Systemic Delivery of Oxytetracycline by Drill-Based and Drill-Free Trunk Injection for Treatment of Huanglongbing in Young Sweet Orange Trees
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Area and Design
2.2. Treatments
2.3. Candidatus Liberibacter Asiaticus Detection (CLas)
2.4. Tree Size
2.5. Pre-Harvest Fruit Drop and Yield
2.6. Fruit and Juice Quality
2.7. Fruit OTC Residue Analysis
2.8. Trunk Injury
2.9. Data Analysis
3. Results
3.1. Candidatus Liberibacter Asiaticus (CLas) Detection
3.2. Tree Size
3.3. Fruit Drop
3.4. Fruit Yield and Fruit Quality
3.5. Juice Quality
3.6. Fruit OTC Residue Analysis
3.7. Trunk Injury
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bové, J.M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 2006, 88, 7–37. [Google Scholar]
- Da Graça, J.V.; Douhan, G.W.; Halbert, S.E.; Keremane, M.L.; Lee, R.F.; Vidalakis, G.; Zhao, H. Huanglongbing: An overview of a complex pathosystem ravaging the world’s citrus. J. Integr. Plant Biol. 2015, 58, 373–387. [Google Scholar] [CrossRef]
- Halbert, S.E.; Manjunath, K.L. Asian citrus psyllid (Sternorrhyncha: Psyllidae) and greening disease of citrus: A literature review and assessment of risk in Florida. Florida Entomol. 2004, 87, 330–353. [Google Scholar] [CrossRef]
- Fan, J.; Chen, C.; Brlansky, R.H.; Gmitter, F.G., Jr.; Li, Z.-G. Changes in carbohydrate metabolism in Citrus sinensis infected with ‘Candidatus Liberibacter asiaticus’. Plant Pathol. 2010, 59, 1037–1043. [Google Scholar] [CrossRef]
- Albrecht, U.; Bowman, K.D. Gene expression in Citrus sinensis (L.) Osbeck following infection with the bacterial pathogen Candidatus Liberibacter asiaticus causing Huanglongbing in Florida. Plant Sci. 2008, 175, 291–306. [Google Scholar] [CrossRef]
- Kim, J.-S.; Sagaram, U.S.; Burns, J.K.; Li, J.-L.; Wang, N. Response of sweet orange (Citrus sinensis) to ‘Candidatus Liberibacter asiaticus’ infection: Microscopy and microarray analyses. Phytopathology 2009, 99, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Achor, D.S.; Etxeberria, E.; Wang, N.; Folimonova, S.Y.; Chung, K.R.; Albrigo, L.B. Sequence of anatomical symptom observations in citrus affected with Huanglongbing disease. Plant Pathol. J. 2010, 9, 56–64. [Google Scholar] [CrossRef]
- Ma, W.; Pang, Z.; Huang, X.; Xu, J.; Pandey, S.S.; Li, J.; Achor, D.S.; Vasconcelos, F.N.C.; Hendrich, C.; Huang, Y.; et al. Citrus Huanglongbing is a pathogen-triggered immune disease that can be mitigated with antioxidants and gibberellin. Nat. Commun. 2022, 13, 529. [Google Scholar] [CrossRef]
- Gottwald, T.R.; da Graça, J.V.; Bassanezi, R.B. Citrus huanglongbing: The pathogen and its impact. Plant Health Prog. 2007, 8, 31. [Google Scholar] [CrossRef]
- Graham, J.H.; Bassanezi, R.B.; Dawson, W.O.; Dantzler, R. Management of huanglongbing of citrus: Lessons from São Paulo and Florida. Annu. Rev. Phytopathol. 2024, 62, 243–262. [Google Scholar] [CrossRef]
- Castro, C. Citrus Annual Report; USDA Foreign Agricultural Service: Washington, DC, USA, 2024. Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Citrus%20Annual_Brasilia_Brazil_BR2023-0036.pdf (accessed on 14 May 2025).
- Halbert, S.E. The discovery of huanglongbing in Florida. In Proceedings of the International Citrus Canker and Huanglongbing Research Workshop, Orlando, FL, USA, 7–11 November 2005; p. H-3. [Google Scholar]
- Graham, J.; Gottwald, T.; Setamou, M. Status of Huanglongbing (HLB) outbreaks in Florida, California and Texas. Trop. Plant Pathol. 2020, 45, 265–278. [Google Scholar] [CrossRef]
- USDA NASS. Florida Citrus Statistics 2023–2024. Available online: https://www.nass.usda.gov/Statistics_by_State/Florida/Publications/Citrus/Citrus_Statistics/2023-24/FCS2024.pdf (accessed on 14 May 2025).
- Bassanezi, R.B.; Lopes, S.A.; de Miranda, M.P.; Wulff, N.A.; Volpe, H.X.L.; Ayres, A.J. Overview of citrus huanglongbing spread and management strategies in Brazil. Trop. Plant Pathol. 2020, 45, 251–264. [Google Scholar] [CrossRef]
- Tiwari, S.; Mann, R.S.; Rogers, M.E.; Stelinski, L.L. Insecticide resistance in field populations of Asian citrus psyllid in Florida. Pest Manag. Sci. 2011, 67, 1258–1268. [Google Scholar] [CrossRef] [PubMed]
- Schumann, A.W.; Singerman, A.; Ritenour, M.A.; Qureshi, J.; Alferez, F. 2024–2025 Florida Citrus Production Guide: Citrus Under Protective Screen (CUPS) Production Systems; CPG Ch. 21, HS1304/CMG19, Rev. 5 EDIS 2024 (CPG); University of Florida: Gainesville, FL, USA, 2023. [Google Scholar] [CrossRef]
- Gaire, S.; Albrecht, U.; Batuman, O.; Qureshi, J.; Zekri, M.; Alferez, F. Individual protective covers (IPCs) to prevent Asian citrus psyllid and Candidatus Liberibacter asiaticus from establishing in newly planted citrus trees. Crop Prot. 2021, 152, 105862. [Google Scholar] [CrossRef]
- Gaire, S.; Albrecht, U.; Batuman, O.; Qureshi, J.; Zekri, M.; Alferez, F. Individual protective covers improve yield and quality of citrus fruit under endemic Huanglongbing. Plants 2024, 13, 2284. [Google Scholar] [CrossRef]
- McManus, P.S.; Stockwell, V.O.; Sundin, G.W.; Jones, A.L. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 2002, 40, 443–465. [Google Scholar] [CrossRef]
- Sundin, G.W.; Wang, N. Antibiotic resistance in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 2018, 56, 161–180. [Google Scholar] [CrossRef]
- Vincent, C.I.; Hijaz, F.; Pierre, M.; Killiny, N. Systemic uptake of oxytetracycline and streptomycin in huanglongbing-affected citrus groves after foliar application and trunk injection. Antibiotics 2022, 11, 1092. [Google Scholar] [CrossRef]
- Berger, C.; Laurent, F. Trunk injection of plant protection products to protect trees from pests and diseases. Crop Prot. 2019, 124, 104831. [Google Scholar] [CrossRef]
- Archer, L.; Crane, J.H.; Albrecht, U. Trunk injection as a tool to deliver plant protection materials–An overview of basic principles and special considerations. Horticulturae 2022, 8, 552. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Esparraguera, L.B.; Queiroz, S.C.N.; Bottoli, C.B.G. Vegetative Endotherapy—Advances, Perspectives, and Challenges. Agriculture 2023, 13, 1465. [Google Scholar] [CrossRef]
- Schwarz, R.E.; Moll, J.N.; van Vuuren, S.P. Control of citrus greening and its psylla vector by trunk injections of tetracyclines and insecticides. Int. Organ. Citrus Virol. Conf. Proc. 1974, 6, 26–29. [Google Scholar] [CrossRef]
- Van Vuuren, S.P. The determination of optimal concentration and pH of tetracycline hydrochloride for trunk injection of greening-infected citrus trees. Phytophylactica 1977, 9, 77–81. [Google Scholar]
- Aubert, B.; Bové, J.M. Effect of penicillin or tetracycline injections of citrus trees affected by greening disease under field conditions in Reunion Island. Int. Organ. Citrus Virol. Conf. Proc. 1980, 8, 103–108. [Google Scholar] [CrossRef]
- Da Graça, J.V. Citrus greening disease. Annu. Rev. Phytopathol. 1991, 29, 109–136. [Google Scholar] [CrossRef]
- Zhang, M.; Powell, C.A.; Zhou, L.; He, Z.; Stover, E.; Duan, Y. Chemical compounds effective against the citrus Huanglongbing bacterium ‘Candidatus Liberibacter asiaticus’ in planta. Phytopathology 2011, 101, 1097–1103. [Google Scholar] [CrossRef]
- Zhang, M.; Powell, C.A.; Guo, Y.; Doud, M.S.; Duan, Y. A graft-based chemotherapy method for screening effective molecules and rescuing huanglongbing-affected citrus plants. Phytopathology 2012, 102, 567–574. [Google Scholar] [CrossRef]
- Hu, J.; Wang, N. Evaluation of the spatiotemporal dynamics of oxytetracycline and its control effect against citrus huanglongbing via trunk injection. Phytopathology 2016, 106, 1495–1503. [Google Scholar] [CrossRef] [PubMed]
- Archer, L.; Qureshi, J.; Albrecht, U. Efficacy of trunk injected imidacloprid and oxytetracycline in managing huanglongbing and Asian citrus psyllid in infected sweet orange (Citrus sinensis) trees. Agriculture 2022, 12, 1592. [Google Scholar] [CrossRef]
- Archer, L.; Kunwar, S.; Alferez, F.; Batuman, O.; Albrecht, U. Trunk injection of oxytetracycline for huanglongbing management in mature grapefruit and sweet orange trees. Phytopathology 2023, 113, 1010–1021. [Google Scholar] [CrossRef] [PubMed]
- Wise, J.C.; VanWoerkom, A.H.; Aćimovićc, S.G.; Sundin, G.W.; Cregg, B.M.; Vandervoort, C. Trunk injection: A discriminating delivering system for horticulture crop IPM. Entomol. Ornithol. Herpetol. 2014, 3, 126. [Google Scholar] [CrossRef]
- Shigo, A.L.; Marx, H.G. Compartmentalization of Decay in Trees; US Department of Agriculture, Forest Service: Washington, DC, USA, 1977; Volume 405, p. 73. [Google Scholar]
- Morris, H.; Brodersen, C.; Schwarze, F.W.M.R.; Jansen, S. The parenchyma of secondary xylem and its critical role in tree defense against fungal decay in relation to the CODIT model. Front. Plant Sci. 2016, 7, 1665. [Google Scholar] [CrossRef]
- Morris, H.; Hietala, A.M.; Jansen, S.; Ribera, J.; Rosner, S.; Salmeia, K.A.; Schwarze, F.W.M.R. Using the CODIT model to explain secondary metabolites of xylem in defence systems of temperate trees against decay fungi. Ann. Bot. 2020, 125, 701–720. [Google Scholar] [CrossRef]
- Archer, L.; Albrecht, U. Evaluation of trunk injection techniques for systemic delivery of huanglongbing therapies in Citrus. HortScience 2023, 58, 768–778. [Google Scholar] [CrossRef]
- Archer, L.; Albrecht, U. Wound reaction to trunk injection of oxytetracycline or water in huanglongbing-affected sweet orange (Citrus sinensis) trees. Trees 2023, 37, 1483–1497. [Google Scholar] [CrossRef]
- Girelli, C.R.; Husain, M.; Verweire, D.; Oehl, M.C.; Massana-Codina, J.; Avendano, M.S.; Migoni, D.; Scortichini, M.; Fanizzi, F.P. Agro-active endo-therapy treated Xylella fastidiosa subsp. pauca-infected olive trees assessed by the first 1H-NMR-based metabolomic study. Sci. Rep. 2022, 12, 5973. [Google Scholar] [CrossRef]
- Grandi, L.; Oehl, M.; Lombardi, T.; Rocco de Michele, V.; Schmitt, N.; Verweire, D.; Balmer, D. Innovations towards sustainable olive crop management: A new dawn by precision agriculture including endo-therapy. Front. Plant Sci. 2023, 14, 1180632. [Google Scholar] [CrossRef]
- Obreza, T.A.; Collins, M.E. Common Soils Used for Citrus Production in Florida; SL 193; University of Florida Cooperative Extension Service, Institute of Food and Agriculture Sciences, EDIS: Gainesville, FL, USA, 2002; Available online: https://ufdc.ufl.edu/ir00003134/00001 (accessed on 14 July 2024).
- Li, W.; Hartung, J.S.; Levy, L. Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. J. Microbiol. Meth. 2006, 66, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Wutscher, H.K.; Hill, L.L. Performance of ‘Hamlin’ orange on 16 rootstocks in East-central Florida. HortScience 1995, 30, 41–44. [Google Scholar] [CrossRef]
- John Bean Technologies. 2018. Available online: https://www.jbtc.com/foodtech/wp-content/uploads/sites/2/2021/08/Procedures-Analysis-Citrus-Products.pdf (accessed on 14 May 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 14 May 2025).
- Wobbrock, J.O.; Findlater, L.; Gergle, D.; Higgins, J.J. The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, BC, Canada, 7–12 May 2011; pp. 143–146. [Google Scholar]
- Albrecht, U.; Tardivo, C.; Nunes, L.; Pugina, G.; Moreno, G.; de Freitas, J. The Good, the Bad, and the Ugly: Optimizing OTC Injections; Citrus Industry: Newberry, FL, USA, 2024; Volume 105, pp. 6–9. Available online: http://www.mirabelsmagazinecentral.com/DigitalEdition/index.html?id=bcb2106b-a6b5-4cbe-af75-f61ecdd3c926 (accessed on 14 May 2025).
- Batuman, O.; Britt-Ugartemendia, K.; Kunwar, S.; Yilmaz, S.; Fessler, L.; Redondo, A.; Chumachenko, K.; Chakravarty, S.; Wade, T. The use and impact of antibiotics in plant agriculture: A review. Phytopathology 2024, 114, 885–909. [Google Scholar] [CrossRef]
- Stockwell, V.O.; Duffy, B. Use of antibiotics in agriculture. Rev. Sci. Tech. Off. Int. Epiz. 2012, 31, 199–210. [Google Scholar] [CrossRef]
- Albrecht, U.; Tardivo, C.; Moreno, G.; de Freitas, J.; Singerman, A.; Plotto, A.; Bai, J. Managing endemic huanglongbing in commercial citrus production through vascular delivery of oxytetracycline. Crop Prot. 2025, 195, 107250. [Google Scholar] [CrossRef]
- Shahzad, F.; Livingston, T.; Vashisth, T. Gibberellic acid mitigates Huanglongbing symptoms by reducing osmotic and oxidative stress in sweet orange. Sci. Hortic. 2024, 329, 112976. [Google Scholar] [CrossRef]
- Hu, J.; Jiang, J.; Wang, N. Control of citrus huanglongbing via trunk injection of plant defense activators and antibiotics. Phytopathology 2018, 108, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Glusberger, P.R.; Russell, J.T.; Cohn, A.R.; Petrone, J.R.; Lai, K.-K.; Triplett, E.W. Whole genome analysis of spontaneous antimicrobial resistance in Liberibacter crescens suggests long-term efficacy for antimicrobial treatment of citrus greening disease. J. Citrus Pathol. 2023, 11, 1–5. [Google Scholar] [CrossRef]
- Irigoyen, S.; Ramasamy, M.; Pant, S.; Niraula, P.; Bedre, R.; Gurung, M.; Rossi, D.; Laughlin, C.; Gorman, Z.; Achor, D.; et al. Plant hairy roots enable high throughput identification of antimicrobials against Candidatus Liberibacter spp. Nat. Commun. 2020, 11, 5802. [Google Scholar] [CrossRef]
- Aksenov, A.; Blacutt, A.; Ginnan, N.; Rolshausen, P.E.; Melnik, A.V.; Ali, L.; Gentry, E.C.; Ramasamy, M.; Zuniga, C.; Zengler, K.; et al. Spatial chemistry of citrus reveals molecules bactericidal to Candidatus Liberibacter asiaticus. Sci. Rep. 2024, 14, 20306. [Google Scholar] [CrossRef]
- Baldwin, E.A.; Plotto, A.; Manthey, J.A.; McCollum, G.; Bai, J.; Irey, M.; Cameron, R.; Luzio, G. Effect of Liberibacter infection (huanglongbing disease) of citrus on orange fruit physiology and fruit/fruit juice quality: Chemical and physical analyses. J. Agric. Food Chem. 2010, 58, 1247–1262. [Google Scholar] [CrossRef]
- Rosales, R.; Burns, J.K. Phytohormone changes and carbohydrate status in sweet orange fruit from huanglongbing-infected trees. J. Plant Growth Regul. 2011, 30, 312–321. [Google Scholar] [CrossRef]
- Bain, J.M. Morphological, anatomical, and physiological changes in the developing fruit of the Valencia orange, Citrus sinensis (L.) Osbeck. Aust. J. Bot. 1958, 6, 1–23. [Google Scholar] [CrossRef]
- Lowell, C.A.; Tomlinson, P.T.; Koch, K.E. Sucrose-metabolizing enzymes in transport tissues and adjacent sink structures in developing citrus fruit. Plant Physiol. 1989, 90, 1394–1402. [Google Scholar] [CrossRef] [PubMed]
- Castellano-Hinosa, A.; González-López, J.; Tardivo, C.; Monus, B.; de Freitas, J.; Strauss, S.L.; Albrecht, U. Trunk injection of oxytetracycline improves plant performance and alters the active bark and rhizosphere microbiomes in huanglongbing-affected citrus trees. Biol. Fertil. Soils 2024, 60, 563–576. [Google Scholar] [CrossRef]
- Giles, F. Florida citrus industry reflects industry optimism. Citrus Indust. 2024, 105, 20–21. [Google Scholar]
- Aćimović, S.G.; Cregg, B.M.; Sundin, G.W.; Wise, J.C. Comparison of drill- and needle-based tree injection technologies in healing of trunk injection ports on apple trees. Urban For. Urban Green. 2016, 19, 151–157. [Google Scholar] [CrossRef]
- Stennes, M.A.; French, D.W. Distribution and retention of thiabendazole hypophosphite and carbendazim phosphate injected into mature American elms. Phytopathology 1987, 77, 707–712. [Google Scholar] [CrossRef]
- Dujesiefken, D.; Liese, W. The CODIT Principle: Implications for Best Practice; International Society of Arboriculture: Champaign, IL, USA, 2015. [Google Scholar]
Treatment | Application System | OTC Formulation | Volume per Device 1 | Volume per Tree | Application Month | OTC per Tree 2 | OTC Concentration | Application Site |
---|---|---|---|---|---|---|---|---|
T0 | None | n/a | n/a | n/a | 0 mg | n/a | n/a | |
T1 | Foliar spray | Fireline 17 WP | - | - | May + Aug | 995 mg 3 | - | Leaves |
T2 | Drill-free (Trecise) | ArborBiotic | 60 mL 4 | 120 ml | May + Aug/Sep | 150 mg 4 | 0.625 mg/mL | Rootstock |
T3 | Drill-free (Trecise) | ArborBiotic | 60 mL 4 | 120 mL 4 | May + Aug/Sep | 300 mg 4 | 1.25 mg/mL | Rootstock |
T4 | Drill-based (Chemjet) | Arbor-OTC | 20 mL | 40 mL | May | 792 mg | 19.8 mg/mL | Scion |
T5 | Drill-based (Chemjet) | Arbor-OTC | 20 mL | 40 mL | May | 792 mg | 19.8 mg/mL | Rootstock |
T6 | Drill-based (Chemjet) | Arbor-OTC | 20 mL | 40 mL | Aug/Sep | 792 mg | 19.8 mg/mL | Rootstock |
Factor | Trial 1 (Valencia) | Trial 2 (OLL-8) | ||
---|---|---|---|---|
May 2023 | May 2024 | May 2023 | May 2024 | |
Treatment | ||||
T0 | 22.8 | 25.3 | 26.5 | 29.3 bc |
T1 | 24.4 | 24.9 | 27.1 | 27.7 c |
T2 | 23.9 | 24.9 | 27.1 | 32.4 ab |
T3 | 24.4 | 24.9 | 26.6 | 29.5 bc |
T4 | 24.3 | 25.3 | 27.2 | 30.2 abc |
T5 | 23.9 | 25.5 | 27.1 | 30.2 abc |
T6 | 24.3 | 24.4 | 28.5 | 34.9 a |
p value | 0.5754 | 0.9881 | 0.6033 | 0.0025 |
Block | ||||
p value | 0.1514 | 1.0000 | 0.0744 | 1.0000 |
Treatment × Block | ||||
p value | 0.0758 | 0.0029 | 0.4806 | 0.284 |
Factor | Trial 1 (Valencia) | Trial 2 (OLL-8) | ||||
---|---|---|---|---|---|---|
Canopy Vol. (m3) | Scion Dia. (cm) | Rootstock Dia. (cm) | Canopy Vol. (m3) | Scion Dia. (cm) | Rootstock Dia. (cm) | |
Treatment | ||||||
T0 | 2.2 | 7.9 | 10.5 | 2.9 | 7.6 | 10.3 |
T1 | 2.5 | 8.3 | 11.0 | 2.7 | 7.5 | 10.4 |
T2 | 2.4 | 8.4 | 11.6 | 2.7 | 7.6 | 9.6 |
T3 | 2.4 | 8.5 | 11.8 | 2.7 | 7.6 | 9.7 |
T4 | 2.5 | 8.4 | 11.0 | 2.5 | 7.5 | 9.6 |
T5 | 2.8 | 8.4 | 11.4 | 2.5 | 7.2 | 9.8 |
T6 | 2.4 | 8.5 | 11.3 | 2.6 | 7.4 | 9.9 |
p value | 0.3213 | 0.5288 | 0.0800 | 0.4078 | 0.4595 | 0.1107 |
Block | ||||||
p value | 0.6340 | 1.0000 | 1.0000 | 0.0531 | 0.2026 | 0.6728 |
Treatment × Block | ||||||
p value | 1.0000 | 0.4029 | 0.2844 | 1.0000 | 1.0000 | 1.0000 |
Factor | Trial 1 (Valencia) | Trial 2 (OLL-8) |
---|---|---|
Treatment | ||
T0 | 29.5 ab | 74.3 a |
T1 | 31.8 a | 68.9 ab |
T2 | 22.9 abc | 59.3 ab |
T3 | 24.8 abc | 60.3 ab |
T4 | 14.8 bc | 51.7 b |
T5 | 18.5 abc | 56.7 ab |
T6 | 11.6 c | 66.0 ab |
p value | 0.0016 | 0.0576 |
Block | ||
p value | 0.0947 | 0.7089 |
Treatment × Block | ||
p value | 1.0000 | 1.0000 |
Factor | Trial 1 (Valencia) | Trial 2 (OLL-8) | ||||||
---|---|---|---|---|---|---|---|---|
Fruit Drop (%) | Yield/Tree (kg) | Weight/Fruit (g) | Peel Color | Fruit Drop (%) | Yield/Tree (kg) | Weight/Fruit (g) | Peel Color | |
2023 | ||||||||
Treatment | ||||||||
T0 | 70.7 ab | 4.0 c | 124 bc | −3.5 | 34.5 | 2.2 b | 138 b | −4.9 |
T1 | 75.0 a | 3.0 c | 117 c | −4.0 | 32.5 | 3.8 ab | 143 ab | −3.7 |
T2 | 63.0 abc | 5.6 bc | 136 abc | −3.2 | 12.2 | 4.7 ab | 153 ab | −3.9 |
T3 | 54.8 bc | 6.5 bc | 144 abc | −2.4 | 19.6 | 5.7 ab | 165 a | −3.4 |
T4 | 51.8 c | 9.1 ab | 170 a | −2.7 | 9.5 | 6.9 a | 160 ab | −3.9 |
T5 | 47.0 c | 11.6 a | 160 ab | −3.0 | 17.1 | 5.2 ab | 158 ab | −3.2 |
T6 | 43.1 c | 12.4 a | 138 abc | −2.4 | 18.4 | 3.8 ab | 160 ab | −0.8 |
p value | <0.0001 | <0.0001 | 0.0023 | 0.0635 | 0.0490 | 0.0364 | 0.0309 | 0.0750 |
Block | ||||||||
p value | 1.0000 | 0.0918 | 0.2635 | 0.0258 | 0.1474 | 1.000 | 0.2925 | 0.8715 |
Treatment × Block | ||||||||
p value | 1.0000 | 1.0000 | 0.5566 | 1.0000 | 0.2691 | 0.4048 | 1.0000 | 0.5472 |
2024 | ||||||||
Treatment | ||||||||
T0 | 50.6 ab | 9.6 c | 123 bc | −4.6 c | 21.0 a | 17.0 | 117 d | −10.5 c |
T1 | 55.0 a | 9.2 c | 121 c | −4.4 bc | 21.5 a | 18.9 | 119 cd | −10.9 c |
T2 | 51.3 ab | 11.8 bc | 141 bc | −3.7 bc | 18.2 a | 19.5 | 124 bcd | −7.5 abc |
T3 | 44.4 ab | 15.0 bc | 136 bc | −2.2 ab | 14.8 a | 19.7 | 144 a | −6.8 ab |
T4 | 45.0 ab | 18.6 ab | 167 a | −2.4 b | 15.6 a | 18.4 | 137 abc | −6.8 ab |
T5 | 38.4 b | 22.1 a | 146 ab | −3.1 bc | 12.9 a | 17.2 | 138 ab | −7.8 bc |
T6 | 35.3 b | 23.6 a | 144 abc | 0.4 a | 12.4 a | 23.6 | 142 ab | −3.3 a |
p value | 0.0005 | <0.0001 | <0.0001 | <0.0001 | 0.0461 | 0.1383 | 0.0001 | <0.0001 |
Block | ||||||||
p value | 0.9004 | 0.2239 | 1.0000 | 1.0000 | 0.0276 | 0.9606 | 0.2747 | 0.0196 |
Treatment × Block | ||||||||
p value | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.7597 | 0.0381 | 0.1366 | 1.0000 |
Factor | Trial 1 (Valencia) | Trial 2 (OLL-8) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Percent Juice 1 | Juice Color 1 | TSS (°Brix) | TA (%) | TSS/TA | Percent Juice 1 | Juice Color 1 | TSS (°Brix) | TA (%) | TSS/TA | |
2023 | ||||||||||
Treatment | ||||||||||
T0 | - | - | 6.7 cd | 0.96 a | 7.0 c | - | - | 7.7 d | 0.91 | 8.7 a |
T1 | - | - | 6.4 d | 0.96 a | 6.8 c | - | - | 7.9 cd | 0.84 | 9.6 a |
T2 | - | - | 7.4 bc | 0.94 a | 7.9 bc | - | - | 8.7 bcd | 0.91 | 9.7 a |
T3 | - | - | 7.9 ab | 0.92 ab | 8.6 ab | - | - | 9.2 ab | 0.87 | 10.7 a |
T4 | - | - | 7.3 bcd | 0.79 b | 9.3 a | - | - | 8.7 bcd | 0.79 | 11.1 a |
T5 | - | - | 7.5 bc | 0.94 a | 8.0 abc | - | - | 8.9 bc | 0.81 | 11.1 a |
T6 | - | - | 8.4 a | 1.01 a | 8.6 ab | - | - | 10.3 a | 0.88 | 11.9 a |
p value | <0.0001 | 0.0043 | <0.0001 | <0.0001 | 0.1245 | 0.0109 | ||||
Block | ||||||||||
p value | 0.3632 | 0.4775 | 0.2982 | 0.9230 | 0.0948 | 0.54857 | ||||
Treatment × Block | ||||||||||
p value | 0.7039 | 1.0000 | 0.1452 | 0.4891 | 1.0000 | 1.0000 | ||||
2024 | ||||||||||
Treatment | ||||||||||
T0 | 56.9 | 37.1 bc | 8.7 c | 0.86 | 10.1 bc | 56.5 | 37.7 b | 9.2 c | 0.92 | 10.0 c |
T1 | 57.5 | 36.9 c | 8.7 c | 0.91 | 9.7 c | 57.0 | 37.8 b | 9.5 c | 0.90 | 10.6 bc |
T2 | 57.2 | 37.2 abc | 9.2 bc | 0.85 | 10.9 bc | 57.2 | 37.9 b | 10.2 b | 0.89 | 11.5 abc |
T3 | 57.0 | 37.2 bc | 9.3 bc | 0.84 | 11.1 bc | 57.5 | 37.9 b | 10.4 b | 0.84 | 12.4 ab |
T4 | 57.4 | 37.6 a | 9.8 b | 0.84 | 11.6 b | 58.9 | 38.0 ab | 10.2 b | 0.83 | 12.4 ab |
T5 | 58.1 | 37.5 ab | 9.6 b | 0.87 | 11.1 bc | 58.0 | 37.8 b | 10.2 b | 0.82 | 12.6 ab |
T6 | 57.3 | 37.7 a | 11.3 a | 0.82 | 13.9 a | 56.6 | 38.4 a | 11.5 a | 0.84 | 13.9 a |
p value | 0.8334 | <0.0001 | <0.0001 | 0.3726 | <0.0001 | 0.1184 | 0.0009 | <0.0001 | 0.0574 | <0.0001 |
Block | ||||||||||
p value | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0206 | 0.0549 | 0.0301 | 0.8828 | 1.0000 |
Treatment × Block | ||||||||||
p value | 1.0000 | 0.4590 | 1.0000 | 1.0000 | 1.0000 | 0.0743 | 0.2572 | 1.0000 | 0.0756 | 0.5463 |
Treatment | Trial 1 (Valencia) | Trial 2 (OLL-8) |
---|---|---|
2023 | ||
T1 | 0.0 b | 0.0 d |
T2 | 5.8 ab | 4.0 bc |
T3 | 2.7 ab | 5.7 ab |
T4 | 7.2 ab | 3.0 bcd |
T5 | 1.0 ab | 1.7 cd |
T6 | 10.8 a | 8.0 a |
p value | 0.0315 | <0.0001 |
2024 | ||
T1 | 0.0 b | 0.0 b |
T2 | 1.7 b | 14.0 ab |
T3 | 3.3 b | 30.3 a |
T4 | 1.7 b | 3.0 b |
T5 | 1.7 b | 1.0 b |
T6 | 13.7 a | 26.0 a |
p value | <0.0001 | 0.0005 |
Treatment | Trial 1 (Valencia) | Trial 2 (OLL-8) | ||||
---|---|---|---|---|---|---|
Hole Closure | Bark Crack Length (cm) | Bark Crack Width (cm) | Hole Closure | Bark Crack Length (cm) | Bark Crack Width (cm) | |
2023 | ||||||
T2 | 1.1 | 5.1 a | 3.1 a | 1.1 | 5.6 b | 2.3 a |
T3 | 1.1 | 6.8 a | 2.6 a | 1.1 | 8.5 a | 2.4 a |
T4 | 1.0 | 1.3 b | 1.1 b | 1.0 | 1.9 c | 1.3 b |
T5 | 1.1 | 1.4 b | 1.1 b | 1.1 | 4.1 bc | 1.7 ab |
T6 | 1.0 | 1.9 b | 1.3 b | 1.1 | 3.9 bc | 1.4 b |
p value | 0.9226 | <0.0001 | <0.0001 | 0.8302 | <0.0001 | 0.0006 |
2024 | ||||||
T2 | 1.0 a | 4.5 ab | 2.0 a | 1.0 a | 5.1 b | 1.4 |
T3 | 1.1 a | 6.5 a | 2.1 a | 1.0 a | 8.1 a | 1.4 |
T4 | 1.5 a | 2.0 c | 1.1 b | 1.3 a | 3.0 bc | 1.4 |
T5 | 1.3 a | 2.6 bc | 1.2 b | 1.2 a | 2.1 c | 1.0 |
T6 | 1.2 a | 3.8 abc | 1.8 a | 1.2 a | 4.7 bc | 1.3 |
p value | 0.0204 | 0.0007 | <0.0001 | 0.0394 | <0.0001 | 0.0760 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albrecht, U.; Tardivo, C.; Moreno, G.; de Freitas, J. Systemic Delivery of Oxytetracycline by Drill-Based and Drill-Free Trunk Injection for Treatment of Huanglongbing in Young Sweet Orange Trees. Horticulturae 2025, 11, 976. https://doi.org/10.3390/horticulturae11080976
Albrecht U, Tardivo C, Moreno G, de Freitas J. Systemic Delivery of Oxytetracycline by Drill-Based and Drill-Free Trunk Injection for Treatment of Huanglongbing in Young Sweet Orange Trees. Horticulturae. 2025; 11(8):976. https://doi.org/10.3390/horticulturae11080976
Chicago/Turabian StyleAlbrecht, Ute, Caroline Tardivo, Gerardo Moreno, and Jasmine de Freitas. 2025. "Systemic Delivery of Oxytetracycline by Drill-Based and Drill-Free Trunk Injection for Treatment of Huanglongbing in Young Sweet Orange Trees" Horticulturae 11, no. 8: 976. https://doi.org/10.3390/horticulturae11080976
APA StyleAlbrecht, U., Tardivo, C., Moreno, G., & de Freitas, J. (2025). Systemic Delivery of Oxytetracycline by Drill-Based and Drill-Free Trunk Injection for Treatment of Huanglongbing in Young Sweet Orange Trees. Horticulturae, 11(8), 976. https://doi.org/10.3390/horticulturae11080976