Optimizing Transplanting Practices for Potted Tree Peony Based on Non-Structural Carbohydrates Accumulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Material
2.3. Measurement of Photosynthetic Performance
2.4. Measurement of Morphological Indicators
2.5. Measurement of NSCs
2.6. Statistical Analysis
3. Results
3.1. Changes in Morphological Characteristics of Potted Tree Peony
3.2. Changes in Photosynthetic Performance of Potted Tree Peonies
3.3. Accumulation and Distribution of NSCs in Different Organs of Potted Tree Peonies
3.4. Range Analysis of NSCs Accumulation in Potted Tree Peony
3.5. Correlation of Photosynthetic Performance and Morphological Characteristics with NSCs Accumulation in Potted Tree Peony
4. Discussion
4.1. The Effects of Root Pruning, Rooting Agents and Metarhizium Anisopliae
4.2. Characteristics of NSCs Accumulation in Potted Tree Peony
4.3. NSCs Accumulation for Tree Peony Seedling Growth
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, S.; Ma, C.; Zhou, W.B.; Gao, S.C.; Hou, D.Y.; Guo, L.L.; Shi, G.A. Selection of stable reference genes for qRT-PCR in tree peony ‘Doulv’ and functional analysis of PsCUC3. Plants 2024, 13, 1741. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.Q.; Zhou, W.B.; Shi, S.Y.; Hu, K.; Shi, T.; Gao, S.C.; Wang, Z.; Shi, G.A. Shading alleviates chloroplastic photodamage of forcing cultivated tree peonies in spring management. Sci. Hortic. 2025, 344, 114104. [Google Scholar] [CrossRef]
- Mornya, P.M.P.; Cheng, F. Effect of combined chilling and GA3 treatment on bud abortion in forced ‘Luoyanghong’ tree peony (Paeonia suffruticosa andr.). Hortic. Plant J. 2018, 4, 250–256. [Google Scholar] [CrossRef]
- Liu, P.; Fu, L.S.; Jiang, K.M. Comparative analysis on economic benefit of ‘Xiangfeng’ peony. Sci. Silvae Sin. 2019, 55, 167–174. [Google Scholar]
- Li, J.J. Zhongguo Mudan Shaoyao; China Forestry Publishing House: Beijing, China, 1999. [Google Scholar]
- Qiu, Z.F.; Wang, Q.Q.; Zhang, J.L.; Zhou, W.B.; Chen, X.; Zhu, X.T. Comprehensive evaluation of the effects of different composite substrates on the growth of tree peony. J. Plant Growth Regul. 2025, 105, 861–874. [Google Scholar] [CrossRef]
- Wang, Z.C.; Shi, S.Y.; Gao, S.C.; Shi, G.A. Effect of water-soluble fertilizer on flowering quality of potted Itoh peony ‘Bartzella’ under forcing cultivation. Acta Bot. Boreali-Occident. Sin. 2022, 42, 845–853. [Google Scholar]
- Zhang, F.C.; Zhang, X.X.; Wang, H.L.; Han, L.; Zhang, Y. The preliminary study on effects of four retardants on miniature potted tree peony in forcing culture. Chin. Agric. Sci. Bull. 2008, 24, 314–317. [Google Scholar]
- Zhang, Y.X.; Yu, D.; Liu, C.Y.; Gai, S.P. Dynamic of carbohydrate metabolism and the related genes highlights ppp pathway activation during chilling induced bud dormancy release in tree peony (Paeonia suffruticosa). Sci. Hortic. 2018, 242, 36–43. [Google Scholar] [CrossRef]
- Liu, C.Y.; Shi, G.A.; Wang, W. Effects of root cutting treatment on root development of peony ‘fengdanbai’ seedlings. Pract. For. Technol. 2013, 10, 47–49. [Google Scholar]
- Liu, Z.M.; Kong, D.Z.; Li, Y.H.; Yang, Q.S. Dynamic carbon and nitrogen metabolism in roots of potted and field Paeonia suffruticosa ‘Luoyanghong’. Sci. Silvae Sin. 2008, 44, 162–164. [Google Scholar]
- Du, Y.W.; Hang, F.X.; Deng, X.Z.; Zou, Y.W.; Xie, X.G.; Wang, J.X. Comprehensive evaluation on transplanted seedling quality of Carya illinoensis treated by different variety and concentration of rooting agent. J. Henan Agric. Sci. 2022, 51, 104–112. [Google Scholar]
- Guan, Y.R.; Xue, J.Q.; Xue, Y.Q.; Yang, R.W.; Wang, S.L.; Zhang, X.X. Effect of exogenous GA3 on flowering quality, endogenous hormones, and hormone-and flowering-associated gene expression in forcing-cultured tree peony (Paeonia suffruticosa). J. Integr. Agric. 2019, 18, 1295–1311. [Google Scholar] [CrossRef]
- Zhang, W.J.; Cheng, F.Y.; Yu, X.N.; Wang, Y. Effects of gibberellin (GA3) and rooting powder (ABT) on the forcing culture of tree peony. J. Beijing For. Univ. 2006, 28, 84–87. [Google Scholar]
- Yang, Y.; Liu, S.; Du, G.; Liu, F.; Tang, K.; Du, G.; Li, J.; Jiang, W. Exogenous application of phytohormones alleviates salt injury to growth, physiological, and biochemical attributes of hemp seedlings. J. Plant Growth Regul. 2024, 43, 2439–2453. [Google Scholar] [CrossRef]
- Nong, X.Q.; Liu, X.; Liu, C.Q.; Zhang, Y.C.; Zhang, X.; Zhang, Z.H. Behavior tropism of white grubs to Metarhizium anisopliae and peanut plants. Chin. J. Biol. Control 2014, 30, 334–341. [Google Scholar]
- Elnahal, A.S.M.; El-Saadony, M.T.; Saad, A.M.; Desoky, E.S.M.; El-Tahan, A.M.; Rady, M.M.; AbuQamar, S.F.; El-Tarabily, K.A. The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. Eurpoean J. Plant Pathol. 2022, 162, 759–792. [Google Scholar] [CrossRef]
- Barelli, L.; Waller, A.S.; Behie, S.W.; Bidochka, M.J. Plant microbiome analysis after Metarhizium amendment reveals increases in abundance of plant growth-promoting organisms and maintenance of disease-suppressive soil. PLoS ONE 2020, 15, e0231150. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Leger, R.J. Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Appl. Environ. Microbiol. 2002, 68, 6383–6387. [Google Scholar] [CrossRef]
- Zhou, W.; Fan, L.; Gao, S.; Zhou, S.; Shi, G. Enhancing seedling growth and root development through symbiotic interactions: The role of Metarhizium anisopliae in tree peony root systems. J. Plant Growth Regul. 2025, 44, 4108–4121. [Google Scholar] [CrossRef]
- Yang, Y.; Qiu, Y.; Cheng, Y.; Yu, T.; Zhu, M.; Qian, W.; Gao, S.; Zhuang, G. Non-structural carbohydrate content and C: N: P stoichiometry in Houpoea officinalis flowers in response to development stages. Horticulturae 2024, 10, 784. [Google Scholar] [CrossRef]
- Wiley, E.; Helliker, B. A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytol. 2012, 195, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Yuan, T.; Liu, S.D. Variation in physiological and biochemical properties and DNA methylation patterns during autumn flowering of tree peony (Paeonia suffruticosa). Sci. Silvae Sin. 2021, 57, 53–67. [Google Scholar]
- Xue, Y.Q.; Liu, Z.Y.; Sun, K.R.; Zhang, X.X.; Lv, Y.M.; Xue, J.Q. The mechanism of sugar signal involved in regulating re-flowering of tree peony under forcing culture. Acta Hortic. Sin. 2023, 50, 596–606. [Google Scholar]
- Liu, Z.Y.; Shi, Y.T.; Xue, Y.Q.; Wang, X.P.; Huang, Z.; Xue, J.Q.; Zhang, X.X. Non-structural carbohydrates coordinate tree peony flowering both as energy substrates and as sugar signaling triggers, with the bracts playing an essential role. Plant Physiol. Biochem. 2021, 159, 80–88. [Google Scholar] [CrossRef]
- Shi, S.; Shi, T.; Zhou, S.; Gao, S.; Zhao, Y.; Shi, G. Non-structural carbohydrates accumulation in seedlings improved flowering quality of tree peony under forcing culture conditions, with roots playing a crucial role. Plants 2024, 13, 2837. [Google Scholar] [CrossRef]
- Henan University of Science and Technology. An Efficient Slow-Release Rooting Agent for Peony Transplantation and Its Usage Method. CN101507440, 19 August 2009. [Google Scholar]
- Buysse, J.; Merckx, R. An improved colorimetric method to quantify sugar content of plant tissue. J. Exp. Bot. 1993, 44, 1627–1629. [Google Scholar] [CrossRef]
- Wang, Z.; Su, G.G.; He, S.L.; Shi, L.Y.; He, D.; Shang, W.Q.; Yang, D.J. Effects of root pruning on adventitious root formation, enzyme activities, and hormone levels in Paeonia suffruticosa ‘Fengdanbai’ seedlings. Hortic. Sci. Technol. 2021, 39, 10–22. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, Z.K.; Ma, L.Y.; Deng, S.X.; Zhu, Z.L.; Sang, Z.Y. Effects of four plant growth regulators on rooting of the softwood cutting of Magnolia wufengensis. Sci. Silvae Sin. 2019, 55, 35–45. [Google Scholar]
- Chen, C.H.; Chen, X.M.; Yang, Z.H.; Yuan, Z.X.; Li, C.X. Effects of exogenous hormone on rooting of Taxodium distichum cuttings from the hydro-fluctuation belt of the Three Gorges Reservoir. Acta Ecol. Sin. 2021, 41, 8635–8642. [Google Scholar] [CrossRef]
- Elmongy, M.S.; Cao, Y.; Zhou, H.; Xia, Y.P. Root development enhanced by using indole-3-butyric acid and naphthalene acetic acid and associated biochemical changes of in vitro Azalea microshoots. J. Plant Growth Regul. 2018, 37, 813–825. [Google Scholar] [CrossRef]
- Sun, X.M.; Zhang, S.G.; Wang, X.S.; Qi, L.W.; Lv, S.F.; Wang, J.H. Effects of growth regulators on nursery rooting and seedling growth of hybrid larch. J. Beijing For. Univ. 2006, 28, 68–72. [Google Scholar]
- Liao, X.G.; Hu, M.Y.; Meng, Z.B.; Luo, Q.; Bai, W.Q. Effects of different Metarhizium strains on rhizospheric colonization and growth of corn. Southwest China J. Agric. Sci. 2021, 34, 1657–1662. [Google Scholar]
- Liu, S.F.; Wang, G.J.; Nong, X.Q.; Li, B.; Wang, M.M.; Li, S.L.; Cao, G.C.; Zhang, Z.H. Entomopathogen Metarhizium anisopliae promotes the early development of peanut root. Plant Prot. Sci. 2017, 53, 101–107. [Google Scholar] [CrossRef]
- Cheng, Z.L.; Guo, L.J.; Huang, J.S. The dynamic of population and sporulation of Metarrhizium anisopliae survived in soil. Chin. Agric. Sci. Bull. 2008, 24, 365–368. [Google Scholar]
- Bora, P.; Bora, C.L.; Bhuyan, R.P.; Hashem, A.; Abd_Allah, E. Bioagent consortia assisted suppression in grey blight disease with enhanced leaf nutrients and biochemical properties of tea (Camellia sinensis). Biol. Control 2022, 170, 104907. [Google Scholar] [CrossRef]
- Hodge, A.; Berta, G.; Doussan, C.; Merchan, F.; Crespi, M. Plant root growth, architecture and function. Plant Soil 2009, 321, 153–187. [Google Scholar] [CrossRef]
- Gu, T.; Ren, H.; Wang, M.; Qian, W.; Hu, Y.; Yang, Y.; Yu, T.; Zhao, K.; Gao, S. Changes in growth parameters, C: N: P stoichiometry and non-structural carbohydrate contents of Zanthoxylum armatum seedling in response to five soil types. Horticulturae 2024, 10, 261. [Google Scholar] [CrossRef]
- Villar-Salvador, P.; Uscola, M.; Jacobs, D.F. The role of stored carbohydrates and nitrogen in the growth and stress tolerance of planted forest trees. New For. 2015, 46, 813–839. [Google Scholar] [CrossRef]
- Shi, S.Y.; Shi, T.; Zhou, S.; Gao, S.C.; Shi, G.A. Characteristics of compensatory growth and non-structural carbohydrates accumulation of potted tree peony. Acta Bot. Boreali-Occident. Sin. 2023, 43, 1732–1743. [Google Scholar]
- Dietze, M.C.; Sala, A.N.; Carbone, M.S.; Czimczik, C.I.; Mantooh, G.A.; Richardson, A.D.; Vargas, R. Nonstructural carbon in woody plants. Annu. Rev. Plant Biol. 2014, 65, 667–687. [Google Scholar] [CrossRef] [PubMed]
- Kabeya, D. Differentiating between the adverse effects of nutrient-limitation and direct-cold-limitation on tree growth at high altitudes. Arct. Antarct. Alp. Res. 2010, 42, 430–437. [Google Scholar] [CrossRef]
- Puttonen, P. Carbohydrate reserves in Pinus sylvestris seedling needles as an attribute of seedling vigor. Scand. J. For. Res. 1986, 1, 181–193. [Google Scholar] [CrossRef]
- Herrera, L.F.R.; Shane, M.W.; López-bucio, J. Nutritional regulation of root development. Wiley Interdiscip. Rev. Dev. Biol. 2015, 4, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Gazal, R.M.; Blanche, C.A.; Carandang, W.M. Root growth potential and seedling morphological attributes of narra (Pterocarpus indicus Willd.) transplants. For. Ecol. Manag. 2004, 195, 259–266. [Google Scholar] [CrossRef]
- Wang, C.Z.; Ma, X.Y.; Li, Q.K.; Hu, Y.H.; Yang, J.; Song, Z.P. Effects of NSC in different organs and at different growth stages on the yield of oil peony ‘Fengdan’ with different ages. Front. Plant Sci. 2023, 14, 1108668. [Google Scholar] [CrossRef] [PubMed]
Combinations | Factors | ||
---|---|---|---|
Root Pruning (A) /% | Rooting Agent (B) /(mg·L−1) | Metarhizium anisopliae (C) /(Million Spores·mL−1) | |
1 | 25 | 250 | 10 |
2 | 25 | 500 | 15 |
3 | 25 | 750 | 20 |
4 | 33 | 250 | 15 |
5 | 33 | 500 | 20 |
6 | 33 | 750 | 10 |
7 | 50 | 250 | 15 |
8 | 50 | 500 | 10 |
9 | 50 | 750 | 20 |
Combinations | Pn /(µmolCO2 ·m−2s−1) | Gs /(molH2O ·m−2s−1) | Ci /(µmol· mol−1) | Tr /(mmolH2O ·m−2s−1) | WUE /(µmolCO2 mmol−1H2O) | LA /cm2 | SPAD Valve |
---|---|---|---|---|---|---|---|
1 | 4.82 ± 0.70 abc | 0.04 ± 0.01 | 193.62 ± 31.63 | 1.05 ± 0.27 ab | 4.87 ± 1.44 a | 1554.1 ± 95.1 abc | 57.30 ± 2.27 d |
2 | 4.52 ± 0.65 abc | 0.04 ± 0.01 | 206.00 ± 21.60 | 1.08 ± 0.14 ab | 4.25 ± 0.84 abc | 1192.2 ± 80.8 de | 58.21 ± 3.17 bcd |
3 | 5.40 ± 0.70 a | 0.04 ± 0.01 | 195.09 ± 13.24 | 1.23 ± 0.20 a | 4.48 ± 0.74 ab | 1792.3 ± 256.8 a | 60.34 ± 2.96 a |
4 | 5.16 ± 1.23 ab | 0.04 ± 0.01 | 214.14 ± 20.77 | 1.26 ± 0.21 a | 4.14 ± 0.85 abc | 1269.9 ± 299 cde | 59.49 ± 2.14 abc |
5 | 4.94 ± 1.15 abc | 0.04 ± 0.01 | 199.34 ± 14.28 | 1.14 ± 0.13 ab | 4.34 ± 0.86 abc | 1237.0 ± 49.6 de | 59.97 ± 2.91 ab |
6 | 3.41 ± 0.79 d | 0.03 ± 0.01 | 198.13 ± 27.59 | 0.92 ± 0.28 b | 3.89 ± 0.78 abc | 1434.7 ± 249.2 bcd | 59.63 ± 2.52 ab |
7 | 3.99 ± 1.10 cd | 0.03 ± 0.01 | 199.90 ± 21.95 | 1.05 ± 0.19 ab | 3.76 ± 0.52 c | 1028.9 ± 137.5 e | 58.06 ± 2.24 bcd |
8 | 4.28 ± 0.57 bcd | 0.04 ± 0.01 | 209.29 ± 26.15 | 1.22 ± 0.24 a | 3.55 ± 0.36 c | 1097.5 ± 192.2 e | 58.29 ± 2.38 bcd |
9 | 4.20 ± 0.70 bcd | 0.03 ± 0.01 | 187.25 ± 34.98 | 1.10 ± 0.16 ab | 3.84 ± 0.63 bc | 1213.2 ± 203.7 de | 57.64 ± 3.83 cd |
Combinations | Leaf | Stem | Old Root | Fibrous Root |
---|---|---|---|---|
1 | 68.98 ± 4.47 a | 43.24 ± 1.08 bcd | 55.35 ± 2.57 bcd | 21.66 ± 3.43 abcd |
2 | 69.48 ± 4.11 a | 56.56 ± 1.28 a | 60.87 ± 4.49 abc | 26.61 ± 3.28 ab |
3 | 60.21 ± 4.61 bc | 46.61 ± 3.14 b | 68.82 ± 4.25 a | 26.85 ± 3.51 a |
4 | 58.52 ± 1.46 c | 40.93 ± 1.74 cd | 63.99 ± 8.82 ab | 18.01 ± 2.72 d |
5 | 58.50 ± 1.33 c | 45.04 ± 0.41 bc | 58.44 ± 2.13 bc | 20.98 ± 0.64 bcd |
6 | 60.62 ± 3.21 bc | 41.34 ± 3.23 cd | 53.35 ± 0.71 cd | 23.97 ± 2.88 abc |
7 | 59.94 ± 3.88 bc | 39.34 ± 0.78 de | 63.52 ± 2.68 ab | 23.14 ± 1.03 abcd |
8 | 57.08 ± 2.82 c | 39.98 ± 3.70 de | 47.23 ± 2.63 d | 17.55 ± 0.99 d |
9 | 59.76 ± 0.52 bc | 39.90 ± 1.94 de | 47.69 ± 3.77 d | 20.38 ± 0.96 cd |
Combinations | Leaf | Stem | Old Root | Fibrous Root |
---|---|---|---|---|
1 | 18.07 ± 2.96 ab | 21.96 ± 1.82 ab | 71.44 ± 8.68 cd | 8.25 ± 1.39 c |
2 | 18.90 ± 0.84 ab | 17.69 ± 1.95 d | 47.35 ± 8.17 e | 7.79 ± 1.28 c |
3 | 20.91 ± 1.37 ab | 20.92 ± 0.84 bc | 98.28 ± 11.41 a | 10.01 ± 0.80 abc |
4 | 21.35 ± 1.80 ab | 21.79 ± 0.53 ab | 83.69 ± 4.41 bc | 8.23 ± 1.17 c |
5 | 20.76 ± 2.14 ab | 18.19 ± 2.64 cd | 66.36 ± 6.18 d | 9.22 ± 0.62 bc |
6 | 17.01 ± 1.49 b | 22.68 ± 1.03 ab | 68.64 ± 8.01 d | 8.70 ± 0.69 c |
7 | 18.83 ± 2.20 ab | 22.63 ± 0.65 ab | 77.31 ± 2.65 bcd | 11.01 ± 1.09 ab |
8 | 21.49 ± 1.14 ab | 16.89 ± 1.36 d | 52.27 ± 0.82 e | 7.74 ± 1.56 c |
9 | 18.51 ± 4.49 ab | 19.56 ± 1.90 bcd | 73.81 ± 5.06 bcd | 9.22 ± 0.49 bc |
Combinations | Leaf | Stem | Old Root | Fibrous Root |
---|---|---|---|---|
1 | 94.99 ± 5.85 a | 65.20 ± 2.46 bc | 126.79 ± 6.44 cd | 29.91 ± 4.39 bcde |
2 | 96.21 ± 4.63 a | 74.26 ± 2.81 a | 108.21 ± 12.65 ef | 34.41 ± 2.08 ab |
3 | 79.2 ± 4.81 b | 67.53 ± 2.99 b | 167.1 ± 12.6 a | 36.86 ± 4.14 a |
4 | 81.69 ± 1.52 b | 62.72 ± 1.23 bcd | 147.69 ± 13.23 b | 26.24 ± 2.37 de |
5 | 81.14 ± 0.57 b | 63.24 ± 2.23 bcd | 124.8 ± 7.85 cde | 30.2 ± 1.26 bcd |
6 | 82.25 ± 5.42 b | 64.02 ± 3.84 bcd | 121.99 ± 8.28 de | 32.67 ± 2.47 abc |
7 | 78.3 ± 4.5 b | 61.97 ± 0.74 cd | 140.83 ± 3.58 bc | 34.14 ± 1.83 abc |
8 | 77.94 ± 3.6 b | 56.87 ± 4.49 e | 99.5 ± 2.52 f | 25.29 ± 2.54 e |
9 | 82.16 ± 2.47 b | 59.46 ± 2.76 de | 121.5 ± 7.08 de | 29.6 ± 1.37 cde |
Combinations | Root Pruning (A) /% | Rooting Agent (B) /(mg·L−1) | Metarhizium anisopliae (C) /(Million Spores·mL−1) | TNSCA /(g·Plant−1) |
---|---|---|---|---|
1 | 25 | 250 | 10 | 15.15 |
2 | 25 | 500 | 15 | 14.39 |
3 | 25 | 750 | 20 | 22.86 |
4 | 33 | 250 | 15 | 13.60 |
5 | 33 | 500 | 20 | 12.18 |
6 | 33 | 750 | 10 | 14.71 |
7 | 50 | 250 | 15 | 11.22 |
8 | 50 | 500 | 10 | 9.20 |
9 | 50 | 750 | 20 | 10.62 |
k1 | 17.4668 | 13.3246 | 13.0209 | |
k2 | 13.4978 | 11.9233 | 12.8696 | |
k3 | 10.3471 | 16.0638 | 15.4212 | |
Range | 7.1197 | 4.1405 | 2.5516 | |
Better level | A1 | B3 | C3 | |
Factor priority | A > B > C | |||
Optimal combination | A1B3C3 |
Factors | Direct Path Coefficient | Indirect Path Coefficient | ||||||
---|---|---|---|---|---|---|---|---|
→WM | →ORNSC | →R/S | →Ci | →FM | →FRNSC | Total Path Coefficient | ||
WM | 0.379 | 0.164 | 0.208 | 0.043 | 0.128 | −0.077 | 0.844 | |
ORNSC | 0.452 | 0.137 | 0.041 | 0.028 | 0.083 | −0.039 | 0.702 | |
R/S | 0.401 | 0.196 | 0.046 | −0.068 | 0.033 | −0.057 | 0.551 | |
Ci | −0.204 | −0.080 | −0.061 | 0.134 | −0.043 | 0.048 | −0.205 | |
FM | 0.184 | 0.263 | 0.205 | 0.071 | 0.047 | −0.053 | 0.718 | |
FRNSC | −0.134 | 0.219 | 0.130 | 0.169 | 0.073 | 0.072 | 0.529 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, S.; Hu, K.; Li, S.; Shi, T.; Gao, S.; Shaaban, M.; Shi, G. Optimizing Transplanting Practices for Potted Tree Peony Based on Non-Structural Carbohydrates Accumulation. Horticulturae 2025, 11, 995. https://doi.org/10.3390/horticulturae11080995
Shi S, Hu K, Li S, Shi T, Gao S, Shaaban M, Shi G. Optimizing Transplanting Practices for Potted Tree Peony Based on Non-Structural Carbohydrates Accumulation. Horticulturae. 2025; 11(8):995. https://doi.org/10.3390/horticulturae11080995
Chicago/Turabian StyleShi, Shuaiying, Kun Hu, Shiqi Li, Tian Shi, Shuangcheng Gao, Muhammad Shaaban, and Guoan Shi. 2025. "Optimizing Transplanting Practices for Potted Tree Peony Based on Non-Structural Carbohydrates Accumulation" Horticulturae 11, no. 8: 995. https://doi.org/10.3390/horticulturae11080995
APA StyleShi, S., Hu, K., Li, S., Shi, T., Gao, S., Shaaban, M., & Shi, G. (2025). Optimizing Transplanting Practices for Potted Tree Peony Based on Non-Structural Carbohydrates Accumulation. Horticulturae, 11(8), 995. https://doi.org/10.3390/horticulturae11080995