a | 5.50 b | 2.37 a | 2.23 b | 57.3 a | 40.2 a | 18.7 b | 10.7 b | 43.3 a |
CV (%) | 3.94 | 7.87 | 1.80 | 12.35 | 8.12 | 5.10 | 21.92 | 10.81 | 11.88 | 7.37 | 10.61 |
Fruit development (fruits) | |||||||||||
A1 | 27.3 a | 2.76 ab | 25.1 a | 4.57 a | 2.33 ab | 1.83 ab | 21.1 a | 18.1 ab | 13.3 bc | 5.83 b | 19.0 a |
Clementino | 31.0 a | 3.13 a | 25.0 a | 4.50 a | 2.60 a | 2.07 ab | 31.4 a | 22.5 a | 18.8 ab | 9.33 a | 20.1 a |
K61 | 31.3 a | 2.33 bc | 24.0 a | 4.33 a | 2.27 ab | 1.90 ab | 27.5 a | 14.9 b | 19.7 a | 6.00 b | 17.0 a |
Pirata | 28.2 a | 2.46 abc | 24.7 a | 4.47 a | 2.43 a | 2.20 a | 30.0 a | 16.8 ab | 14.5 abc | 7.23 ab | 19.5 a |
Verdim TA | 29.4 a | 1.87 c | 24.2 a | 3.67 a | 1.73 b | 1.70 b | 10.0 a | 16.6 ab | 9.23 c | 5.03 b | 16.6 a |
CV (%) | 8.63 | 10.34 | 4.37 | 7.78 | 9.55 | 6.75 | 33.58 | 14.62 | 14.47 | 12.04 | 8.48 |
Fruit ripening (fruits) | |||||||||||
A1 | 21.5 b | 1.77 a | 24.1 a | 1.30 a | 2.50 a | 1.47 a | 9.77 a | 32.8 a | 8.53 b | 3.47 b | 11.0 a |
Clementino | 24.5 ab | 2.17 a | 24.3 a | 1.53 a | 2.43 a | 1.77 a | 9.93 a | 16.0 a | 12.4 a | 5.33 a | 12.9 a |
K61 | 23.8 ab | 1.80 a | 24.9 a | 1.63 a | 2.73 a | 1.57 a | 12.60 a | 13.2 a | 12.4 a | 3.87 b | 12.4 a |
Pirata | 22.9 ab | 1.87 a | 24.8 a | 1.63 a | 2.47 a | 1.63 a | 15.33 a | 24.3 a | 9.00 b | 4.33 ab | 12.0 a |
Verdim TA | 25.7 a | 1.83 a | 23.9 a | 1.47 a | 2.57 a | 1.60 a | 9.30 a | 14.4 a | 9.17 b | 3.97 b | 11.9 a |
CV (%) | 5.61 | 11.87 | 5.06 | 8.27 | 17.99 | 14.28 | 19.48 | 35.09 | 9.96 | 10.45 | 13.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, M.J.L.; Silva, L.O.E.; Gontijo, I.; Vieira, H.D.; Viana, A.P.; Rakocevic, M.; Partelli, F.L. Nutrient Concentration in Leaves, Branches, and Reproductive Organs of Coffea canephora Genotypes in Three Phenophases. Horticulturae 2025, 11, 872. https://doi.org/10.3390/horticulturae11080872
Rodrigues MJL, Silva LOE, Gontijo I, Vieira HD, Viana AP, Rakocevic M, Partelli FL. Nutrient Concentration in Leaves, Branches, and Reproductive Organs of Coffea canephora Genotypes in Three Phenophases. Horticulturae. 2025; 11(8):872. https://doi.org/10.3390/horticulturae11080872
Chicago/Turabian StyleRodrigues, Maria Juliete Lucindo, Larícia Olária Emerick Silva, Ivoney Gontijo, Henrique Duarte Vieira, Alexandre Pio Viana, Miroslava Rakocevic, and Fábio Luiz Partelli. 2025. "Nutrient Concentration in Leaves, Branches, and Reproductive Organs of Coffea canephora Genotypes in Three Phenophases" Horticulturae 11, no. 8: 872. https://doi.org/10.3390/horticulturae11080872
APA StyleRodrigues, M. J. L., Silva, L. O. E., Gontijo, I., Vieira, H. D., Viana, A. P., Rakocevic, M., & Partelli, F. L. (2025). Nutrient Concentration in Leaves, Branches, and Reproductive Organs of Coffea canephora Genotypes in Three Phenophases. Horticulturae, 11(8), 872. https://doi.org/10.3390/horticulturae11080872