Cu and Pb Co-Contamination Accelerates the Decomposition Rate of Litter from Invasive Aquatic Plant Eichhornia crassipes (Mart.) Solms and the Effect Increases with Its Invasion Degree
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Determination of the Decomposition Variables
2.3. Determination of Soil Physicochemical Properties, Soil Nutrient Contents, and Soil Enzymatic Activities
2.4. Statistical Analysis
3. Results
3.1. Differences in the Decomposition Variables
3.2. Differences in Soil Physicochemical Properties, Soil Nutrient Contents, and Soil Enzymatic Activities
3.3. Correlations Patterns Between the k of the Leaves of the Two Aquatic Plants, Soil Physicochemical Properties, Soil Nutrient Contents, and Soil Enzymatic Activities
3.4. The Influences of Soil Physicochemical Properties, Soil Nutrient Contents, Soil Enzymatic Activities, the Invasion Degree of E. crassipes, and the Type of Heavy Metals on the k of the Leaves of the Two Aquatic Plants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Swierszcz, S.; Czarniecka-Wiera, M.; Szymura, T.H.; Szymura, M. From invasive species stand to species-rich grassland: Long-term changes in plant species composition during Solidago invaded site restoration. J. Environ. Manag. 2024, 353, 13. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, C.S.; Lüpke, N. Are alien plant species superior to natives, and is this determined by performance measure and study design? A meta-analysis. Basic Appl. Ecol. 2024, 77, 16–25. [Google Scholar] [CrossRef]
- Forey, E.; Lodhar, S.Y.F.; Galvin, S.D.; Lowry, J.H.; Gopaul, S.; Hanson, G.; Carboni, M.; Chauvat, M.; Boehmer, H.J. Alien palm invasion leads to selective biotic filtering of resident plant communities towards competitive functional traits. Biol. Invasions 2023, 25, 1489–1508. [Google Scholar] [CrossRef]
- Siddiqui, J.A.; Bamisile, B.S.; Khan, M.M.; Islam, W.; Hafeez, M.; Bodlah, I.; Xu, Y.J. Impact of invasive ant species on native fauna across similar habitats under global environmental changes. Environ. Sci. Pollut. Res. 2021, 28, 54362–54382. [Google Scholar] [CrossRef]
- Rudolph, J.; Gornish, E.S.; Barberán, A. Plant–plant and plant–soil interactions under drought and the presence of invasive buffelgrass (Cenchrus ciliaris). Biol. Invasions 2024, 26, 1281–1293. [Google Scholar] [CrossRef]
- Xu, Z.L.; Zhong, S.S.; Yu, Y.L.; Wang, Y.Y.; Cheng, H.Y.; Du, D.L.; Wang, C.Y. Rhus typhina L. triggered greater allelopathic effects than Koelreuteria paniculata Laxm under ammonium fertilization. Sci. Hortic. 2023, 309, 111703. [Google Scholar] [CrossRef]
- Lu, Y.J.; Wang, Y.F.; Wu, B.D.; Wang, S.; Wei, M.; Du, D.L.; Wang, C.Y. Allelopathy of three Compositae invasive alien species on indigenous Lactuca sativa L. enhanced under Cu and Pb pollution. Sci. Hortic. 2020, 267, 109323. [Google Scholar] [CrossRef]
- Yan, X.L.; Liu, Q.R.; Shou, H.Y.; Zeng, X.F.; Zhang, Y.; Chen, L.; Liu, Y.; Ma, H.Y.; Qi, S.Y.; Ma, J.S. The categorization and analysis on the geographic distribution patterns of Chinese alien invasive plants. Biodivers. Sci. 2014, 22, 667–676. [Google Scholar]
- Wang, C.Y.; Liu, J.; Xiao, H.G.; Zhou, J.W.; Du, D.L. Floristic characteristics of alien invasive seed plant species in China. An. Da Acad. Bras. De Ciências 2016, 88, 1791–1797. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Q.; Bowler, P.A.; Xiong, W. Invasive aquatic plants in China. Aquat. Invasions 2016, 11, 1–9. [Google Scholar] [CrossRef]
- Morales Salas, L.; Ruiz Salazar, M.; Escobar, B. Doped biochar from an invasive plant “Eichhornia crassipes” for the oxygen reduction reaction. Int. J. Hydrogen Energy 2022, 47, 30140–30146. [Google Scholar] [CrossRef]
- Hill, J.M.; Hutton, B.; Steffins, K.; Rieucau, G. Floating along marsh edges: The impact of invasive water hyacinth (Eichornia crassipes) on estuarine species assemblages and predation risk. J. Exp. Mar. Biol. Ecol. 2021, 544, 151618. [Google Scholar] [CrossRef]
- Casierra-Posada, F.; Arias-Salinas, J.J.; Rodriguez-Quiroz, J.F. Excess aluminum tolerance of the common water-hyacinth (Eichhornia crassipes) under greenhouse conditions. Chil. J. Agric. Res. 2021, 81, 597–606. [Google Scholar] [CrossRef]
- Wu, H.; Ding, J.Q. Abiotic and biotic determinants of plant diversity in aquatic communities invaded by Water Hyacinth [Eichhornia crassipes (Mart.) Solms]. Front. Plant Sci. 2020, 11, 01306. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Cheng, H.Y.; Xu, Z.L.; Zhong, S.S.; Zhu, M.W.; Wei, Y.Q.; Xu, Z.Y.; Du, D.L.; Wang, C.Y.; et al. Litter mass loss of the invasive Rhus typhina L. and native Koelreuteria paniculata Laxm. Trees alters soil N-fixing bacterial community composition under different N forms. Atmosphere 2024, 15, 424. [Google Scholar] [CrossRef]
- Xu, Z.L.; Zhong, S.S.; Yu, Y.L.; Li, Y.; Li, C.; Xu, Z.Y.; Liu, J.; Wang, C.Y.; Du, D.L. Heavy metal contamination alters the co-decomposition of leaves of the invasive tree Rhus typhina L. and the native tree Koelreuteria paniculata Laxm. Plants 2023, 12, 2523. [Google Scholar] [CrossRef]
- Chen, S.; Ding, S.; Tang, K.; Liu, Y. Invasive plant indirectly regulates native plant decomposition by affecting invertebrate communities. Limnologica 2022, 92, 125939. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Zhang, H.L.; Yan, Z.W.; Wang, J.N.; Yu, H.H.; Yu, D.; Liu, C.H. Decomposition of exotic versus native aquatic plant litter in a lake littoral zone: Stoichiometry and life form analyses. Sci. Total Environ. 2024, 927, 12. [Google Scholar] [CrossRef]
- Ehrenfeld, J.G. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 2003, 6, 503–523. [Google Scholar] [CrossRef]
- Dekanova, V.; Svitkova, I.; Novikmec, M.; Svitok, M. Litter breakdown of invasive alien plant species in a pond environment: Rapid decomposition of Solidago canadensis may alter resource dynamics. Limnologica 2021, 90, 125911. [Google Scholar] [CrossRef]
- Hu, X.; Arif, M.; Ding, D.D.; Li, J.J.; He, X.R.; Li, C.X. Invasive plants and species richness impact litter decomposition in Riparian Zones. Front. Plant Sci. 2022, 13, 955656. [Google Scholar] [CrossRef] [PubMed]
- Souza-Alonso, P.; Guisande-Collazo, A.; Lechuga-Lago, Y.; González, L. Changes in decomposition dynamics, soil community function and the growth of native seedlings under the leaf litter of two invasive plants. Biol. Invasions 2024, 26, 3695–3714. [Google Scholar] [CrossRef]
- Kone, A.W.; Kassi, S.P.A.Y.; Koffi, B.Y.; Masse, D.; Maiga, A.A.; Tondoh, J.E.; Kisaka, O.M.; Toure, G.P.T. Chromolaena odorata (L.) K&R (Asteraceae) invasion effects on soil microbial biomass and activities in a forest-savanna mosaic. Catena 2021, 207, 105619. [Google Scholar]
- De Castro, W.A.C.; Bonugli-Santos, R.C.; Sibim, A.C.; Da Cunha-Santino, M.B.; Bianchini, I. Enzymatic efficiency of the decomposing microbiota: What does really matter for aquatic macrophytes invasions? Acta Bot. Bras. 2021, 35, 104–110. [Google Scholar] [CrossRef]
- Torres, N.; Herrera, I.; Fajardo, L.; Bustamante, R.O. Meta-analysis of the impact of plant invasions on soil microbial communities. Bmc Ecol. Evol. 2021, 21, 172. [Google Scholar] [CrossRef]
- Wang, S.; Wei, M.; Cheng, H.Y.; Wu, B.D.; Du, D.L.; Wang, C.Y. Indigenous plant species and invasive alien species tend to diverge functionally under heavy metal pollution and drought stress. Ecotoxicol. Environ. Saf. 2020, 205, 111160. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wu, B.D.; Jiang, K.; Zhou, J.W. Effects of different types of heavy metal pollution on functional traits of invasive redroot pigweed and native red amaranth. Int. J. Environ. Res. 2018, 12, 419–427. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wei, M.; Wang, S.; Wu, B.D.; Du, D.L. Cadmium influences the litter decomposition of Solidago canadensis L. and soil N-fixing bacterial communities. Chemosphere 2020, 246, 125717. [Google Scholar] [CrossRef]
- Nawaz, M.; Sun, J.F.; Bo, Y.W.; He, F.; Shabbir, S.; Hassan, M.U.; Pan, L.X.; Ahmad, P.; Sonne, C.; Du, D.L. Cadmium induced defense enhance the invasive potential of Wedelia trilobata under herbivore infestation. J. Hazard. Mater. 2024, 469, 133931. [Google Scholar] [CrossRef]
- Jiang, K.; Wu, B.D.; Wang, C.Y.; Ran, Q. Ecotoxicological effects of metals with different concentrations and types on the morphological and physiological performance of wheat. Ecotoxicol. Environ. Saf. 2019, 167, 345–353. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wu, B.D.; Jiang, K.; Wei, M.; Wang, S. Effects of different concentrations and types of Cu and Pb on soil N-fixing bacterial communities in the wheat rhizosphere. Appl. Soil Ecol. 2019, 144, 51–59. [Google Scholar] [CrossRef]
- Han, Z.X.; Wan, D.J.; Tian, H.X.; He, W.X.; Wang, Z.Q.; Liu, Q. Pollution assessment of heavy metals in soils and plants around a molybdenum mine in Central China. Pol. J. Environ. Stud. 2019, 28, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Teng, Y.G.; Lu, S.J.; Wang, Y.Y.; Wang, J.S. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512–513, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.M.; Wu, L.H.; Huang, Y.J.; Luo, Y.M.; Christie, P. Total concentrations of heavy metals and occurrence of antibiotics in sewage sludges from cities throughout China. J. Soils Sediments 2014, 14, 1123–1135. [Google Scholar] [CrossRef]
- Sun, J.F.; Rutherford, S.; Ullah, M.S.; Ullah, I.; Javed, Q.; Rasool, G.; Ajmal, M.; Azeem, A.; Nazir, M.J.; Du, D.L. Plant-soil feedback during biological invasions: Effect of litter decomposition from an invasive plant (Sphagneticola trilobata) on its native congener (S. calendulacea). J. Plant Ecol. 2022, 15, 610–624. [Google Scholar] [CrossRef]
- He, Y.D.; Xing, Y.J.; Yan, G.Y.; Liu, G.C.; Liu, T.; Wang, Q.G. Long-term nitrogen addition could modify degradation of soil organic matter through changes in soil enzymatic activity in a natural secondary forest. Forests 2023, 14, 2049. [Google Scholar] [CrossRef]
- Kouadio, H.K.; Koné, A.W.; Touré, G.-P.T.; Konan, L.N.; Yapo, G.R.; Abobi, H.D.A. Litter decomposition in the mixed Chromolaena odorata (Asteraceae, herbaceous)-Cajanus cajan (Fabaceae, ligneous) fallow: Synergistic or antagonistic mixing effect? Agrofor. Syst. 2023, 97, 1525–1539. [Google Scholar] [CrossRef]
- McBride, S.G.; Levi, E.M.; Nelson, J.A.; Archer, S.R.; Barnes, P.W.; Throop, H.L.; Predick, K.; McCulley, R.L. Soil-litter mixing mediates drivers of dryland decomposition along a continuum of biotic and abiotic factors. Ecosystems 2023, 26, 1349–1366. [Google Scholar] [CrossRef]
- Olson, J.S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 1963, 44, 322–331. [Google Scholar] [CrossRef]
- Anwar, J.; Subhani, G.M.; Hussain, M.; Ahmad, J.; Hussain, M.; Munir, M. Drought tolerance indices and their correlation with yield in exotic wheat genotypes. Pak. J. Bot. 2011, 43, 1527–1530. [Google Scholar]
- Zdravkovic, J.; Jovanovic, Z.; Djordjevic, M.; Girek, Z.; Zdravkovic, M.; Stikic, R. Application of stress susceptibility index for drought tolerance screening of tomato populations. Genetika 2013, 45, 679–689. [Google Scholar] [CrossRef]
- Ballesta, P.; Mora, F.; Del Pozo, A. Association mapping of drought tolerance indices in wheat: QTL-rich regions on chromosome 4A. Sci. Agric. 2020, 77, e20180153. [Google Scholar] [CrossRef]
- Hoorens, B.; Aerts, R.; Stroetenga, M. Does initial litter chemistry explain litter mixture effects on decomposition. Oecologia 2003, 137, 578–586. [Google Scholar] [CrossRef]
- Jones, G.L.; Scullion, J.; Worgan, H.; Gwynn-Jones, D. Litter of the invasive shrub Rhododendron ponticum (Ericaceae) modifies the decomposition rate of native UK woodland litter. Ecol. Indic. 2019, 107, 105597. [Google Scholar] [CrossRef]
- Marchante, E.; Marchante, H.; Freitas, H.; Kjøller, A.; Struwe, S. Decomposition of an N-fixing invasive plant compared with a native species: Consequences for ecosystem. Appl. Soil Ecol. 2019, 138, 19–31. [Google Scholar] [CrossRef]
- Maan, I.; Kaur, A.; Sharma, A.; Singh, H.P.; Batish, D.R.; Kohli, R.K.; Arora, N.K. Variations in leaf litter decomposition explain invasion success of Broussonetia papyrifera over confamilial non-invasive Morus alba in urban habitats. Urban For. Urban Green. 2022, 67, 127408. [Google Scholar] [CrossRef]
- Zhong, S.S.; Xu, Z.L.; Yu, Y.L.; Cheng, H.Y.; Wang, S.; Wei, M.; Du, D.L.; Wang, C.Y. Acid deposition at higher acidity weakens the antagonistic responses during the co-decomposition of two Asteraceae invasive plants. Ecotoxicol. Environ. Saf. 2022, 243, 114012. [Google Scholar] [CrossRef]
- Hättenschwiler, S.; Tiunov, A.V.; Scheu, S. Biodiversity and litter decomposition in terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 191–218. [Google Scholar] [CrossRef]
- Natalia, P.H.; Blundo, C.M.; Gurvich, D.E.; Díaz, S.; Cuevas, E. More than the sum of its parts? Assessing litter heterogeneity effects on the decomposition of litter mixtures through leaf chemistry. Plant Soil 2008, 303, 151–159. [Google Scholar]
- Steinwandter, M.; Schlick-Steiner, B.C.; Steiner, F.M.; Seeber, J. One plus one is greater than two: Mixing litter types accelerates decomposition of low-quality alpine dwarf shrub litter. Plant Soil 2019, 438, 405–419. [Google Scholar] [CrossRef]
- Chen, L.; Wang, M.Q.; Shi, Y.; Ma, P.P.; Xiao, Y.L.; Yu, H.W.; Ding, J.Q. Soil phosphorus form affects the advantages that arbuscular mycorrhizal fungi confer on the invasive plant species, Solidago canadensis, over its congener. Front. Microbiol. 2023, 14, 1160631. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Ying, Y.; Hu, B.; Pang, Y.; Bao, J. Physicochemical properties and digestibility of endosperm starches in four indica rice mutants. Carbohydr. Polym. 2018, 195, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-X.; Sun, Y.; Bai, J.; Chen, S.-Y.; Jia, X.; Huang, H.; Dong, J. Catechol detection based on a two-dimensional copper-based metal-organic framework with high polyphenol oxidase activity. Chin. J. Anal. Chem. 2023, 51, 100162. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Liu, Y.; Geng, X.; Li, Y.; Li, C.; Zhang, Y.; Wang, C.; Du, D. Cu and Pb Co-Contamination Accelerates the Decomposition Rate of Litter from Invasive Aquatic Plant Eichhornia crassipes (Mart.) Solms and the Effect Increases with Its Invasion Degree. Horticulturae 2025, 11, 768. https://doi.org/10.3390/horticulturae11070768
Du Y, Liu Y, Geng X, Li Y, Li C, Zhang Y, Wang C, Du D. Cu and Pb Co-Contamination Accelerates the Decomposition Rate of Litter from Invasive Aquatic Plant Eichhornia crassipes (Mart.) Solms and the Effect Increases with Its Invasion Degree. Horticulturae. 2025; 11(7):768. https://doi.org/10.3390/horticulturae11070768
Chicago/Turabian StyleDu, Yizhuo, Yingsheng Liu, Xiaoxuan Geng, Yue Li, Chuang Li, Yulong Zhang, Congyan Wang, and Daolin Du. 2025. "Cu and Pb Co-Contamination Accelerates the Decomposition Rate of Litter from Invasive Aquatic Plant Eichhornia crassipes (Mart.) Solms and the Effect Increases with Its Invasion Degree" Horticulturae 11, no. 7: 768. https://doi.org/10.3390/horticulturae11070768
APA StyleDu, Y., Liu, Y., Geng, X., Li, Y., Li, C., Zhang, Y., Wang, C., & Du, D. (2025). Cu and Pb Co-Contamination Accelerates the Decomposition Rate of Litter from Invasive Aquatic Plant Eichhornia crassipes (Mart.) Solms and the Effect Increases with Its Invasion Degree. Horticulturae, 11(7), 768. https://doi.org/10.3390/horticulturae11070768