Effects of Nitrogen Application on Soluble Sugar and Starch Accumulation During Sweet Potato Storage Root Formation
Abstract
1. Introduction
2. Materials and Methods
2.1. Pot Experiments
2.2. Non-Structural Carbohydrate Analysis
2.3. Statistical Data Analysis
3. Results
3.1. Effect of N Rates on the Content of Soluble Sugar and Starch During the SR Initiation
3.2. Effect of N Application Timing on the Content of Soluble Sugar and Starch During SR Initiation
3.3. Effect of N Rates and N Timing Application on the Soluble Sugar and Starch Accumulation in Plants During SR Initiation
3.4. Relationship Between NSC Accumulation and SRs
4. Discussions
4.1. Effect of N Levels on the Content of Soluble Sugar and Starch During the SR Initiation
4.2. Effect of N Application Timing on the Content of Soluble Sugar and Starch During SR Initiation
4.3. Effect of N Rates and N Timing Application on the Soluble Sugar and Starch Accumulation in Plants During SR Initiation
4.4. Relationships Between NSC Accumulation and SR Number
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DAT | Days After Transplanting |
FSRW | Fresh Storage Root Weight |
MCW | Methanol:Chloroform:Water |
N | Nitrogen |
NL | Nitrogen Level |
NSC | Non-structural Carbohydrate |
NSCR | Non-structural Carbohydrates in Root |
NSCV | Non-structural Carbohydrates in Vines |
NT | Nitrogen application Timing |
SR | Storage Root |
SRt | Starch in Roots |
SS | Soluble Sugar |
SSR | Soluble Sugar in Roots |
SSV | Soluble Sugar in Vine |
SV | Starch in Vine |
T | Time |
References
- Deckard, E.L.; Tsai, C.Y.; Tucker, T.C. The effect of nitrogen nutrition on quality of agronimic crops. In Nitrogen in Crop Production; Hauck, R.D., Ed.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 1984; pp. 601–615. [Google Scholar]
- Morot-Gaudry, J.-F. Nitrogen Assimilation by Plants: Physiological, Biochemical and Molecular Aspects; Science Publishers, Inc.: Enfield, UK, 2001. [Google Scholar]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Hosseini Bai, S.; Blumfield, T.J.; Xu, Z.; Chen, C.; Wild, C. Soil organic matter dynamics and nitrogen availability in response to site preparation and management during revegetation in tropical Central Queensland, Australia. J. Soils Sediments 2012, 12, 386–395. [Google Scholar] [CrossRef]
- Hall, D.O.; Rao, K.K. Photosynthesis; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Hammett, L.K.; Miller, C.H.; Swallow, W.H.; Harden, C. Influence of N source, N rate and K rate on the yield and mineral concentration of sweetpotato. J. Am. Soc. Hortic. Sci. 1984, 109, 294–298. [Google Scholar] [CrossRef]
- Kays, S.J. The physiology of yield in the sweet potato. In Sweetpotato Products: A Natural Resource for the Tropic; Bouwkamp, J.C., Ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Rufty, T.W.; Huber, S.C.; Volk, R.J. Alterations in leaf carbohydrate metabolism in response to nitrogen stress. Plant Physiol. 1988, 88, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Knavel, D.E. The influence of N and K nutrition on vine and root development of the early “Allgold” sweetpotato at early stage of storage root enlargement. J. Am. Soc. Hortic. Sci. 1971, 96, 718–720. [Google Scholar] [CrossRef]
- Acock, M.C.; Garner, J.O. Effect of fertiliser and watering methods on growth and yields of pot-grown sweet potato genotypes. HortScience 1984, 19, 687–689. [Google Scholar] [CrossRef]
- Hartemink, A.E.; Johnston, M.; O’Sullivan, J.; Poloma, S. Nitrogen use efficiency of taro and sweet potato in the humid lowlands of Papua New Guinea. Agric. Ecosyst. Environ. 2000, 79, 271–280. [Google Scholar] [CrossRef]
- Villagarcia, M.R.; Collins, W.W.; Raper, C.D.J. Nitrate uptake and nitrogen use efficiency of tow sweetpotato genotypes during early stage of storage root formation. J. Am. Soc. Hortic. Sci. 1998, 123, 814–820. [Google Scholar] [CrossRef]
- Togari, Y. A study on tuberous root formation in sweet potatoes. Bull. Natl. Agric. Exp. Stn. 1950, 68, 1–96. [Google Scholar]
- Wilson, L.A. Effect of different levels of nitrate-nitrogen supply on early tuber growth of two sweet potato cultivars. Trop. Agric. St. Augustine 1973, 50, 53–54. [Google Scholar]
- Fichtner, K.; Schulze, E.-D. The effect of nitrogen nutrition on growth and biomass partitioning of annual plants originating from habitats of different nitrogen availability. Oecologia 1992, 92, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Si, C.; Shi, C.; Liu, H.; Zhan, X.; Liu, Y. Effects of nitrogen forms on carbohydrate metabolism and storage-root formation of sweet potato. J. Plant Nutr. Soil Sci. 2018, 181, 419–428. [Google Scholar] [CrossRef]
- Koch, K. Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Biol. 1996, 47, 509–540. [Google Scholar] [CrossRef] [PubMed]
- Van den Ende, W.; De Roover, J.; Van Laere, A. Effect of nitrogen concentration on fructan and fructan metabolizing enzymes in young chicory plants (Cichorium intybus). Physiol. Plant. 1999, 105, 2–8. [Google Scholar] [CrossRef]
- Tsubone, M.; Kubota, F.; Saitou, K. Effect of grafting on the activity of adenosine 5′-diphosphate glucose pyrophosphorylase and tuberous root production in sweet potato (Ipomoea batatas Lam.). Jpn. J. Crop Sci. 1997, 66, 509–510. [Google Scholar] [CrossRef]
- Kim, S.-H.; Mizuno, K.; Sawada, S.; Fujimura, T. Regulation of tuber formation and ADP-glucose pyrophosphorylase (AGPase) in sweet potato (Ipomoea batatas (L.) Lam.) By nitrate. Plant Growth Regul. 2002, 37, 207–213. [Google Scholar] [CrossRef]
- Nakamura, K.; Ohto, M.-A.; Yoshida, N.; Nakamura, K. Sucrose-induced accumulation of β-amylase occurs concomitant with the accumulation of starch and sporamin in leaf-petiole cuttings of sweet potato. Plant Physiol. 1991, 96, 902–909. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, H.; Yue, Z.; Wang, J. The effect of planting density and fertilization on the starch content of high-starch sweet Potato Wanshu5. China Crops 2012, 2012, 108–110. [Google Scholar]
- Duan, W.; Zhang, H.; Xie, B.; Wang, B.; Zhang, L. Impacts of nitrogen fertilization rate on the root yield, starch yield and starch physicochemical properties of the sweet potato cultivar Jishu 25. PLoS ONE 2019, 14, e0221351. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Q.; Zhang, D. Gene expression activity and pathway selection for sucrose metabolism in developing storage root of sweet potato. Plant Cell Physiol. 2003, 44, 630–636. [Google Scholar] [CrossRef] [PubMed]
- La Bonte, D.R.; Clark, C.A.; Smith, T.P.; Villordon, A.Q. ‘Orleans’ sweetpotato. HortScience 2012, 47, 1817–1818. [Google Scholar] [CrossRef]
- Dong, H.T.; Li, Y.; Henderson, C.; Brown, P.; Xu, C.-Y. Optimum nitrogen application promotes sweetpotato storage root initiation. Horticulturae 2022, 8, 710. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Calif. Agric. Exp. Stn. Circ. 1950, 347, 1–32. [Google Scholar]
- Maness, N. Extraction and analysis of soluble carbohydrates. In Plant Stress Tolerance; Sunkar, R., Ed.; Springer: New York, NY, USA, 2010; pp. 341–370. [Google Scholar]
- Dickson, R.E. Analytical procedures for the sequential extraction of 14C-labeled constituents from leaves, bark and wood of cottonwood plants. Physiol. Plant. 1979, 45, 480–488. [Google Scholar] [CrossRef]
- Rose, R.; Rose, C.L.; Omi, S.K.; Forry, K.R.; Durall, D.M.; Bigg, W.L. Starch determination by perchloric acid vs enzymes: Evaluating the accuracy and precision of six colorimetric methods. J. Agric. Food Chem. 1991, 39, 2–11. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Dong, H.T.; Li, Y.; Brown, P.; Xu, C.-Y. Early nitrogen applications promote the initiation of sweetpotato storage roots. J. Agric. Sci. 2022, 14, 19–38. [Google Scholar] [CrossRef]
- Li, G.; Hu, Q.; Shi, Y.; Cui, K.; Nie, L.; Huang, J.; Peng, S. Low nitrogen application enhances starch-metabolizing enzyme activity and improves accumulation and translocation of non-structural carbohydrates in rice stems. Front. Plant Sci. 2018, 9, 1128. [Google Scholar] [CrossRef] [PubMed]
- Braun, H.; Fontes, P.C.R.; Silva, T.P.D.; Finger, F.L.; Cecon, P.R.; Ferreira, A.P.S. Carbohydrates concentration in leaves of potato plants affected by nitrogen fertilization rates. Rev. Ceres 2016, 63, 241–248. [Google Scholar] [CrossRef]
- Paul, M.J.; Foyer, C.H. Sink regulation of photosynthesis. J. Exp. Bot. 2001, 52, 1383–1400. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhao, B.; Li, Q.; Kong, F.; Du, L.; Zhou, F.; Shi, H.; Ke, Y.; Liu, Q.; Feng, D. Non-structural carbohydrates in maize with different nitrogen tolerance are affected by nitrogen addition. PLoS ONE 2019, 14, e0225753. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Zhang, Z.; Wen, X.; Liao, Y.; Liu, Y. Effect of non-structural carbohydrate accumulation in the stem pre-anthesis on grain filling of wheat inferior grain. Field Crops Res. 2017, 211, 66–76. [Google Scholar] [CrossRef]
- Almodares, A.; Jafarinia, M.; Hadi, M.R. The effects of nitrogen fertilizer on chemical compositions in corn and sweet sorghum. Agric. Environ. Sci. 2009, 6, 441–446. [Google Scholar]
- Aloni, B.; Pashkar, T.; Karni, L.; Daie, J. Nitrogen supply influences carbohydrate partitioning of pepper seedlings and transplant development. J. Am. Soc. Hortic. Sci. 1991, 116, 995–999. [Google Scholar] [CrossRef]
- Boussadia, O.; Steppe, K.; Zgallai, H.; El Hadj, S.B.; Braham, M.; Lemeur, R.; Van Labeke, M.-C. Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’and ‘Koroneiki’. Sci. Hortic. 2010, 123, 336–342. [Google Scholar] [CrossRef]
- Dragone, G.; Fernandes, B.D.; Abreu, A.P.; Vicente, A.A.; Teixeira, J.A. Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl. Energy 2011, 88, 3331–3335. [Google Scholar] [CrossRef]
- Araya, T.; Noguchi, K.; Terashima, I. Effect of nitrogen nutrition on the carbohydrate repression of photosynthesis in leaves of Phaseolus vulgaris L. J. Plant Res. 2010, 123, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.-M.; Ding, Y.-F.; Liu, Z.-H.; Wang, S.-H. Effects of panicle nitrogen fertilization on non-structural carbohydrate and grain filling in indica rice. Agric. Sci. China 2010, 9, 1630–1640. [Google Scholar] [CrossRef]
- Du, X.; Zhang, X.; Xi, M.; Kong, L. Split application enhances sweetpotato starch production by regulating the conversion of sucrose to starch under reduced nitrogen supply. Plant Physiol. Biochem. 2020, 151, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Zebarth, B.; Rosen, C. Research perspective on nitrogen BMP development for potato. Am. J. Potato Res. 2007, 84, 3–18. [Google Scholar] [CrossRef]
- Leghari, S.J.; Wahocho, N.A.; Laghari, G.M.; HafeezLaghari, A.; MustafaBhabhan, G.; HussainTalpur, K.; Bhutto, T.A.; Wahocho, S.A.; Lashari, A.A. Role of nitrogen for plant growth and development: A review. Adv. Environ. Biol. 2016, 10, 209–219. [Google Scholar]
- Xue, G.-P.; McIntyre, C.L.; Jenkins, C.L.; Glassop, D.; van Herwaarden, A.F.; Shorter, R. Molecular dissection of variation in carbohydrate metabolism related to water-soluble carbohydrate accumulation in stems of wheat. Plant Physiol. 2008, 146, 441. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Cui, K.; Wei, D.; Huang, J.; Xiang, J.; Nie, L. Relationships of non-structural carbohydrates accumulation and translocation with yield formation in rice recombinant inbred lines under two nitrogen levels. Physiol. Plant. 2011, 141, 321–331. [Google Scholar] [CrossRef] [PubMed]
Factor | SSV | Starch in Vine | NSCV | SSR | Starch in Roots | NSCR |
---|---|---|---|---|---|---|
N level | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Time | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
N level × time | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Treatments | 21 DAT | 35 DAT | 49 DAT | ANOVA |
---|---|---|---|---|
N0 | 3.9 ± 0.5 b | 2.7 ± 0.2 | 2.7 ± 0.1 a | NL: p = 0.02 |
N50 | 5.5 ± 0.3 ab | 2.4 ± 0.1 | 1.6 ± 0.1 b | T: p < 0.001 |
N100 | 7.2 ± 0.2 a | 2.6 ± 0.1 | 1.3 ± 0.1 bc | NL × T: p < 0.001 |
N200 | 6.5 ± 0.6 a | 3.3 ± 0.4 | 1.2 ± 0.1 c | |
p value | 0.003 | 0.13 | <0.001 |
Factor | Vines | Roots | ||||
---|---|---|---|---|---|---|
SS | Starch | Total | SS | Starch | Total | |
NT | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
T | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
NT × T | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.01 |
Treatments | 21 DAT | 35 DAT | 49 DAT | ANOVA |
---|---|---|---|---|
T0 | 3.59 ± 0.14 ab | 1.24 ± 0.09 a | 0.51 ± 0.01 a | NT: p < 0.001 |
T1 | 2.75 ± 0.14 c | 0.47 ± 0.02 c | 0.36 ± 0.01 b | T: p < 0.001 |
T3 | 2.46 ± 0.17 c | 0.41 ± 0.01 c | 0.37 ± 0.03 b | NT × T: p < 0.001 |
T7 | 2.95 ± 0.08 bc | 0.55 ± 0.01 c | 0.42 ± 0.01 b | |
T14 | 3.8 ± 0.29 a | 0.91 ± 0.05 b | 0.43 ± 0.02 ab | |
p value | 0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.T.; Li, Y.; Brown, P.; Akbar, D.; Xu, C.-Y. Effects of Nitrogen Application on Soluble Sugar and Starch Accumulation During Sweet Potato Storage Root Formation. Horticulturae 2025, 11, 837. https://doi.org/10.3390/horticulturae11070837
Dong HT, Li Y, Brown P, Akbar D, Xu C-Y. Effects of Nitrogen Application on Soluble Sugar and Starch Accumulation During Sweet Potato Storage Root Formation. Horticulturae. 2025; 11(7):837. https://doi.org/10.3390/horticulturae11070837
Chicago/Turabian StyleDong, Hong Tham, Yujuan Li, Philip Brown, Delwar Akbar, and Cheng-Yuan Xu. 2025. "Effects of Nitrogen Application on Soluble Sugar and Starch Accumulation During Sweet Potato Storage Root Formation" Horticulturae 11, no. 7: 837. https://doi.org/10.3390/horticulturae11070837
APA StyleDong, H. T., Li, Y., Brown, P., Akbar, D., & Xu, C.-Y. (2025). Effects of Nitrogen Application on Soluble Sugar and Starch Accumulation During Sweet Potato Storage Root Formation. Horticulturae, 11(7), 837. https://doi.org/10.3390/horticulturae11070837