Meloidogyne incognita Significantly Alters the Cucumber Root Metabolome and Enriches Differential Accumulated Metabolites Regulating Nematode Chemotaxis and Infection
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Plant Materials
2.2. Experimental Design
2.3. Untargeted Metabolomic Profiling of Cucumber Roots Under M. incognita Stress
2.4. Effects of Candidate Metabolites on Eegg Hatch and Mortality of the M. incognita
2.5. Evaluation of Candidate Metabolites to M. incognita Infection on Cucumber
2.6. Nematode Attraction Assay Under the Effects of Differentially Accumulated Metabolites
2.7. Analysis of Mi-flp-1 and Mi-flp-18 Gene Expression in Nematode Attraction Assay
2.8. Statistical Analysis
3. Results
3.1. Effect of M. incognita Infection on Root Metabolome of Cucumber
3.2. Screening of Root-Derived Differential Metabolites in Cucumber Root
3.3. Effects of Candidite Metabolites on Egg Hatching and J2 Mortality of M. incognita
3.4. Effects of Different Metabolites on M. incognita Infection in Cucumber
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rutter, W.B.; Franco, J.; Gleason, C. Rooting Out the Mechanisms of Root-Knot Nematode-Plant Interactions. Annu. Rev. Phytopathol. 2022, 60, 43–76. [Google Scholar] [CrossRef] [PubMed]
- Forghani, F.; Hajihassani, A. Recent Advances in the Development of Environmentally Benign Treatments to Control Root-Knot Nematodes. Front. Plant Sci. 2020, 11, 1125. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, D.; Lei, Y.; Lozano-Torres, J.L.; Deng, Y.; Xu, J.; Hu, L. Cover Crop Rotation Suppresses Root-Knot Nematode Infection by Shaping Soil Microbiota. New Phytol. 2025, 245, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, V.P.; Terra, W.C.; da Silva, J.C.P.; Oliveira, A.J.M.; Fonseca, K.M.F.; Silva, B.M.; Campos, V.P.; Rodrigues, F.A.; de Medeiros, F.H.V.; Dória, J. Attractive Response of Meloidogyne javanica Varies among Non-Host Plants, While All of Them Reduce the Nematode Population When Intercropped with Host Plants. Plant Soil 2023, 506, 263–274. [Google Scholar] [CrossRef]
- Tian, T.; Gheysen, G.; Kyndt, T.; Mo, C.; Xiao, X.; Lv, Y.; Long, H.; Wang, G.; Xiao, Y. Pepper Root Exudate Alleviates Cucumber Root-Knot Nematode Infection by Recruiting a Rhizobacterium. Plant Commun. 2024, 6, 101139. [Google Scholar] [CrossRef]
- Zasada, I.A.; Halbrendt, J.M.; Kokalis-Burelle, N.; LaMondia, J.; McKenry, M.V.; Noling, J.W. Managing Nematodes Without Methyl Bromide. Annu. Rev. Phytopathol. 2010, 48, 311–328. [Google Scholar] [CrossRef]
- Gheysen, G.; Mitchum, M.G. How Nematodes Manipulate Plant Development Pathways for Infection. Curr. Opin. Plant Biol. 2011, 14, 415–421. [Google Scholar] [CrossRef]
- Rengarajan, S.; Hallem, E.A. Olfactory Circuits and Behaviors of Nematodes. Curr. Opin. Neurobiol. 2016, 41, 136–148. [Google Scholar] [CrossRef]
- McCoy, C.J.; Atkinson, L.E.; Robb, E.; Marks, N.J.; Maule, A.G.; Mousley, A. Tool-Driven Advances in Neuropeptide Research from a Nematode Parasite Perspective. Trends Parasitol. 2017, 33, 986–1002. [Google Scholar] [CrossRef]
- Banakar, P.; Hada, A.; Papolu, P.K.; Rao, U. Simultaneous RNAi Knockdown of Three FMRFamide-Like Peptide Genes, Mi-Flp1, Mi-Flp12, and Mi-Flp18 Provides Resistance to Root-Knot Nematode, Meloidogyne incognita. Front. Microbiol. 2020, 11, 573916. [Google Scholar] [CrossRef]
- Hada, A.; Kumari, C.; Phani, V.; Singh, D.; Chinnusamy, V.; Rao, U. Host-Induced Silencing of FMRFamide-Like Peptide Genes, Flp-1 and Flp-12, in Rice Impairs Reproductive Fitness of the Root-Knot Nematode Meloidogyne graminicola. Front. Plant Sci. 2020, 11, 894. [Google Scholar] [CrossRef] [PubMed]
- Bartlem, D.G.; Jones, M.G.K.; Hammes, U.Z. Vascularization and Nutrient Delivery at Root-Knot Nematode Feeding Sites in Host Roots. J. Exp. Bot. 2014, 65, 1789–1798. [Google Scholar] [CrossRef] [PubMed]
- Abad, P.; Favery, B.; Rosso, M.-N.; Castagnone-Sereno, P. Root-Knot Nematode Parasitism and Host Response: Molecular Basis of a Sophisticated Interaction. Mol. Plant Pathol. 2003, 4, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Desmedt, W.; Mangelinckx, S.; Kyndt, T.; Vanholme, B. A Phytochemical Perspective on Plant Defense Against Nematodes. Front. Plant Sci. 2020, 11, 602079. [Google Scholar] [CrossRef]
- Yates, P.; Janiol, J.; Li, C.; Song, B.-H. Nematocidal Potential of Phenolic Acids: A Phytochemical Seed-Coating Approach to Soybean Cyst Nematode Management. Plants 2024, 13, 319. [Google Scholar] [CrossRef]
- Eloh, K.; Sasanelli, N.; Maxia, A.; Caboni, P. Untargeted Metabolomics of Tomato Plants after Root-Knot Nematode Infestation. J. Agric. Food Chem. 2016, 64, 5963–5968. [Google Scholar] [CrossRef]
- Shukla, N.; Yadav, R.; Kaur, P.; Rasmussen, S.; Goel, S.; Agarwal, M.; Jagannath, A.; Gupta, R.; Kumar, A. Transcriptome Analysis of Root-Knot Nematode (Meloidogyne incognita)-Infected Tomato (Solanum lycopersicum) Roots Reveals Complex Gene Expression Profiles and Metabolic Networks of Both Host and Nematode during Susceptible and Resistance Responses. Mol. Plant Pathol. 2018, 19, 615–633. [Google Scholar] [CrossRef]
- Jha, Y.; Mohamed, H.I. Plant Secondary Metabolites as a Tool to Investigate Biotic Stress Tolerance in Plants: A Review. Gesunde Pflanz. 2022, 74, 771–790. [Google Scholar] [CrossRef]
- Taylor, J.; King, R.D.; Altmann, T.; Fiehn, O. Application of Metabolomics to Plant Genotype Discrimination Using Statistics and Machine Learning. Bioinformatics 2002, 18 (Suppl. S2), S241–S248. [Google Scholar] [CrossRef]
- Tenenboim, H.; Brotman, Y. Omic Relief for the Biotically Stressed: Metabolomics of Plant Biotic Interactions. Trends Plant Sci. 2016, 21, 781–791. [Google Scholar] [CrossRef]
- Bolton, M.D. Primary Metabolism and Plant Defense—Fuel for the Fire. Mol. Plant-Microbe Interact. 2009, 22, 487–497. [Google Scholar] [CrossRef]
- Pérez-García, L.-A.; Sáenz-Mata, J.; Fortis-Hernández, M.; Navarro-Muñoz, C.E.; Palacio-Rodríguez, R.; Preciado-Rangel, P. Plant-Growth-Promoting Rhizobacteria Improve Germination and Bioactive Compounds in Cucumber Seedlings. Agronomy 2023, 13, 315. [Google Scholar] [CrossRef]
- Kyndt, T.; Vieira, P.; Gheysen, G.; de Almeida-Engler, J. Nematode Feeding Sites: Unique Organs in Plant Roots. Planta 2013, 238, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Kyndt, T.; Denil, S.; Haegeman, A.; Trooskens, G.; Bauters, L.; Van Criekinge, W.; De Meyer, T.; Gheysen, G. Transcriptional Reprogramming by Root Knot and Migratory Nematode Infection in Rice. New Phytol. 2012, 196, 887–900. [Google Scholar] [CrossRef] [PubMed]
- Pétriacq, P.; Williams, A.; Cotton, A.; McFarlane, A.E.; Rolfe, S.A.; Ton, J. Metabolite Profiling of Non-Sterile Rhizosphere Soil. Plant J. 2017, 92, 147–162. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Li, X.; Huang, L.; Gao, Y.; Zhong, L.; Zheng, Y.; Zuo, Y. Lauric Acid in Crown Daisy Root Exudate Potently Regulates Root-Knot Nematode Chemotaxis and Disrupts Mi-Flp-18 Expression to Block Infection. J. Exp. Bot. 2014, 65, 131–141. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Rashmi, R.; Toppo, V.; Chole, P.B.; Banadka, A.; Sudheer, W.N.; Nagella, P.; Shehata, W.F.; Al-Mssallem, M.Q.; Alessa, F.M.; et al. Plant Secondary Metabolites: The Weapons for Biotic Stress Management. Metabolites 2023, 13, 716. [Google Scholar] [CrossRef]
- Shulaev, V.; Cortes, D.; Miller, G.; Mittler, R. Metabolomics for Plant Stress Response. Physiol. Plant. 2008, 132, 199–208. [Google Scholar] [CrossRef]
- Hofmann, J.; El Ashry, A.E.N.; Anwar, S.; Erban, A.; Kopka, J.; Grundler, F. Metabolic Profiling Reveals Local and Systemic Responses of Host Plants to Nematode Parasitism. Plant J. 2010, 62, 1058–1071. [Google Scholar] [CrossRef]
- Xing, X.; Li, X.; Zhang, M.; Wang, Y.; Liu, B.; Xi, Q.; Zhao, K.; Wu, Y.; Yang, T. Transcriptome Analysis of Resistant and Susceptible Tobacco (Nicotiana tabacum) in Response to Root-Knot Nematode Meloidogyne incognita Infection. Biochem. Biophys. Res. Commun. 2017, 482, 1114–1121. [Google Scholar] [CrossRef]
- Andersen, E.J.; Ali, S.; Byamukama, E.; Yen, Y.; Nepal, M.P. Disease Resistance Mechanisms in Plants. Genes 2018, 9, 339. [Google Scholar] [CrossRef]
- Siddique, S.; Grundler, F.M.W. Chapter Five—Metabolism in Nematode Feeding Sites. In Advances in Botanical Research; Escobar, C., Fenoll, C., Eds.; Plant Nematode Interactions; Academic Press: Cambridge, MA, USA, 2015; Volume 73, pp. 119–138. [Google Scholar]
- Wang, Z.; Wang, W.; Wu, W.; Wang, H.; Zhang, S.; Ye, C.; Guo, L.; Wei, Z.; Huang, H.; Liu, Y.; et al. Integrated Analysis of Transcriptome, Metabolome, and Histochemistry Reveals the Response Mechanisms of Different Ages Panax notoginseng to Root-Knot Nematode Infection. Front. Plant Sci. 2023, 14, 1258316. [Google Scholar] [CrossRef]
- Pretorius, C.J.; Zeiss, D.R.; Dubery, I.A. The Presence of Oxygenated Lipids in Plant Defense in Response to Biotic Stress: A Metabolomics Appraisal. Plant Signal. Behav. 2021, 16, 1989215. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, B.; Wen, D.; Liu, R.; Yao, X.; Chen, Z.; Mu, R.; Pei, H.; Liu, M.; Song, B.; et al. Chromosome-Scale Genome Assembly of Camellia Sinensis Combined with Multi-Omics Provides Insights into Its Responses to Infestation with Green Leafhoppers. Front. Plant Sci. 2022, 13, 1004387. [Google Scholar] [CrossRef] [PubMed]
- Holden-Dye, L.; Walker, R.J. Neurobiology of Plant Parasitic Nematodes. Invertebr. Neurosci. 2011, 11, 9–19. [Google Scholar] [CrossRef]
- Kachroo, A.; Kachroo, P. Fatty Acid–Derived Signals in Plant Defense. Annu. Rev. Phytopathol. 2009, 47, 153–176. [Google Scholar] [CrossRef] [PubMed]
- Morańska, E.; Simlat, M.; Warchoł, M.; Skrzypek, E.; Waligórski, P.; Laurain-Mattar, D.; Spina, R.; Ptak, A. Phenolic Acids and Amaryllidaceae Alkaloids Profiles in Leucojum aestivum L. In Vitro Plants Grown under Different Light Conditions. Molecules 2023, 28, 1525. [Google Scholar] [CrossRef] [PubMed]
- Balmer, D.; Flors, V.; Glauser, G.; Mauch-Mani, B. Metabolomics of Cereals under Biotic Stress: Current Knowledge and Techniques. Front. Plant Sci. 2013, 4, 82. [Google Scholar] [CrossRef]
- Anjali; Kumar, S.; Korra, T.; Thakur, R.; Arutselvan, R.; Kashyap, A.S.; Nehela, Y.; Chaplygin, V.; Minkina, T.; Keswani, C. Role of Plant Secondary Metabolites in Defence and Transcriptional Regulation in Response to Biotic Stress. Plant Stress 2023, 8, 100154. [Google Scholar] [CrossRef]
- Yang, G.; Zhou, B.; Zhang, X.; Zhang, Z.; Wu, Y.; Zhang, Y.; Lü, S.; Zou, Q.; Gao, Y.; Teng, L. Effects of Tomato Root Exudates on Meloidogyne incognita. PLoS ONE 2016, 11, e0154675. [Google Scholar] [CrossRef]
- Dong, L.; Li, X.; Huang, C.; Lu, Q.; Li, B.; Yao, Y.; Liu, T.; Zuo, Y. Reduced Meloidogyne incognita Infection of Tomato in the Presence of Castor and the Involvement of Fatty Acids. Sci. Hortic. 2018, 237, 169–175. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, D.; Liu, C.; Shen, W.; He, J.; Yue, Q.; Niu, C.; Yang, F.; Li, X.; Shen, X.; et al. MdGH3.6 Is Targeted by MdMYB94 and Plays a Negative Role in Apple Water-Deficit Stress Tolerance. Plant J. 2021, 109, 1271–1289. [Google Scholar] [CrossRef]
- Yue, P.; Hu, Q.; Zhou, W.; Rang, X.; Liu, Y. Tomato Root Exudates Infected by Meloidogyne incognita Impact the Colonization of Nematicidal Proteus Vulgaris. Microorganisms 2024, 12, 2188. [Google Scholar] [CrossRef]
- Jaffuel, G.; Krishnamani, S.; Machado, R.A.R.; Campos-Herrera, R.; Turlings, T.C.J. Potent Ant Deterrents Emitted from Nematode-Infected Insect Cadavers. J. Chem. Ecol. 2022, 48, 71–78. [Google Scholar] [CrossRef]
- Li, J.; Wei, X.; Pei, Z.; Sun, J.; Xi, J.; Li, X.; Shapiro-IIan, D.; Ruan, W. Volatile Organic Compounds Released from Entomopathogenic Nematode-Infected Insect Cadavers for the Biocontrol of Meloidogyne incognita. Pest Manag. Sci. 2024, 80, 5400–5411. [Google Scholar] [CrossRef] [PubMed]
- Fleming, T.R.; Maule, A.G.; Fleming, C.C. Chemosensory Responses of Plant Parasitic Nematodes to Selected Phytochemicals Reveal Long-Term Habituation Traits. J. Nematol. 2017, 49, 462–471. [Google Scholar] [PubMed]
- Chen, J.; Song, B. Natural Nematicidal Active Compounds: Recent Research Progress and Outlook. J. Integr. Agric. 2021, 20, 2015–2031. [Google Scholar] [CrossRef]
- Návarová, H.; Bernsdorff, F.; Döring, A.-C.; Zeier, J. Pipecolic Acid, an Endogenous Mediator of Defense Amplification and Priming, Is a Critical Regulator of Inducible Plant Immunity. Plant Cell 2013, 24, 5123–5141. [Google Scholar] [CrossRef]
- Bernsdorff, F.; Döring, A.-C.; Gruner, K.; Schuck, S.; Bräutigam, A.; Zeier, J. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways. Plant Cell 2016, 28, 102–129. [Google Scholar] [CrossRef]
- Kirwa, H.K.; Murungi, L.K.; Beck, J.J.; Torto, B. Elicitation of Differential Responses in the Root-Knot Nematode Meloidogyne incognita to Tomato Root Exudate Cytokinin, Flavonoids, and Alkaloids. J. Agric. Food Chem. 2018, 66, 11291–11300. [Google Scholar] [CrossRef]
- Čepulytė, R.; Danquah, W.B.; Bruening, G.; Williamson, V.M. Potent Attractant for Root-Knot Nematodes in Exudates from Seedling Root Tips of Two Host Species. Sci. Rep. 2018, 8, 10847. [Google Scholar] [CrossRef] [PubMed]
- Chitwood, D.J. Phytochemical Based Strategies for Nematode Control. Annu. Rev. Phytopathol. 2002, 40, 221–249. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Bruening, G.; Williamson, V.M. Determination of Preferred pH for Root-Knot Nematode Aggregation Using Pluronic F-127 Gel. J. Chem. Ecol. 2009, 35, 1242–1251. [Google Scholar] [CrossRef]
- Rao, U.; Thakur, P.K.; Prasad, G.N.; Banakar, P.; Kumar, M. Identification of Neuropeptides, Flp-1 and Flp-12 Targeting Neuromuscular System of Rice Root Knot Nematode (RRKN) Meloidogyne graminicola. Bioinformation 2013, 9, 182–186. [Google Scholar] [CrossRef] [PubMed]
Metabolites | log2(FC) | KEGG ID | Pathway | VIP | p-Value |
---|---|---|---|---|---|
Myristic acid | 0.66444 | C06424 | Fatty acid biosynthesis | 1.78423 | 0.02618 |
Hexadecanal | 1.32102 | C00517 | Fatty acid degradation | 1.15038 | 0.00049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, N.; Sun, Q.; Chen, Z.; Zhang, X. Meloidogyne incognita Significantly Alters the Cucumber Root Metabolome and Enriches Differential Accumulated Metabolites Regulating Nematode Chemotaxis and Infection. Horticulturae 2025, 11, 892. https://doi.org/10.3390/horticulturae11080892
Chen N, Sun Q, Chen Z, Zhang X. Meloidogyne incognita Significantly Alters the Cucumber Root Metabolome and Enriches Differential Accumulated Metabolites Regulating Nematode Chemotaxis and Infection. Horticulturae. 2025; 11(8):892. https://doi.org/10.3390/horticulturae11080892
Chicago/Turabian StyleChen, Naicun, Qianqian Sun, Zhiqun Chen, and Xu Zhang. 2025. "Meloidogyne incognita Significantly Alters the Cucumber Root Metabolome and Enriches Differential Accumulated Metabolites Regulating Nematode Chemotaxis and Infection" Horticulturae 11, no. 8: 892. https://doi.org/10.3390/horticulturae11080892
APA StyleChen, N., Sun, Q., Chen, Z., & Zhang, X. (2025). Meloidogyne incognita Significantly Alters the Cucumber Root Metabolome and Enriches Differential Accumulated Metabolites Regulating Nematode Chemotaxis and Infection. Horticulturae, 11(8), 892. https://doi.org/10.3390/horticulturae11080892