Comparing Two Varieties of Blood Orange: A Differential Methylation Region Within the Specific Encoding Sequence of a Retrotransposon Adjacent to the Ruby Locus
Abstract
1. Introduction
2. Materials and Methods
2.1. Fruit Quality Analysis for Two Varieties
2.2. Differential Expression Gene Identification and Analysis
2.3. Differential Expression Protein Identification and Analysis
2.4. Ectopic Overexpression of Ruby in Arabidopsis Thaliana
2.5. Promoter Function Validation for LTR Sequence from 3’ Flanking of a Retrotransposon
2.6. PCR-Based Molecular Marker to Identify Citrus Hybrids with Red-Fleshed Fruit
2.7. Methylation Profiling of a Partial Encoding Sequence from a Retrotransposon Adjacent to Ruby
2.8. Statistical Analysis
3. Results
3.1. Fruit Quality Measurements
3.2. Upregulating Expression of Transcription Factors and Structural Genes in High-Pigmented Fruit
3.3. Differential Expression of Proteins Enriched in Glycolysis or Tricarboxylic Acid Cycle Pathways
3.4. Higher Anthocyanin Content Is Accumulated in Transgenic Seedling Overexpressing Ruby
3.5. Molecular Marker Developed to Identify Citrus Hybrid with Red-Fleshed Fruit
3.6. Differential Methylation Regions Identified in Sequence Upstream of Ruby Locus in Blood Orange
4. Discussion
4.1. RUBY Activation of Genes Involved in Anthocyanin Biosynthesis
4.2. The Molecular Marker to Identify a Citrus Hybrid with High-Pigmented Fruit
4.3. Differential Methylation Region Observed in a Specific Positions of Sequence Upstream of Ruby
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dugo, P.; Mondello, L.; Morabito, D.; Dugo, G. Characterization of the anthocyanin fraction of sicilian blood orange juice by micro-HPLC-ESI/MS. J. Agric. Food Chem. 2003, 51, 1173–1176. [Google Scholar] [CrossRef]
- Tan, J.; Li, Y.; Hou, D.X.; Wu, S. The effects and mechanisms of cyanidin-3-glucoside and its phenolic metabolites in maintaining intestinal integrity. Antioxidants 2019, 8, 479. [Google Scholar] [CrossRef]
- Chen, K.; Kortesniemi, M.K.; Linderborg, K.M.; Yang, B. Anthocyanins as promising molecules affecting energy homeostasis, inflammation, and gut microbiota in type 2 diabetes with special reference to impact of acylation. J. Agric. Food Chem. 2022, 71, 1002–1017. [Google Scholar] [CrossRef] [PubMed]
- Butelli, E.; Licciardello, C.; Zhang, Y.; Liu, J.; Mackay, S.; Bailey, P.; Reforgiato-Recupero, G.; Martin, C. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 2012, 24, 1242–1255. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Yuan, Y.; Tang, Z.; Huang, Y.; Kang, C.; Deng, X.; Xu, Q. Retrotransposon promoter of Ruby1 controls both light- and cold-induced accumulation of anthocyanins in blood orange. Plant Cell Environ. 2019, 42, 3092–3104. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Wang, X.; Tang, Z.; Yuan, Y.; Xu, Y.; He, J.; Jiang, X.; Peng, S.; Li, L.; Butelli, E.; et al. Subfunctionalization of the Ruby2–Ruby1 gene cluster during the domestication of citrus. Nat. Plants 2018, 4, 930–941. [Google Scholar] [CrossRef]
- Wang, J.H.; Liu, J.J.; Chen, K.L.; Li, H.W.; He, J.; Guan, B.; He, L. Anthocyanin biosynthesis regulation in the fruit of Citrus sinensis cv. Tarocco. Plant Mol. Biol. Rep. 2016, 34, 1043–1055. [Google Scholar] [CrossRef]
- Suzuki, M.; Bird, A. DNA methylation landscapes: Provocative insights from epigenomics. Nat. Rev. Genet. 2008, 9, 465–476. [Google Scholar] [CrossRef]
- Telias, A.; Wang, K.L.; Stevenson, D.E.; Cooney, J.M.; Hellens, R.P.; Allan, A.C.; Hoover, E.E.; Bradeen, J.M. Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biol. 2011, 11, 93. [Google Scholar] [CrossRef]
- Zhu, Y.C.; Zhang, B.; Allan, A.C.; Lin-Wang, K.; Zhao, Y.; Wang, K.; Chen, K.S.; Xu, C.J. DNA demethylation is involved in the regulation of temperature-dependent anthocyanin accumulation in peach. Plant J. 2020, 102, 965–976. [Google Scholar] [CrossRef]
- Zhang, P.L.; Zhao, Q.; Song, Y.; Jin, H.C.; Liu, Y.Y.; Hu, D.; Liu, D.F. Identification of key genes controlling anthocyanin biosynthesis in the fruits of a bud variety of Tarocco blood-orange. BMC Plant Biol. 2025, 25, 230. [Google Scholar] [CrossRef] [PubMed]
- Sicilia, A.; Scialo, E.; Puglisi, I.; Lo Piero, A.R. Anthocyanin biosynthesis and DNA methylation dynamics in sweet orange fruit [Citrus sinensis L. (Osbeck)] under cold stress. J. Agric. Food Chem. 2020, 68, 7024–7031. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, C.; Lu, C.; Wang, Y.; Ge, C.; Huang, G.; Wang, H. The lemon genome and DNA methylome unveil epigenetic regulation of citric acid biosynthesis during fruit development. Hortic. Res. 2024, 11, uhae005. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Liu, J.J.; Chen, K.L.; Li, H.W.; He, J.; Guan, B.; He, L. Comparative transcriptome and proteome profiling of two Citrus sinensis cultivars during fruit development and ripening. BMC Genom. 2017, 18, 984. [Google Scholar] [CrossRef]
- Rapisarda, P.; Fanella, F.; Maccarone, E. Reliability of analytical methods for determining anthocyanins in blood orange juices. J. Agric. Food Chem. 2000, 48, 2249–2252. [Google Scholar] [CrossRef]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11, R106. [Google Scholar] [CrossRef]
- Faurobert, M.; Mihr, C.; Bertin, N.; Pawlowski, T.; Negroni, L.; Sommerer, N.; Causse, M. Major proteome variations associated with cherry tomato pericarp development and ripening. Plant Physiol. 2007, 143, 1327–1346. [Google Scholar] [CrossRef]
- Pan, Z.; Liu, Q.; Yun, Z.; Guan, R.; Zeng, W.; Xu, Q.; Deng, X. Comparative proteomics of a lycopene-accumulating mutant reveals the important role of oxidative stress on carotenogenesis in sweet orange (Citrus sinensis [L.] osbeck). Proteomics 2009, 9, 5455–5470. [Google Scholar] [CrossRef]
- Xu, Y.T.; Yu, H.W.; Cheng, Y.J.; Xu, Q.; Deng, X.X. Extraction and detection of high purity genomic DNA from citrus. Bio-101 2018, e1010199. [Google Scholar] [CrossRef]
- Gruntman, E.; Qi, Y.; Slotkin, R.K.; Roeder, T.; Martienssen, R.A.; Sachidanandam, R. Kismeth: Analyzer of plant methylation states through bisulfite sequencing. BMC Bioinform. 2008, 9, 371. [Google Scholar] [CrossRef]
- Wang, J.H.; Xu, R.; Qiu, S.P.; Wang, W.C.; Zheng, F. CsTT8 regulating anthocyanin accumulation in blood orange through alternative splicing transcription. Hortic. Res. 2023, 10, uhad190. [Google Scholar] [CrossRef]
- Dutt, M.; Mahmoud, L.M.; Weber, K.C.; Satpute, A.; Stanton, D.; Qiu, W.; Soares, J.M.; Reuss, L.; Wang, Y.; Grosser, J.W.; et al. Anthocitrus: Evaluation of anthocyanin accumulating “Mexican” lime fruits produced by overexpressing the Ruby transcription factor gene from Citrus sinensis “Moro”. Plant Cell Tiss. Organ. Cult. 2023, 155, 283–296. [Google Scholar] [CrossRef]
- Butelli, E.; Garcia-Lor, A.; Licciardello, C.; Las Casas, G.; Hill, L.; Recupero, G.R.; Keremane, M.L.; Ramadugu, C.; Krueger, R.; Xu, Q.; et al. Changes in anthocyanin production during domestication of Citrus. Plant Physiol. 2017, 173, 2225–2242. [Google Scholar] [CrossRef] [PubMed]
- Oh, C.J.; Woo, J.; Yi, K.U.; Park, Y.C.; Lee, H.; Kim, M.; Park, S.; Yun, S.; Lee, Y.; Kim, H.; et al. Development of molecular markers for genotyping of Ruby, a locus controlling anthocyanin pigment production in Citrus with its functional analysis. Sci. Hortic. 2021, 289, 110457. [Google Scholar] [CrossRef]
- Gehring, M.; Henikoff, S. DNA methylation dynamics in plant genomes. Biochim. Biophys. Acta 2007, 1769, 276–286. [Google Scholar] [CrossRef]
- Brautigam, K.; Cronk, Q. DNA Methylation and the Evolution of Developmental Complexity in Plants. Front. Plant Sci. 2018, 9, 1447. [Google Scholar] [CrossRef]
- Lucibelli, F.; Valoroso, M.C.; Aceto, S. Plant DNA methylation: An epigenetic mark in development, environmental interactions, and evolution. Int. J. Mol. Sci. 2022, 23, 8299. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Li, Z.; Guo, W.; Liu, Z.; Xu, M.; Sun, Y.; Liu, D.; Chen, Y. Comparing Two Varieties of Blood Orange: A Differential Methylation Region Within the Specific Encoding Sequence of a Retrotransposon Adjacent to the Ruby Locus. Horticulturae 2025, 11, 966. https://doi.org/10.3390/horticulturae11080966
Wang J, Li Z, Guo W, Liu Z, Xu M, Sun Y, Liu D, Chen Y. Comparing Two Varieties of Blood Orange: A Differential Methylation Region Within the Specific Encoding Sequence of a Retrotransposon Adjacent to the Ruby Locus. Horticulturae. 2025; 11(8):966. https://doi.org/10.3390/horticulturae11080966
Chicago/Turabian StyleWang, Jianhui, Zhihong Li, Weiqing Guo, Zhihan Liu, Mingfu Xu, Yan Sun, Dayu Liu, and Ying Chen. 2025. "Comparing Two Varieties of Blood Orange: A Differential Methylation Region Within the Specific Encoding Sequence of a Retrotransposon Adjacent to the Ruby Locus" Horticulturae 11, no. 8: 966. https://doi.org/10.3390/horticulturae11080966
APA StyleWang, J., Li, Z., Guo, W., Liu, Z., Xu, M., Sun, Y., Liu, D., & Chen, Y. (2025). Comparing Two Varieties of Blood Orange: A Differential Methylation Region Within the Specific Encoding Sequence of a Retrotransposon Adjacent to the Ruby Locus. Horticulturae, 11(8), 966. https://doi.org/10.3390/horticulturae11080966