Changes in Microbial Diversity During Dictyophora indusiata Mycelium Regression Period
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Methods
2.2.1. Mycelial Dynamic Microscopy
2.2.2. DNA Extraction and Quality Control
2.2.3. PCR Amplification and Sequencing
Target Region | Primer Sequence | Amplification System | Procedure | |
---|---|---|---|---|
Fungal | ITS1 region is about 300 bp in length | ITS5: 5′-GGAAGTAAAAGTCGTAACAAGG-3′ ITS2: 5′-GCTGCGTTCTTCATCGATGC-3′ [21] | DNA template: 2 μL 5× GC buffer: 5 μL dNTPs (2.5 mM): 2 μL Forward/Reverse primers (10 μM): 1 μL each Q5 High-Fidelity DNA Polymerase: 0.25 μL ddH2O 8.75 μL | 98 °C for 2 min, predenaturation; 30 cycles of [98 °C for 15 s, 55 °C for 30 s, 72 °C for 30 s]; 72 °C for 5 min |
Bacterial | V3V4 hypervariable region, with a length of about 460 bp. | 338F: 5′-ACTCCTACGGGAGGCAGCAG-3′ 806R: 5′-GGACTACHVGGGTWTCTAAT-3′ [22] | DNA template: 2 μL 2× KAPA HiFi HotStart Mix: 12.5 μL Forward/Reverse primers (5 μM): 1 μL, ddH2O 8.5 μL | 98 °C for 3 min, predenaturation; 25 cycles of [95 °C for 30 s, 55 °C for 30 s, 72 °C for 30 s]; 72 °C for 5 min |
2.2.4. Data Processing
3. Results
3.1. Microscopic Observation of Mycelial Decline
3.2. High-Throughput Sequencing Result Analysis
3.3. Alpha Diversity Analysis
3.4. Bata Diversity Analysis
3.5. Microbial Community Composition During Mycelial Recession
3.5.1. Fungal Community Dynamics
3.5.2. Bacterial Community Composition During Mycelial Recession
3.6. Microbial Community Divergence During Mycelial Recession
3.7. Niche Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Sample Name | Chao1 | Simpson | Pieloue | Shannon | Observed Species |
---|---|---|---|---|---|
CK | 452.29 ± 39.14 a | 0.967 ± 0.002 a | 0.73 ± 0.014 a | 4.455 ± 0.147 a | 450.000 ± 37.723 a |
CKTU | 183.78 ± 10.99 b | 0.891 ± 0.017 a | 0.57 ± 0.037 abc | 2.972 ± 0.170 bc | 176.667 ± 7.371 b |
S1 | 435.28 ± 106.61 a | 0.966 ± 0.010 a | 0.71 ± 0.037 a | 4.282 ± 0.402 a | 428.333 ± 106.143 a |
S1TU | 140.02 ± 27.82 b | 0.677 ± 0.173 b | 0.41 ± 0.139 cd | 2.025 ± 0.692 cd | 137.000 ± 26.210 b |
S2 | 414.71 ± 97.26 a | 0.905 ± 0.093 a | 0.65 ± 0.102 ab | 3.893 ± 0.755 ab | 406.000 ± 98.190 a |
S2TU | 129.69 ± 43.65 b | 0.620 ± 0.097 b | 0.37 ± 0.036 d | 1.773 ± 0.291 d | 128.667 ± 44.377 b |
S3 | 502.03 ± 15.90 a | 0.976 ± 0.046 a | 0.74 ± 0.183 a | 4.613 ± 0.135 a | 496.333 ± 14.844 a |
S3TU | 176.24 ± 14.98 b | 0.774 ± 0.107 ab | 0.47 ± 0.090 bcd | 2.417 ± 0.441 cd | 170.667 ± 9.866 b |
Sample Name | Chao1 | Simpson | Pielou E | Shannon | Observed Species |
---|---|---|---|---|---|
CK | 452.29 ± 39.14 a | 0.967 ± 0.002 a | 0.73 ± 0.014 a | 4.455 ± 0.147 a | 450.000 ± 37.723 a |
CKTU | 183.78 ± 10.99 b | 0.891 ± 0.017 a | 0.57 ± 0.037 abc | 2.972 ± 0.170 bc | 176.667 ± 7.371 b |
S1 | 435.28 ± 106.61 a | 0.966 ± 0.010 a | 0.71 ± 0.037 a | 4.282 ± 0.402 a | 428.333 ± 106.143 a |
S1TU | 140.02 ± 27.82 b | 0.677 ± 0.173 b | 0.41 ± 0.139 cd | 2.025 ± 0.692 cd | 137.000 ± 26.210 b |
S2 | 414.71 ± 97.26 a | 0.905 ± 0.093 a | 0.65 ± 0.102 ab | 3.893 ± 0.755 ab | 406.000 ± 98.190a |
S2TU | 129.69 ± 43.65 b | 0.620 ± 0.097 b | 0.37 ± 0.036 d | 1.773 ± 0.291 d | 128.667 ± 44.377 b |
S3 | 502.03 ± 15.90 a | 0.976 ± 0.046 a | 0.74 ± 0.183 a | 4.613 ± 0.135 a | 496.333 ± 14.844 a |
S3TU | 176.24 ± 14.98 b | 0.774 ± 0.107 ab | 0.47 ± 0.090 bcd | 2.417 ± 0.441 cd | 170.667 ± 9.866 b |
Sample ID | Input | Filtered | Denoised | Merged | Non-Chimeric | Non-Singleton |
CKTU | 109,776.33 ± 5629.93 | 102,697.00 ± 5182.25 | 94,873.33 ± 5763.75 | 67,921.66 ± 6893.47 | 62,097.33 ± 6290.94 | 61,371.66 ± 6333.50 |
CK | 99,585.66 ± 27523.65 | 92,421.66 ± 26,020.03 | 91,326.66 ± 26,227.15 | 87,454.33 ± 27,545.90 | 78,003.00 ± 30,029.23 | 77,937.33 ± 30,075.59 |
S1TU | 116,584.66 ± 1498.26 | 108,273.00 ± 1192.61 | 100,809.66 ± 2152.39 | 74,537.00 ± 4509.07 | 65,382.66 ± 4556.47 | 64,603.00 ± 4901.19 |
S1 | 103,829.33 ± 7107.30 | 95,390.33 ± 6547.03 | 94,180.33 ± 6244.19 | 90,153.00 ± 5241.89 | 68,152.66 ± 6389.29 | 68,045.33 ± 6427.77 |
S2 TU | 105,704.66 ± 770.75 | 98,345.00 ± 1207.74 | 95,891.00 ± 1909.29 | 87,926.33 ± 8992.41 | 85,788.33 ± 10,503.46 | 85,629.00 ± 10,718.21 |
S2 | 87,332.66 ± 19,457.50 | 80,560.00 ± 17,796.59 | 79,445.33 ± 18,095.25 | 76,628.66 ± 19,182.23 | 58,473.66 ± 14,945.13 | 58,419.33 ± 14,693.78 |
S3TU | 122,144.66 ± 4599.45 | 113,536.66 ± 4223.50 | 104,705.00 ± 3913.49 | 75,480.00 ± 3624.93 | 69,164.66 ± 3341.63 | 68,076.00 ± 3406.49 |
S3 | 106,029.00 ± 12,826.89 | 98,328.33 ± 11,937.87 | 94,693.62 ± 12613.84 | 88,382.66 ± 12,749.27 | 61,607.66 ± 11,362.59 | 61,427.66 ± 11,417.18 |
References
- Lin, C.Q.; Chen, J.C.; Lin, R.B.; Lin, J.X. Research progress on comprehensive utilization of Dictyophora resources. Edible Fungi China 2011, 30, 8–11. [Google Scholar]
- Liu, Y.; Zhang, H.; Li, Y.; Li, Y.X.; Zha, H.Q.; Gao, Y.J.; Chen, H.; Wang, Y.L.; Zhou, T.X.; Deng, C. Dictyophora indusiata polysaccharide mediates priming of the NLRP3 inflammasome activation via TLR4/NF-κB signaling pathway to exert immunostimulatory effects. J. Appl. Biomed. 2024, 22, 23–32. [Google Scholar] [CrossRef]
- Zhang, P.P.; Pan, H.X.; Zhou, Q.; Hu, T.; Zhou, S.; Wang, G.Z.; Luo, P. Dictyophora polysaccharides alleviate intestinal-hepatic injury exposed to low-arsenic by regulating the imbalance of gut microbiota and LPS/TLR4 pathway in rats. Environ. Technol. Innov. 2023, 32, 103281. [Google Scholar]
- Yao, H.; Yang, J.; Li, S.; Cui, S.W.; Tan, H.; Nie, S. Effects of different fractions of polysaccharides from Dictyophora indusiata on high-fat diet-induced metabolic syndrome in mice. Int. J. Biol. Macromol. 2024, 272, 132744. [Google Scholar] [CrossRef]
- Liu, X.X.; Wang, Y.; Li, D.B.; Yang, J.; Lan, F.J.; Wang, H.J.; Zeng, Z.P. Nutritional components and economic benefit analysis of Dictyophora indusiata intercropped in mulberry fields with different cultivation substrates. J. South. Agric. 2024, 55, 3636–3645. [Google Scholar]
- Wu, S.F.; Chen, X.Q.; Lin, K.M.; Jiang, Z.H. Investigation and analysis on mycelial atrophy and death of Dictyophora cultivation in northern Fujian. Chin. J. Trop. Agric. 2011, 31, 43–45. [Google Scholar]
- Bian, Y.B. Research progress on infectious diseases and competitive diseases of edible fungus mycelium. Shiyongjun Xuebao 2013, 20, 1–7. [Google Scholar]
- Qin, W.T.; Wang, S.X.; Rong, C.B. Occurrence and control of edible fungi diseases in China. Zhongguo Shiyongjun 2020, 39, 1–7. [Google Scholar]
- Liu, Z.; Li, D.; Leo, S.F.; Shen, H.; Azu, O.B.; Fu, Y. Major pathogenic fungi and bacteria in edible fungi. Junwu Yanjiu 2018, 16, 158–163. [Google Scholar]
- Huang, Z.X.; Liu, B. Research progress on Pseudomonas tolaasii-related diseases in edible fungi. Zhongguo Zhibao Daokan 2021, 41, 15–23. [Google Scholar]
- Sun, S.J.; Li, F.; Xu, X.; Liu, Y.C.; Kong, X.Q.; Chen, J.Q.; Liu, T.; Chen, L.T. Study on the community structure and function of symbiotic bacteria from different growth and developmental stages of Hypsizygus marmoreus. BMC Microbiol. 2020, 20, 311. [Google Scholar] [CrossRef]
- Milijasevic-Marčic, S.; Stepanovic, M.; Todorovic, B.; Duduk, B.; Stepanović, J.; Rekanović, E.; Potočnik, I. Biological control of green mould on Agaricus bisporus by a native Bacillus subtilis strain from mushroom compost. Eur. J. Plant Pathol. 2017, 148, 509–519. [Google Scholar] [CrossRef]
- Pandin, C.; Védie, R.; Rousseau, T.; Dominique, L.C.; Stephane, A.; Romain, B. Dynamics of compost microbiota during the cultivation of Agaricus bisporus in the presence of Bacillus velezensis QST713 as biocontrol agent against Trichoderma aggressivum. Biol. Control. 2018, 127, 39–54. [Google Scholar] [CrossRef]
- Mwangi, R.W.; Kariuki, S.; Wagara, I. Biocontrol of green mould disease of oyster mushroom (Pleurotus ostreatus) using Bacillus amyloliquefaciens. J. Biol. 2017, 7, 25–30. [Google Scholar]
- Roberti, R.; Di, F.A.; Innocenti, G.; Mari, M. Potential for biocontrol of Pleurotus ostreatus green mould disease by Aureobasidium pullulans De Bary(Arnaud). Biol. Control. 2019, 135, 9–15. [Google Scholar] [CrossRef]
- Zhang, C.H.; Huang, T.; Shen, C.H.; Wang, X.T.; Qi, Y.C.; Shen, J.W.; Song, A.D.; Qiu, L.Y.; Ai, Y.C. Downregulation of ethylene production increases mycelial growth and primordia formation in the button culinary-medicinal mushroom, Agaricus bisporus (Agaricomycetes). Int. J. Med. Mushrooms 2016, 18, 1131–1140. [Google Scholar] [CrossRef]
- Kües, U.; Khonsuntia, W.; Subba, S.; Dörnte, B. Volatiles in Communication of Agaricomycetes; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Carrasco, J.; Preston, G.M.; van der Gast, C.J.; Mills, P.R. Temporal dynamics of microbial communities during the manufacturing of Agaricus bisporus compost substrate. Appl. Soil Ecol. 2018, 122, 1–8. [Google Scholar]
- Kielak, A.M.; Barreto, C.C.; Kowalchuk, G.A.; van Veen, J.A.; Kuramae, E.E. The ecology of Acidobacteria: Moving beyond genes and genomes. Front. Microbiol. 2016, 7, 744. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes: Application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef]
- Wang, X.H.; Bian, L.S.; Liu, H.H.; Ma, Q.H.; Chen, L.; Miao, S. Diversity of soil microbial communities in fungal colony areas of Gomphidius rutilus. Mycosystema 2025, 1–16. [Google Scholar] [CrossRef]
- Baldrian, P. Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiol. Rev. 2017, 41, 109–130. [Google Scholar] [CrossRef]
- Baldrian, P.; Kolařík, M.; Štursová, M.; Kopecký, J.; Valášková, V.; Větrovský, T.; Žifčáková, L.; Šnajdr, J.; Rídl, J.; Voríšková, J.; et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 2012, 6, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Compant, S.; Nowak, J.; Coenye, T.; Clément, C.; Ait Barka, E. Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol. Ecol. 2008, 63, 153–164. [Google Scholar]
- Zhang, X.; Li, J.; Wang, Y.; Cai, Z.; Yang, T.; Chen, Q. Microbial-driven carbon cycling in mushroom cultivation substrate: Mechanisms and applications. Sci. Total Environ. 2020, 715, 136941. [Google Scholar]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Proc. Natl. Acad. Sci. USA 2007, 104, 1117–1122. [Google Scholar] [CrossRef]
- Kredics, L.; Hatvani, L.; Naeimi, S.; Körmöczi, P.; Manczinger, L.; Vágvölgyi, C.; Druzhinina, I.S. Facing the threat of emerging fungal pathogens: Trichoderma as a model system to develop countermeasures. Appl. Microbiol. Biotechnol. 2014, 98, 431–440. [Google Scholar]
- Hao, T.; Liu, T.; Yu, Y.; Tang, J.; Jiang, L.; Martin, F.M.; Peng, W.H. Morel Production Related to Soil Microbial Diversity and Evenness. Microbiol. Spectr. 2021, 9, e0022921. [Google Scholar] [CrossRef]
- Berlemont, R.; Martiny, A.C. Genomic potential for polysaccharide deconstruction in bacteria. Appl. Environ. Microbiol. 2015, 81, 1513–1519. [Google Scholar] [CrossRef]
- Sánchez, Ó.J.; Vargas, D.P.; Rodríguez, M.A.; Cardona, C.A. Lignocellulosic waste valorisation for mushroom cultivation: Microbial succession and carbon metabolism. Bioresour. Technol. 2022, 344, 126292. [Google Scholar]
- Liu, T.Z.; Liu, Y.Q.; Zhou, S.G.; Men, Y.J. Time-resolved enrichment of Sphingomonas reveals biphasic kinetics in polycyclic aromatic hydrocarbon degradation. Environ. Sci. Technol. 2023, 57, 5782–5793. [Google Scholar]
- Mukherjee, P.K.; Horwitz, B.A.; Herrera-Estrella, A.; Schmoll, M.; Kenerley, C.R. Trichoderma–plant–pathogen interactions: Advances in genetics of biological control. Indian J. Microbiol. 2013, 53, 522–529. [Google Scholar] [CrossRef]
- Kertesz, M.A.; Thai, M. Compost bacteria and fungi that influence plant growth and protection. Annu. Rev. Food Sci. Technol. 2018, 9, 271–290. [Google Scholar]
- Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma species: Opportunistic avirulent plant symbionts. Nat. Rev. Microbiol. 2004, 2, 43–56. [Google Scholar] [CrossRef]
- Qin, S. Association Analysis Between Green Mold Disease of Guizhou Dictyophora rubrovolvata and Soil Microbial Communities, and Screening of Control Agents. Master’s Thesis, Guizhou University, Guiyang, China, 2023. [Google Scholar]
- Lu, M.L. Antibacterial Activity of Clove Crude Extract Against Trichoderma koningii, the Rot Pathogen of Dictyophora rubrovolvata. Master’s Thesis, Guizhou University, Guiyang, China, 2023. [Google Scholar]
- de Souza, W.R.; Ribeiro, D.A.; Bonomi, L.R.; Silva, F.M.; Santana, E.S. The lignocellulolytic system of thermophilic fungus Scytalidium thermophilum: Mechanisms and biotechnological applications. Bioresour. Technol. 2018, 247, 1147–1156. [Google Scholar]
- Tedersoo, L.; Bahram, M.; Polme, S.; Koljalg, U.; Yorou, N.S.; Wijesundera, R.; Ruiz, L.V.; Vasco-Palacios, A.M.; Teu, P.Q.; Abarenkov, K.; et al. Fungal biogeography: Global diversity and geography of soil fungi. Science 2014, 346, 1256688. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Oliverio, A.M.; Brewer, T.E.; Benavent-Gonzalez, A.; Eldridge, D.J.; Bardgett, R.D.; Maestre, R.D.F.T.; Singh, B.K.; Fierer, N. A global atlas of the dominant bacteria found in soil. Science 2018, 359, 320–325. [Google Scholar] [CrossRef]
- Berka, R.M.; Grigoriev, I.V.; Otillar, R.; Salamov, A.; Grimwood, J.; Reid, I.; Ishmael, N.; John, T.; Darmond, C.; Moisan, M.C.; et al. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat. Biotechnol. 2011, 29, 922–929. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Lu, M.; Dou, J.; Wang, K.; Li, Y.; Chen, X. Trichoderma harzianum-based bioformulation modulates carbon-to-nitrogen ratio to suppress Fusarium wilt in tomato. Front. Microbiol. 2020, 11, 575426. [Google Scholar]
- Steen, A.D.; Press, D.; Thorup, C. High proportions of bacteria and archaea across most biomes remain uncultured. mSystems 2019, 4, e00097-19. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.G.; Feng, Y.B.; Zhang, Y.C.; Yu, Z.Y.; Cao, H.; Wu, J. Engineering hyperthermostable cellulase from Caldicellulosiruptor bescii for efficient lignocellulose hydrolysis at 90 °C. Nat. Commun. 2023, 14, 2517. [Google Scholar]
- Fu, X.Y. Cultivation of Morchella Mycelia and Study on Hyphal Differentiation. Master’s Thesis, Capital Normal University, Beijing, China, 2006. [Google Scholar]
- Li, J.Y.; Wu, S.R.; Liu, C.L.; Shang, L.E.; Luo, X.K.; Liu, S.X. Study on fungi infecting rotten parts of Dictyophora rubrovolvata. Edible Fungi China 2021, 40, 109–112. [Google Scholar]
Substrate Sample ID | Soil Sample ID | Sampling Time | Mycelial Status |
---|---|---|---|
CK | CKTU | 2024/12 | Normal growth stage |
S1 | S1TU | 2025/1 | Initial recession stage (>70% mycelium retained) |
S2 | S2TU | 2025/2 | Mid-recession stage (30–50% mycelium retained) |
S3 | S3TU | 2025/3 | Complete recession stage (<5% mycelium retained) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Ye, L.; Li, X.; Gu, Y.; Wang, Y.; Zeng, Z.; Liu, X.; Li, X.; Zhang, X. Changes in Microbial Diversity During Dictyophora indusiata Mycelium Regression Period. Horticulturae 2025, 11, 981. https://doi.org/10.3390/horticulturae11080981
Cheng J, Ye L, Li X, Gu Y, Wang Y, Zeng Z, Liu X, Li X, Zhang X. Changes in Microbial Diversity During Dictyophora indusiata Mycelium Regression Period. Horticulturae. 2025; 11(8):981. https://doi.org/10.3390/horticulturae11080981
Chicago/Turabian StyleCheng, Jie, Lei Ye, Xin Li, Yunfu Gu, Yi Wang, Zebin Zeng, Xiaoxue Liu, Xiaoling Li, and Xiaoping Zhang. 2025. "Changes in Microbial Diversity During Dictyophora indusiata Mycelium Regression Period" Horticulturae 11, no. 8: 981. https://doi.org/10.3390/horticulturae11080981
APA StyleCheng, J., Ye, L., Li, X., Gu, Y., Wang, Y., Zeng, Z., Liu, X., Li, X., & Zhang, X. (2025). Changes in Microbial Diversity During Dictyophora indusiata Mycelium Regression Period. Horticulturae, 11(8), 981. https://doi.org/10.3390/horticulturae11080981