Plant–Microbe Interactions for Improving Postharvest Shelf Life and Quality of Fresh Produce Through Protective Mechanisms
Abstract
1. Introduction
2. Postharvest Spoilage and Physiological Changes in Fresh Produce
2.1. Physiological Changes During Storage
2.2. Microbial Spoilage Agents
3. Microbial Communities and Their Role in Postharvest Quality Enhancement
Overview of Plant-Associated Microbes
4. Mechanisms Through Which Microbes Enhance Postharvest Traits
4.1. Ethylene Regulation and Delayed Senescence
4.2. Antimicrobial Metabolites and Biocontrol
Microbial Metabolite | Source Microbe | Key Activity/Mechanism | Examples/Applications | References |
---|---|---|---|---|
Lipopeptides (surfactin, iturin, fengycin) | Bacillus subtilis, Bacillus pumilus | Antimicrobial activity against fungi and bacteria Disrupt cell membranes Induce systemic resistance (ISR) in plants | Used to control fungal infections in fruits like apples, tomatoes, and strawberries. | [36,83,84] |
Volatile organic compounds (VOCs) | Bacillus siamensis, Pseudomonas sp. AN3A02 | Inhibit fungal growth Broad-spectrum antimicrobial properties Reduce postharvest disease incidence and maintain fruit quality | Reduces fungal growth on blueberries, extending shelf life. | [10,85] |
Volatile organic compounds (VOCs) | Pseudomonas sp. AN3A02 | Antifungal activity against Botrytis cinerea Inhibit hyphal growth and spore germination Reduce fungal infection in blueberries | Prevents fungal infection on blueberries during storage. | [35,83] |
Gliotoxin (lipopeptide) | Aspergillus fumigatus | Antimicrobial activity through zinc chelation Inhibit metallo-β-lactamases and bacterial growth | Inhibits fungal growth and provides a biocontrol agent in citrus fruits. | [10,86] |
Cyclic lipopeptides (alterochromides) | Pseudoalteromonas sp. strain T1lg65 | Antimicrobial activity against bacteria and fungi Antimicrobial peptides with potential for biocontrol applications Antifungal and antibacterial properties | Used for biocontrol of postharvest fruit pathogens. | [83,87] |
Antifungal enzymes (e.g., chitinase, β-1,3-glucanase) | Bacillus spp., Pseudomonas spp. | Breakdown of fungal cell walls Inhibit fungal growth, particularly Botrytis cinerea Induce of systemic resistance | Reduces fungal infections in apples and tomatoes during storage. | [88,89] |
Antimicrobial polyketides (e.g., difficidin) | Bacillus spp. | Antifungal and antibacterial properties Biocontrol agent for a wide range of plant pathogens | Used in postharvest management of fruits to control fungal and bacterial pathogens. | [35,90] |
Lipopeptides (surfactins, plipastatins) | Bacillus subtilis | Antifungal activity against Fusarium species Biocontrol activity in postharvest fruits | Effective in controlling Fusarium and preventing spoilage in postharvest fruits. | [91,92] |
Volatile organic compounds (VOCs) | Clavispora lusitaniae | Fungistatic and fungicidal effects against citrus postharvest pathogens Reduce mycelial growth of Penicillium digitatum and Geotrichum citri-aurantii | Reduces spoilage and enhances the quality of citrus fruits during postharvest. | [10,86] |
Volatile organic compounds (VOCs) | Bacillus siamensis | Inhibit Botrytis cinerea and Rhizopus stolonifer Reduce postharvest disease and extends fruit shelf life | Reduces postharvest diseases in strawberries and extends shelf life. | [40,93] |
4.3. Induced Systemic Resistance (ISR)
4.4. Enhancement of Nutritional and Bioactive Compounds
5. Microbial Interventions for Postharvest Disease Control and Quality Enhancement
5.1. Microbial Coatings and Biofilms
5.2. Spray Treatments and Biological Control Agents (BCAs)
5.3. Microbial Washes and Fermentation Treatments
6. Integration of Omics Approaches to Decoding Plant–Microbe Interactions in Postharvest Systems
6.1. Metabolomics
6.2. Transcriptomics
6.3. Microbiomics
7. Challenges and Regulatory Considerations
7.1. Consistency and Efficacy of Microbial Treatments
7.2. Regulatory Approval and Consumer Acceptance
8. Future Perspectives
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bisht, A.; Singh, S.P. Postharvest losses and management of horticultural produce: A review. J. Sci. Res. Rep. 2024, 30, 305–320. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, R.R.; Kesharwani, A.K. Postharvest losses of horticultural produce. In Postharvest Handling and Diseases of Horticultural Produce; CRC Press: Boca Raton, FL, USA, 2021; pp. 1–24. [Google Scholar]
- El-Ramady, H.R.; Domokos-Szabolcsy, É.; Abdalla, N.A.; Taha, H.S.; Fári, M. Postharvest management of fruits and vegetables storage. Sustain. Agric. Rev. 2015, 15, 65–152. [Google Scholar]
- Hossain, M.A.; Karim, M.M.; Juthee, S.A. Postharvest physiological and biochemical alterations in fruits: A review. Fundam. Appl. Agric. 2020, 5, 453–469. [Google Scholar] [CrossRef]
- Mahajan, P.V.; Caleb, O.J.; Singh, Z.; Watkins, C.B.; Geyer, M. Postharvest treatments of fresh produce. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20130309. [Google Scholar] [CrossRef]
- Lisboa, H.; Pasquali, M.; Anjos, A.I.D.; Sarinho, A.; De Melo, E.D.; Andrade, R.; Batista, L.; Lima, J.; Diniz, Y.; Barros, A. Innovative and Sustainable Food Preservation Techniques: Enhancing Food Quality, Safety, and Environmental Sustainability. Sustainability 2024, 16, 8223. [Google Scholar] [CrossRef]
- Amit, S.; Uddin, M.; Rahman, R.; Islam, S.R.; Khan, M. A review on mechanisms and commercial aspects of food preservation and processing. Agric. Food Secur. 2017, 6, 51. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, R.; Hasan, S.; Zzaman, W.; Rana, M.R.; Ahmed, S.; Roy, M.; Sayem, A.; Matin, A.; Raposo, A.; et al. A Comprehensive Review on Bio-Preservation of Bread: An Approach to Adopt Wholesome Strategies. Foods 2022, 11, 319. [Google Scholar] [CrossRef]
- Lado, B.; Yousef, A. Alternative food-preservation technologies: Efficacy and mechanisms. Microbes Infect. 2002, 4, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Azevedo, L.; Pandey, J.; Khusharia, S.; Kumari, M.; Kumar, D.; Kaushalendra; Bhardwaj, N.; Teotia, P.; Kumar, A. Microbial Intervention: An Approach to Combat the Postharvest Pathogens of Fruits. Plants 2022, 11, 3452. [Google Scholar] [CrossRef]
- Wassermann, B.; Abdelfattah, A.; Cernava, T.; Wicaksono, W.; Berg, G. Microbiome-based biotechnology for reducing food loss post harvest. Curr. Opin. Biotechnol. 2022, 78, 102808. [Google Scholar] [CrossRef]
- Hosseini, A.; Mahmoud, K.S.; Watkins, C.B. Microbial antagonists to biologically control postharvest decay and preserve fruit quality. Crit. Rev. Food Sci. Nutr. 2024, 64, 7330–7342. [Google Scholar] [CrossRef] [PubMed]
- Kusstatscher, P.; Cernava, T.; Abdelfattah, A.; Gokul, J.; Korsten, L.; Berg, G. Microbiome approaches provide the key to biologically control postharvest pathogens and storability of fruits and vegetables. FEMS Microbiol. Ecol. 2020, 96, fiaa119. [Google Scholar] [CrossRef]
- Kim, M.-S.; Park, E. Postharvest-induced microbiota remodeling increases fungal diversity in the phyllosphere mycobiota of broccoli florets. Postharvest Biol. Technol. 2021, 181, 111693. [Google Scholar] [CrossRef]
- Kumar, A.; Verma, J. Does plant-Microbe interaction confer stress tolerance in plants: A review? Microbiol. Res. 2018, 207, 41–52. [Google Scholar] [CrossRef]
- Fenta, L.; Mekonnen, H.; Kabtimer, N. The Exploitation of Microbial Antagonists against Postharvest Plant Pathogens. Microorganisms 2023, 11, 1044. [Google Scholar] [CrossRef] [PubMed]
- Anghel, A.; Țăranu, I.; Orțan, A.; Spinu, S.M.; Cudalbeanu, M.D.; Rosu, P.M.; Babeanu, N. Polyphenols and Microbiota Modulation: Insights from Swine and Other Animal Models for Human Therapeutic Strategies. Molecules 2024, 29, 6026. [Google Scholar] [CrossRef]
- Villalobos, M.; Serradilla, M.; Martín, A.; Ordiales, E.; Ruíz-Moyano, S.; Córdoba, M. Antioxidant and antimicrobial activity of natural phenolic extract from defatted soybean flour by-product for stone fruit postharvest application. J. Sci. Food Agric. 2016, 96, 2116–2124. [Google Scholar] [CrossRef] [PubMed]
- Ncama, K.; Magwaza, L.; Mditshwa, A.; Tesfay, S. Plant-based edible coatings for managing postharvest quality of fresh horticultural produce: A review. Food Packag. Shelf Life 2018, 16, 157–167. [Google Scholar] [CrossRef]
- Papoutsis, K.; Edelenbos, M. Postharvest environmentally and human-friendly pre-treatments to minimize carrot waste in the supply chain caused by physiological disorders and fungi. Trends Food Sci. Technol. 2021, 112, 88–98. [Google Scholar] [CrossRef]
- Shao, X.; Li, Y. Quality control of fresh sweet corn in controlled freezing-point storage. Afr. J. Biotechnol. 2011, 10, 14534–14542. [Google Scholar]
- Chiabrando, V.; Giacalone, G. Quality changes of blueberry fruit under modified atmosphere packaging. Ind. Aliment. 2009, 48, 15–20. [Google Scholar]
- Nasr, S.; Soliman, G. Effect of Ethylene Inhibitors on Regulation of Ripening and Quality of “Fuerte” Avocado Fruits. Egypt. J. Hortic. 2023, 51, 27–40. [Google Scholar] [CrossRef]
- Mari, M.; Bautista-Baños, S.; Sivakumar, D. Decay control in the postharvest system: Role of microbial and plant volatile organic compounds. Postharvest Biol. Technol. 2016, 122, 70–81. [Google Scholar] [CrossRef]
- Iakimova, E.; Ty, A.; Hertog, M.; Nicolaï, B.; Woltering, E. Programmed cell death and postharvest deterioration of fresh horticultural products. Postharvest Biol. Technol. 2024, 214, 113010. [Google Scholar] [CrossRef]
- Forlani, S.; Masiero, S.; Mizzotti, C. Fruit ripening: The role of hormones, cell wall modifications, and their relationship with pathogens. J. Exp. Bot. 2019, 70, 2993–3006. [Google Scholar] [CrossRef]
- Tipu, M.; Sherif, S. Ethylene and its crosstalk with hormonal pathways in fruit ripening: Mechanisms, modulation, and commercial exploitation. Front. Plant Sci. 2024, 15, 1475496. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.-Y.; Chen, Y.; Wang, L.-B.; Xie, Z.; Gu, C.; Zhang, S. Transcriptome analysis reveals a regulation of ethylene-induced post-harvest senescence in pear fruit. Sci. Hortic. 2018, 240, 585–591. [Google Scholar] [CrossRef]
- Mesejo, C.; Martínez-Fuentes, A.; Reig, C.; El-Otmani, M.; Agustí, M. Examining the impact of dry climates temperature on citrus fruit internal ripening. Sci. Hortic. 2024, 337, 113501. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, H.; Suo, J.; Yu, W.; Zhou, M.; Dai, W.; Song, L.; Hu, Y.; Wu, J. Effect of Temperature and Humidity on Oil Quality of Harvested Torreya grandis cv. Merrillii Nuts During the After-Ripening Stage. Front. Plant Sci. 2020, 11, 573681. [Google Scholar] [CrossRef]
- Huan, C.; Xu, Y.; An, X.; Yu, M.; Zheng, X.; Yu, Z.-F. iTRAQ-based protein profiling of peach fruit during ripening and senescence under different temperatures. Postharvest Biol. Technol. 2019, 151, 88–97. [Google Scholar] [CrossRef]
- Bist, N.; Bist, P. Role of Microorganisms in Post-Harvest Loss of Agricultural Products: A Review. Sustain. Food Agric. 2020, 2, 1–4. [Google Scholar] [CrossRef]
- Karanth, S.; Feng, S.; Patra, D.; Pradhan, A. Linking microbial contamination to food spoilage and food waste: The role of smart packaging, spoilage risk assessments, and date labeling. Front. Microbiol. 2023, 14, 1198124. [Google Scholar] [CrossRef] [PubMed]
- Veld, J. Microbial and biochemical spoilage of foods: An overview. Int. J. Food Microbiol. 1996, 33, 1–18. [Google Scholar] [CrossRef]
- Dukare, A.S.; Paul, S.; Nambi, V.E.; Gupta, R.K.; Singh, R.; Sharma, K.; Vishwakarma, R.K. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1498–1513. [Google Scholar] [CrossRef] [PubMed]
- Sare, A.R.; Jijakli, M.H.; Massart, S. Microbial ecology to support integrative efficacy improvement of biocontrol agents for postharvest diseases management. Postharvest Biol. Technol. 2021, 179, 111572. [Google Scholar] [CrossRef]
- Tronsmo, A.; Dennis, C. The use of Trichoderma species to control strawberry fruit rots. Neth. J. Plant Pathol. 1977, 83, 449–455. [Google Scholar] [CrossRef]
- Pusey, P.L.; Wilson, C. Postharvest biological control of stone fruit brown rot by Bacillus subtilis. Plant Dis. 1984, 68, 753–756. [Google Scholar] [CrossRef]
- Chalutz, E.; Wilson, C.L. Postharvest biocontrol of green and blue mold and sour rot of citrus fruit by Debaryomyces hansenii. Plant Dis. 1990, 74. [Google Scholar] [CrossRef]
- Droby, S.; Wisniewski, M. The fruit microbiome: A new frontier for postharvest biocontrol and postharvest biology. Postharvest Biol. Technol. 2018, 140, 107–112. [Google Scholar] [CrossRef]
- Zhimo, V.; Kumar, A.; Biasi, A.; Salim, S.; Feygenberg, O.; Toamy, M.A.; Abdelfattaah, A.; Medina, S.; Freilich, S.; Wisniewski, M.; et al. Compositional shifts in the strawberry fruit microbiome in response to near-harvest application of Metschnikowia fructicola, a yeast biocontrol agent. Postharvest Biol. Technol. 2021, 175, 111469. [Google Scholar] [CrossRef]
- De Costa, D.M.; Erabadupitiya, H. An integrated method to control postharvest diseases of banana using a member of the Burkholderia cepacia complex. Postharvest Biol. Technol. 2005, 36, 31–39. [Google Scholar] [CrossRef]
- Kefialew, Y.; Ayalew, A. Postharvest biological control of anthracnose (Colletotrichum gloeosporioides) on mango (Mangifera indica). Postharvest Biol. Technol. 2008, 50, 8–11. [Google Scholar] [CrossRef]
- Ali, S.; Khan, A.; Ali, L.; Rizvi, T.; Khan, S.; Hussain, J.; Hamayun, M.; Al-Harrasi, A. Enzyme inhibitory metabolites from endophytic Penicillium citrinum isolated from Boswellia sacra. Arch. Microbiol. 2017, 199, 691–700. [Google Scholar] [CrossRef]
- Kumari, M.; Qureshi, K.A.; Jaremko, M.; White, J.; Singh, S.K.; Sharma, V.K.; Singh, K.K.; Santoyo, G.; Puopolo, G.; Kumar, A. Deciphering the role of endophytic microbiome in postharvest diseases management of fruits: Opportunity areas in commercial up-scale production. Front. Plant Sci. 2022, 13, 1026575. [Google Scholar] [CrossRef]
- Huang, X.; Ren, J.; Li, P.; Feng, S.; Dong, P.; Ren, M. Potential of microbial endophytes to enhance the resistance to postharvest diseases of fruit and vegetables. J. Sci. Food Agric. 2021, 101, 1744–1757. [Google Scholar] [CrossRef]
- Panebianco, S.; Lombardo, M.F.; Anzalone, A.; Musumarra, A.; Pellegriti, M.G.; Catara, V.; Cirvilleri, G. Epiphytic and endophytic microorganisms associated to different cultivar of tomato fruits in greenhouse environment and characterization of beneficial bacterial strains for the control of post-harvest tomato pathogens. Int. J. Food Microbiol. 2022, 379, 109861. [Google Scholar] [CrossRef]
- Khan, A.L.; Halo, B.A.; Elyassi, A.; Ali, S.; Ali, S.; Al-Hosni, K.; Hussain, J.; Al-Harrasi, A.; Lee, I.-J. Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron. J. Biotechnol. 2016, 21, 58–64. [Google Scholar] [CrossRef]
- Mukherjee, A.; Singh, B.; Kaur, S.; Sharma, M.; De Araújo, A.S.F.; Pereira, A.; Morya, R.; Puopolo, G.; Melo, V.; Verma, J. Unearthing the power of microbes as plant microbiome for sustainable agriculture. Microbiol. Res. 2024, 286, 127780. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.; Ali, S. A fruitful decade of bacterial ACC deaminase biotechnology: A pragmatic approach towards abiotic stress relief in plants. Theor. Exp. Plant Physiol. 2022, 34, 109–129. [Google Scholar] [CrossRef]
- Villarreal Silva, M. Role of Epiphytic Bacteria in the Colonization of Fruits and Leafy Greens by Foodborne Bacterial Pathogens. Doctoral Thesis, Texas A&M University, College Station, TX, USA, 2016. [Google Scholar]
- Prusky, D.; Gullino, M.L. Postharvest Pathology; Springer: London, UK, 2010; Volume 2. [Google Scholar]
- Pierce, G.E.; Drago, G.K.; Ganguly, S.; Tucker, T.M.; Hooker, J.W.; Jones, S.; Crow, S.A., Jr. Preliminary report on a catalyst derived from induced cells of Rhodococcus rhodochrous strain DAP 96253 that delays the ripening of selected climacteric fruit: Bananas, avocados, and peaches. J. Ind. Microbiol. Biotechnol. 2011, 38, 1567. [Google Scholar] [CrossRef]
- Pierce, G.E.; Tucker, T.A.; Wang, C.; Swensen, K.; Crow, S.A., Jr. Delayed ripening of climacteric fruit by catalysts prepared from induced cells of Rhodococcus rhodochrous DAP 96253: A case for the biological modulation of yang-cycle driven processes by a prokaryote. Ind. Biotechnol. 2014, 10, 354–362. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, Q.; Zhang, Q.; Zhao, Q.; Godana, E.; Zhang, X.; Zhou, S.; Zhang, H. The preharvest application of Aureobasidium pullulans S2 remodeled the microbiome of tomato surface and reduced postharvest disease incidence of tomato fruit. Postharvest Biol. Technol. 2022, 194, 112101. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Li, R.; Hu, Y.; Wang, X.; Li, W.; Shao, Y. Co-culture fermentation of Debaryomyces hansenii and Bacillus atrophaeus alleviates quality deterioration of litchi fruit by ameliorating microbial community diversity and composition. Food Microbiol. 2024, 127, 104683. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.; Feng, L.; Li, Y.; Yue, R.; Wang, Y.; Zhou, Y. Endophytic Fungi Volatile Organic Compounds as Crucial Biocontrol Agents Used for Controlling Fruit and Vegetable Postharvest Diseases. J. Fungi 2024, 10, 332. [Google Scholar] [CrossRef]
- Marzouk, T.; Chaouachi, M.; Sharma, A.; Jallouli, S.; Mhamdi, R.; Kaushik, N.; Djébali, N. Biocontrol of Rhizoctonia solani using volatile organic compounds of solanaceae seed-borne endophytic bacteria. Postharvest Biol. Technol. 2021, 181, 111655. [Google Scholar] [CrossRef]
- Tilocca, B.; Cao, A.; Migheli, Q. Scent of a Killer: Microbial Volatilome and Its Role in the Biological Control of Plant Pathogens. Front. Microbiol. 2020, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.; Song, H.; Shi, H.; Gao, Z.; Mao, J.; Cao, Y.; Huo, H.; Li, J.; Wang, X.; Lin, M. Postharvest treatment with Bacillus velezensis LX mitigates disease incidence and alters the microbiome on kiwifruit surface. Postharvest Biol. Technol. 2024, 211, 112843. [Google Scholar] [CrossRef]
- Machado, I.; Silva, L.R.; Giaouris, E.D.; Melo, L.F.; Simões, M. Quorum sensing in food spoilage and natural-based strategies for its inhibition. Food Res. Int. 2020, 127, 108754. [Google Scholar] [CrossRef]
- Lei, X.; Deng, B.; Ruan, C.; Deng, L.; Zeng, K. Phenylethanol as a quorum sensing molecule to promote biofilm formation of the antagonistic yeast Debaryomyces nepalensis for the control of black spot rot on jujube. Postharvest Biol. Technol. 2022, 185, 111788. [Google Scholar] [CrossRef]
- Shafi, J.; Tian, H.; Ji, M. Bacillus species as versatile weapons for plant pathogens: A review. Biotechnol. Biotechnol. Equip. 2017, 31, 446–459. [Google Scholar] [CrossRef]
- Weller, D.M. Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology 2007, 97, 250–256. [Google Scholar] [CrossRef]
- Qin, S.; Liu, Y.; Chen, Y.; Hu, J.; Xiao, W.; Tang, X.; Li, G.; Lin, P.; Pu, Q.; Wu, Q. Engineered bacteriophages containing anti-CRISPR suppress infection of antibiotic-resistant P. aeruginosa. Microbiol. Spectr. 2022, 10, e0160222. [Google Scholar] [CrossRef]
- Mirzaei, B.; Bazgir, Z.N.; Goli, H.R.; Iranpour, F.; Mohammadi, F.; Babaei, R. Prevalence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii isolated in clinical samples from Northeast of Iran. BMC Res. Notes 2020, 13, 380. [Google Scholar] [CrossRef]
- Zhang, Q.; Stummer, B.E.; Guo, Q.; Zhang, W.; Zhang, X.; Zhang, L.; Harvey, P.R. Quantification of Pseudomonas protegens FD6 and Bacillus subtilis NCD-2 in soil and the wheat rhizosphere and suppression of root pathogenic Rhizoctonia solani AG-8. Biol. Control 2021, 154, 104504. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Y.; Harvey, P.R.; Stummer, B.E.; Yang, J.; Ji, Z. Wheat rhizosphere colonization by Bacillus amyloliquefaciens W10 and Pseudomonas protegens FD6 suppress soil and in planta abundance of the sharp eyespot pathogen Rhizoctonia cerealis. J. Appl. Microbiol. 2023, 134, lxad101. [Google Scholar] [CrossRef]
- Benaissa, A.; Ouankilla, A.; Habibi, Z.; Benbessis, E.-H.; Chegga, A. Screening for Antimicrobial and Enzymatic Activities of Bacillus and Pseudomonas Strains Isolated from Volcanic Soil of Tahart (Ahaggar, Algeria). Geomicrobiol. J. 2023, 40, 560–568. [Google Scholar] [CrossRef]
- Sang, M.K.; Kim, K.D. Biocontrol activity and root colonization by Pseudomonas corrugata strains CCR04 and CCR80 against Phytophthora blight of pepper. BioControl 2014, 59, 437–448. [Google Scholar] [CrossRef]
- Arslan, S.; Eyi, A.; Özdemir, F. Spoilage potentials and antimicrobial resistance of Pseudomonas spp. isolated from cheeses. J. Dairy Sci. 2011, 94, 5851–5856. [Google Scholar] [CrossRef]
- Ternström, A.; Lindberg, A.M.; Molin, G. Classification of the spoilage flora of raw and pasteurized bovine milk, with special reference to Pseudomonas and Bacillus. J. Appl. Bacteriol. 1993, 75, 25–34. [Google Scholar] [CrossRef]
- Romero-González, L.E.; Rojas-Vargas, J.; Muriel-Millán, L.F.; Bustos-Martínez, J.; Bustamante, V.H.; Pardo-López, L. Genomic and phenotypic characterization of Pseudomonas sp. GOM7, a novel marine bacterial species with antimicrobial activity against multidrug-resistant Staphylococcus aureus. PLoS ONE 2023, 18, e0288504. [Google Scholar] [CrossRef]
- Zhang, H. Fruit Ripening and Senescence Regulated by Ethylene and Melatonin. Agric. Res. Technol. Open Access J. 2021, 26, 556324. [Google Scholar] [CrossRef]
- Wang, W.; Liu, S.-P.; Cheng, X.; Cui, Z.; Jiang, Y.; Zheng, X.; Tan, B.; Cheng, J.; Ye, X.; Li, J.; et al. Ethylene and polyamines form a negative feedback loop to regulate peach fruit ripening via the transcription factor PpeERF113 by regulating the expression of PpePAO1. Postharvest Biol. Technol. 2022, 190, 111958. [Google Scholar] [CrossRef]
- Sharma, M.; Negi, S.; Kumar, P.; Srivastava, D.; Choudhary, M.; Irfan, M. Fruit ripening under heat stress: The intriguing role of ethylene-mediated signaling. Plant Sci. Int. J. Exp. Plant Biol. 2023, 335, 111820. [Google Scholar] [CrossRef]
- Moon, Y.; Ali, S. Possible mechanisms for the equilibrium of ACC and role of ACC deaminase-producing bacteria. Appl. Microbiol. Biotechnol. 2022, 106, 877–887. [Google Scholar] [CrossRef] [PubMed]
- Glick, B.; Nascimento, F. Pseudomonas 1-Aminocyclopropane-1-carboxylate (ACC) Deaminase and Its Role in Beneficial Plant-Microbe Interactions. Microorganisms 2021, 9, 2467. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Song, W.; Tang, X.; Liu, Y.; Miao, M. Feruloyl Glyceride Mitigates Tomato Postharvest Rot by Inhibiting Penicillium expansum Spore Germination and Enhancing Suberin Accumulation. Foods 2024, 13, 1147. [Google Scholar] [CrossRef]
- Jurick, W. Biotechnology approaches to reduce antimicrobial resistant postharvest pathogens, mycotoxin contamination, and resulting product losses. Curr. Opin. Biotechnol. 2022, 78, 102791. [Google Scholar] [CrossRef]
- Guesmi, S.; Mahjoubi, M.; Pujić, P.; Cherif, A.; Normand, P.; Sghaier, H.; Boubakri, H. Biotechnological potential of Kocuria rhizophila PT10 isolated from roots of Panicum turgidum. Int. J. Environ. Sci. Technol. 2022, 19, 1–14. [Google Scholar] [CrossRef]
- Afoshin, A.; Kudryakova, I.; Borovikova, A.; Suzina, N.; Toropygin, I.; Shishkova, N.; Vasilyeva, N. Lytic potential of Lysobacter capsici VKM B-2533T: Bacteriolytic enzymes and outer membrane vesicles. Sci. Rep. 2020, 10, 9944. [Google Scholar] [CrossRef]
- Kim, P.; Ryu, J.-K.; Kim, Y.H.; Chi, Y.-T. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol. Biotechnol. 2010, 20, 138–145. [Google Scholar] [CrossRef]
- Jiang, Y. The use of microbial metabolites against post-harvest diseases of longan fruit. Int. J. Food Sci. Technol. 1997, 32, 535–538. [Google Scholar] [CrossRef]
- Falardeau, J.; Wise, C.; Novitsky, L.; Avis, T. Ecological and Mechanistic Insights Into the Direct and Indirect Antimicrobial Properties of Bacillus subtilis Lipopeptides on Plant Pathogens. J. Chem. Ecol. 2013, 39, 869–878. [Google Scholar] [CrossRef]
- Deleu, M.; Paquot, M.; Nylander, T. Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophys. J. 2008, 94, 2667–2679. [Google Scholar] [CrossRef] [PubMed]
- Pott, D.M.; Vallarino, J.G.; Osorio, S. Metabolite Changes during Postharvest Storage: Effects on Fruit Quality Traits. Metabolites 2020, 10, 187. [Google Scholar] [CrossRef] [PubMed]
- Yun, Z.; Gao, H.; Jiang, Y. Insights into metabolomics in quality attributes of postharvest fruit. Curr. Opin. Food Sci. 2022, 45, 100836. [Google Scholar] [CrossRef]
- Ramyabharathi, S.A.; Meena, B.; Raguchander, T. Induction of chitinase and β-1, 3-glucanase PR proteins in tomato through liquid formulated Bacillus subtilis EPCO 16 against Fusarium wilt. J. Today’s Biol. Sci. Res. Rev. 2012, 1, 50–60. [Google Scholar]
- Torres, M.; Petroselli, G.; Daz, M.; Erra-Balsells, R.; Audisio, M. Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against Gram-positive foodborne pathogenic bacteria: UV-MALDI-TOF MS analysis of its bioactive compounds. World J. Microbiol. Biotechnol. 2015, 31, 929–940. [Google Scholar] [CrossRef]
- Millan, A.F.-S.; Gamir, J.; Farran, I.; Larraya, L.; Veramendi, J. Identification of new antifungal metabolites produced by the yeast Metschnikowia pulcherrima involved in the biocontrol of postharvest plant pathogenic fungi. Postharvest Biol. Technol. 2022, 192, 111995. [Google Scholar] [CrossRef]
- Vassaux, A.; Rannou, M.; Peers, S.; Daboudet, T.; Jacques, P.; Coutte, F. Impact of the Purification Process on the Spray-Drying Performances of the Three Families of Lipopeptide Biosurfactant Produced by Bacillus subtilis. Front. Bioeng. Biotechnol. 2021, 9, 815337. [Google Scholar] [CrossRef]
- Bakker, C.; Graham, H.; Popescu, I.; Li, M.; McMullin, D.; Avis, T. Fungal membrane determinants affecting sensitivity to antifungal cyclic lipopeptides from Bacillus spp. Fungal Biol. 2024, 128, 2080–2088. [Google Scholar] [CrossRef]
- Terry, L.; Joyce, D. Elicitors of induced disease resistance in postharvest horticultural crops: A brief review. Postharvest Biol. Technol. 2004, 32, 1–13. [Google Scholar] [CrossRef]
- Yu, Y.; Gui, Y.; Li, Z.; Jiang, C.; Guo, J.; Niu, D. Induced Systemic Resistance for Improving Plant Immunity by Beneficial Microbes. Plants 2022, 11, 386. [Google Scholar] [CrossRef]
- Pieterse, C.; Zamioudis, C.; Berendsen, R.; Weller, D.; Van Wees, S.; Bakker, P. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef]
- Wang, B.; Bi, Y. The role of signal production and transduction in induced resistance of harvested fruits and vegetables. Food Qual. Saf. 2021, 5, fyab011. [Google Scholar] [CrossRef]
- Romanazzi, G.; Sanzani, S.; Bi, Y.; Tian, S.; Martínez, P.; Alkan, N. Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biol. Technol. 2016, 122, 82–94. [Google Scholar] [CrossRef]
- Singh, S.; Wu, X.; Shao, C.; Zhang, H. Microbial enhancement of plant nutrient acquisition. Stress Biol. 2022, 2, 3. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, R.; Kandel, S.L.; Strausbaugh, C.A.; Singh, A.; Pokhrel, S.; Bill, M. Root Microbiome and Metabolome Traits Associated with Improved Post-Harvest Root Storage for Sugar Beet Breeding Lines Under Southern Idaho Conditions. Int. J. Mol. Sci. 2024, 25, 12681. [Google Scholar] [CrossRef]
- Sapna; Sharma, C.; Pathak, P.; Yadav, S.P.; Gautam, S. Potential of emerging “all-natural” edible coatings to prevent post-harvest losses of vegetables and fruits for sustainable agriculture. Prog. Org. Coat. 2024, 193, 108537. [Google Scholar] [CrossRef]
- Gajendran, V.P.; Rajamani, S. Recent Advancements in Harnessing Lactic Acid Bacterial Metabolites for Fruits and Vegetables Preservation. Probiotics Antimicrob. Proteins 2024. [Google Scholar] [CrossRef]
- Haque, M.; Khatun, M.; Mosharaf, M.K.; Rahman, A.; Haque, M.A.; Nahar, K. Biofilm producing probiotic bacteria enhance productivity and bioactive compounds in tomato. Biocatal. Agric. Biotechnol. 2023, 50, 102673. [Google Scholar] [CrossRef]
- Buchholz, F.; Kostić, T.; Sessitsch, A.; Mitter, B. The potential of plant microbiota in reducing postharvest food loss. Microb. Biotechnol. 2018, 11, 971–975. [Google Scholar] [CrossRef] [PubMed]
- Dilmaçünal, T.; Kuleaşan, H. Chapter 16—Novel Strategies for the Reduction of Microbial Degradation of Foods. In Food Safety and Preservation; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 481–520. [Google Scholar]
- Manowan, P.; Anh To, H.T.; Prakitchaiwattana, C. Biocontrol mechanisms and antimicrobial gene expression of Bacillus 63–10 and impact on microbial ecosystems of fruit; quality and shelf life. Food Control 2025, 172, 111160. [Google Scholar] [CrossRef]
- Taghavi, T.; Kim, C.; Rahemi, A. Role of Natural Volatiles and Essential Oils in Extending Shelf Life and Controlling Postharvest Microorganisms of Small Fruits. Microorganisms 2018, 6, 104. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Keat, Y.W.; Charles, F.; Siddiqui, M.W. Advances in postharvest technologies to extend the storage life of minimally processed fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2018, 58, 2632–2649. [Google Scholar] [CrossRef]
- Wisniewski, M.; Droby, S. The postharvest microbiome: The other half of sustainability. Biol. Control 2019, 137, 104025. [Google Scholar] [CrossRef]
- Köhl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front. Plant Sci. 2019, 10, 845. [Google Scholar] [CrossRef]
- Sharma, R.R.; Singh, D.; Singh, R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biol. Control 2009, 50, 205–221. [Google Scholar] [CrossRef]
- Nie, L.; Ye, W.; Xie, W.; Zhou, W.-W. Biofilm: New insights in the biological control of fruits with Bacillus amyloliquefaciens B4. Microbiol. Res. 2022, 265, 127196. [Google Scholar] [CrossRef]
- Fan, T.; Luan, Y.-Y.; Xiang, S.; Shi, Y.-X.; Xie, X.-W.; Chai, A.; Li, L.; Li, B. Seed coating with biocontrol bacteria encapsulated in sporopollenin exine capsules for the control of soil-borne plant diseases. Int. J. Biol. Macromol. 2024, 281, 136093. [Google Scholar] [CrossRef]
- Peralta-Ruiz, Y.; Rossi, C.; Grande-Tovar, C.; Chaves-López, C. Green Management of Postharvest Anthracnose Caused by Colletotrichum gloeosporioides. J. Fungi 2023, 9, 623. [Google Scholar] [CrossRef]
- Cai, Z.; Huang, W.; Zhong, J.; Jin, J.; Wu, D.; Chen, K. Methyl jasmonate-loaded composite biofilm sustainably alleviates chilling lignification of loquat fruit during postharvest storage. Food Chem. 2024, 444, 138602. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Wang, Y.; Liu, L.; He, J. Biofilms: The Microbial “Protective Clothing” in Extreme Environments. Int. J. Mol. Sci. 2019, 20, 3423. [Google Scholar] [CrossRef]
- Zhu, X.; Hui, S.; Huang, H.; Liu, R.; Wang, S.; Huang, C. Antimicrobial mechanism of chlorine dioxide and its impacts on postharvest management in horticultural produce: A review. Postharvest Biol. Technol. 2024, 213, 112921. [Google Scholar] [CrossRef]
- Cheng, M.-Z.; Meng, F.; Lv, R.; Wang, P.; Wang, Y.; Chen, X.; Wang, A. Postharvest preservation effect of composite biocontrol agent on tomatoes. Sci. Hortic. 2023, 321, 112344. [Google Scholar] [CrossRef]
- Peighami-Ashnaei, S.; Sharifi-Tehrani, A.; Ahmadzadeh, M.; Behboudi, K. Selection of bacterial antagonists for the biological control of Botrytis cinerea in apple (Malus domestica) and in comparison with application of thiabendazole. Commun. Agric. Appl. Biol. Sci. 2009, 74, 739–743. [Google Scholar] [PubMed]
- Shternshis, M.; Shpatova, T.; Belyaev, A. Effect of Two Biological Formulations Based on Bacillus subtilis and Pseudomonas fluorescens on Control of Didymella applanata, the Causal Agent of Red Raspberry Cane Spur Blight. Int. J. Agron. 2016, 2016, 2797125. [Google Scholar] [CrossRef]
- El-Katatny, M.; Emam, A. Control of postharvest tomato rot by spore suspension and antifungal metabolites of trichoderma harzianum. J. Microbiol. Biotechnol. Food Sci. 2012, 1, 1505–1528. [Google Scholar]
- Bandara, A.Y.; Kang, S. Trichoderma application methods differentially affect the tomato growth, rhizomicrobiome, and rhizosphere soil suppressiveness against Fusarium oxysporum. Front. Microbiol. 2024, 15, 1366690. [Google Scholar] [CrossRef]
- De Simone, N.; Capozzi, V.; Amodio, M.L.; Colelli, G.; Spano, G.; Russo, P. Microbial-based biocontrol solutions for fruits and vegetables: Recent insight, patents, and innovative trends. Recent Pat. Food Nutr. Agric. 2021, 12, 3–18. [Google Scholar] [CrossRef]
- Elmer, P.A.G.; Reglinski, T. Biosuppression of Botrytis cinerea in grapes. Plant Pathol. 2006, 55, 155–177. [Google Scholar] [CrossRef]
- Droby, S.; Wisniewski, M.; Teixidó, N.; Spadaro, D.; Jijakli, H. The science, development, and commercialization of postharvest biocontrol products. Postharvest Biol. Technol. 2016, 122, 22–29. [Google Scholar] [CrossRef]
- Sellitto, V.M.; Zara, S.; Fracchetti, F.; Capozzi, V.; Nardi, T. Microbial Biocontrol as an Alternative to Synthetic Fungicides: Boundaries between Pre- and Postharvest Applications on Vegetables and Fruits. Fermentation 2021, 7, 60. [Google Scholar] [CrossRef]
- Mehmood, N.; Saeed, M.; Zafarullah, S.; Hyder, S.; Rizvi, Z.F.; Gondal, A.S.; Jamil, N.; Iqbal, R.; Ali, B.; Ercisli, S. Multifaceted impacts of plant-beneficial Pseudomonas spp. in managing various plant diseases and crop yield improvement. ACS Omega 2023, 8, 22296–22315. [Google Scholar] [CrossRef]
- Janisiewicz, W.J.; Jeffers, S.N. Efficacy of commercial formulation of two biofungicides for control of blue mold and gray mold of apples in cold storage. Crop Prot. 1997, 16, 629–633. [Google Scholar] [CrossRef]
- Zhou, T.; Chu, C.-L.; Liu, W.T.; Schaneider, K.E. Postharvest control of blue mold and gray mold on apples using isolates of Pseudomonas syringae. Can. J. Plant Pathol. 2001, 23, 246–252. [Google Scholar] [CrossRef]
- Stockwell, V.O.; Stack, J.P. Using Pseudomonas spp. for Integrated Biological Control. Phytopathology 2007, 97, 244–249. [Google Scholar] [CrossRef]
- Droby, S.; Kritzman, G.; Gamliel, A.; Austerweil, M.; Skutelski, Y.; Peretz-Alon, I.; Becker, E.; Katan, J.; Cohen, R.; Edelstein, M. Abstracts of Presentations at the 21st congress of the Israeli phytopathological society February 14–15, 2000 ARO, the Volcani Center, Bet Dagan, Israel. Phytoparasitica 2000, 28, 268–290. [Google Scholar] [CrossRef]
- Weiss, B.; Shachnai, A.; Cohen, L.; Horev, B.; Chalutz, E.; Daus, A.; Keren-Tzur, M.; Droby, S.; Katz, H. Commercial Testing of Aspire: A Yeast Preparation for the Biological Control of Postharvest Decay of Citrus. Biol. Control 1998, 12, 97–101. [Google Scholar]
- Usall, J.; Teixidó, N.; Torres, R.; Ochoa de Eribe, X.; Viñas, I. Pilot tests of Candida sake (CPA-1) applications to control postharvest blue mold on apple fruit. Postharvest Biol. Technol. 2001, 21, 147–156. [Google Scholar] [CrossRef]
- Droby, S.; Wisniewski, M.; El Ghaouth, A.; Wilson, C. Influence of food additives on the control of postharvest rots of apple and peach and efficacy of the yeast-based biocontrol product aspire. Postharvest Biol. Technol. 2003, 27, 127–135. [Google Scholar] [CrossRef]
- Droby, S. Enhancing Biocontrol Activity of Microbial. Enhancing Biocontrol Agents Handl. Risks 2001, 339, 77. [Google Scholar]
- Babbal; Adivitiya; Khasa, Y.P. Microbes as biocontrol agents. In Probiotics and Plant Health; Springer: Singapore, 2017; pp. 507–552. [Google Scholar]
- Lombardo, M.F.; Panebianco, S.; Azzaro, A.; Catara, V.; Cirvilleri, G. Assessing copper-alternative products for the control of pre-and postharvest citrus anthracnose. Plants 2023, 12, 904. [Google Scholar] [CrossRef]
- Kilonzo-Nthenge, A.; Chen, F.-C.; Godwin, S.L. Efficacy of home washing methods in controlling surface microbial contamination on fresh produce. J. Food Prot. 2006, 69, 330–334. [Google Scholar] [CrossRef]
- Checchia, I.; Binati, R.; Troiano, E.; Ugliano, M.; Felis, G.; Torriani, S. Unravelling the Impact of Grape Washing, SO2, and Multi-Starter Inoculation in Lab-Scale Vinification Trials of Withered Black Grapes. Fermentation 2021, 7, 43. [Google Scholar] [CrossRef]
- Yi, L.; Liu, X.; Teng, Q.; Deng, L.; Zeng, K. A new way to reduce postharvest loss of vegetables: Antibacterial products of vegetable fermentation and its controlling soft rot caused by Pectobacterium carotovorum. Biol. Control 2021, 161, 104708. [Google Scholar] [CrossRef]
- Zhang, J.; He, L.-H.; Guo, C.; Liu, Z.; Kaliaperumal, K.; Zhong, B.; Jiang, Y.-M. Evaluation of Aspergillus aculeatus GC-09 for the biological control of citrus blue mold caused by Penicillium italicum. Fungal Biol. 2022, 126, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Harbaum-Piayda, B.; Palani, K.; Schwarz, K. Influence of postharvest UV-B treatment and fermentation on secondary plant compounds in white cabbage leaves. Food Chem. 2016, 197 Pt A, 47–56. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, Y.; Liang, L.; Godana, E.; Zhang, X.; Yang, X.; Wu, M.; Song, Y.; Zhang, H. Changes in quality and microbiome composition of strawberry fruits following postharvest application of Debaryomyces hansenii, a yeast biocontrol agent. Postharvest Biol. Technol. 2023, 202, 112379. [Google Scholar] [CrossRef]
- Belay, Z.A.; Caleb, O.J. Role of integrated omics in unravelling fruit stress and defence responses during postharvest: A review. Food Chem. Mol. Sci. 2022, 5, 100118. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.; Tian, S.; Li, B. Application of -omic technologies in postharvest pathology: Recent advances and perspectives. Curr. Opin. Food Sci. 2022, 45, 100820. [Google Scholar] [CrossRef]
- Feng, Y.; Soni, A.; Brightwell, G.; M Reis, M.; Wang, Z.; Wang, J.; Wu, Q.; Ding, Y. The potential new microbial hazard monitoring tool in food safety: Integration of metabolomics and artificial intelligence. Trends Food Sci. Technol. 2024, 149, 104555. [Google Scholar] [CrossRef]
- Delaux, P.; Schornack, S. Plant evolution driven by interactions with symbiotic and pathogenic microbes. Science 2021, 371, eaba6605. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Sarsaiya, S.; Singh, R.; Gong, Q.; Wu, Q.; Shi, J. Omics approaches in understanding the benefits of plant-microbe interactions. Front. Microbiol. 2024, 15, 1391059. [Google Scholar] [CrossRef]
- Santin, M.; Ranieri, A.; Hauser, M.-T.; Miras-Moreno, B.; Rocchetti, G.; Lucini, L.; Strid, Å.; Castagna, A. The outer influences the inner: Postharvest UV-B irradiation modulates peach flesh metabolome although shielded by the skin. Food Chem. 2021, 338, 127782. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Liu, Y.; Ren, X.; Li, R.; Wang, C.; Qi, Y.; Xu, J.; Liu, Z.; Ding, Y.; Liu, C. Integration of morphological, physiological and multi-omics analysis reveals a comprehensive mechanism for cuticular wax during development of greasiness in postharvest apples. Food Res. Int. 2022, 157, 111429. [Google Scholar] [CrossRef]
- Gupta, S.; Schillaci, M.; Roessner, U. Metabolomics as an emerging tool to study plant–microbe interactions. Emerg. Top. Life Sci. 2022, 6, 175–183. [Google Scholar] [CrossRef]
- Bastas, K.K.; Kumar, A. Omics technologies in the plant–microbe interactions. In Microbial Biocontrol: Molecular Perspective in Plant Disease Management; Springer: Singapore, 2023; pp. 257–282. [Google Scholar]
- Kumar, P.; Choudhury, D. Optimizing Post-harvest Disease Management Through Plant Microbiome Intervention Strategies. In Plant Microbiome and Biological Control: Emerging Trends and Applications; Springer: Cham, Switzerland, 2025; pp. 407–434. [Google Scholar]
- Zhang, W.; Li, F.; Nie, L. Integrating multiple ‘omics’ analysis for microbial biology: Application and methodologies. Microbiology 2010, 156, 287–301. [Google Scholar] [CrossRef]
- Salon, C.; Avice, J.-C.; Colombié, S.; Dieuaide-Noubhani, M.; Gallardo, K.; Jeudy, C.; Ourry, A.; Prudent, M.; Voisin, A.-S.; Rolin, D. Fluxomics links cellular functional analyses to whole-plant phenotyping. J. Exp. Bot. 2017, 68, 2083–2098. [Google Scholar] [CrossRef]
- Rossi, M.T.; Kalde, M.; Srisakvarakul, C.; Kruger, N.J.; Ratcliffe, R.G. Cell-Type Specific Metabolic Flux Analysis: A Challenge for Metabolic Phenotyping and a Potential Solution in Plants. Metabolites 2017, 7, 59. [Google Scholar] [CrossRef]
- De Bruyn, F.; Zhang, S.; Pothakos, V.; Torres, J.; Lambot, C.; Moroni, A.; Callanan, M.; Sybesma, W.; Weckx, S.; De Vuyst, L. Exploring the Impacts of Postharvest Processing on the Microbiota and Metabolite Profiles during Green Coffee Bean Production. Appl. Environ. Microbiol. 2016, 83, e02398-16. [Google Scholar] [CrossRef]
- Mosier, A.; Justice, N.; Bowen, B.; Baran, R.; Thomas, B.; Northen, T.; Banfield, J. Metabolites Associated with Adaptation of Microorganisms to an Acidophilic, Metal-Rich Environment Identified by Stable-Isotope-Enabled Metabolomics. mBio 2013, 4, e00484-12. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Ferreres, F.; Gil, M.I. Antioxidant phenolic metabolites from fruit and vegetables and changes during postharvest storage and processing. Stud. Nat. Prod. Chem. 2000, 23, 739–795. [Google Scholar]
- Brizzolara, S.; Manganaris, G.A.; Fotopoulos, V.; Watkins, C.B.; Tonutti, P. Primary metabolism in fresh fruits during storage. Front. Plant Sci. 2020, 11, 80. [Google Scholar] [CrossRef]
- Ranjan, S.; Chaitali, R.O.Y.; Sinha, S.K. Gas chromatography–mass spectrometry (GC-MS): A comprehensive review of synergistic combinations and their applications in the past two decades. J. Anal. Sci. Appl. Biotechnol. 2023, 5, 72–85. [Google Scholar]
- Li, X.-B.; Hu, C.-M.; Li, C.-H.; Ji, G.-Y.; Luo, S.-Z.; Cao, Y.; Ji, K.-P.; Tan, Q.; Bao, D.-P.; Shang, J.-J. LC/MS-and GC/MS-based metabolomic profiling to determine changes in flavor quality and bioactive components of Phlebopus portentosus under low-temperature storage. Front. Nutr. 2023, 10, 1168025. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.; Wang, Y.; Cheng, W.; Jiang, K.; Luo, H.; Pang, M.; Yue, R. Research progress of volatile organic compounds produced by plant endophytic bacteria in control of postharvest diseases of fruits and vegetables. World J. Microbiol. Biotechnol. 2023, 39, 149. [Google Scholar] [CrossRef] [PubMed]
- Chamkhi, I.; Benali, T.; Aanniz, T.; El Menyiy, N.; Guaouguaou, F.-E.; El Omari, N.; El-Shazly, M.; Zengin, G.; Bouyahya, A. Plant-microbial interaction: The mechanism and the application of microbial elicitor induced secondary metabolites biosynthesis in medicinal plants. Plant Physiol. Biochem. 2021, 167, 269–295. [Google Scholar] [CrossRef]
- Brader, G.; Compant, S.; Mitter, B.; Trognitz, F.; Sessitsch, A. Metabolic potential of endophytic bacteria. Curr. Opin. Biotechnol. 2014, 27, 30–37. [Google Scholar] [CrossRef]
- Pinu, F.R. Early detection of food pathogens and food spoilage microorganisms: Application of metabolomics. Trends Food Sci. Technol. 2016, 54, 213–215. [Google Scholar] [CrossRef]
- Mark, G.; Dow, J.; Kiely, P.; Higgins, H.; Haynes, J.; Baysse, C.; Abbas, A.; Foley, T.; Franks, A.; Morrissey, J.; et al. Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions. Proc. Natl. Acad. Sci. USA 2005, 102, 17454–17459. [Google Scholar] [CrossRef]
- Sirangelo, T.M.; Rogers, H.J.; Spadafora, N.D. Multi-omic approaches to investigate molecular mechanisms in peach post-harvest ripening. Agriculture 2022, 12, 553. [Google Scholar] [CrossRef]
- Singh, R.P.; Shelke, G.M.; Kumar, A.; Jha, P.N. Biochemistry and genetics of ACC deaminase: A weapon to “stress ethylene” produced in plants. Front. Microbiol. 2015, 6, 937. [Google Scholar]
- Singh, R.P.; Ma, Y.; Shadan, A. Perspective of ACC-deaminase producing bacteria in stress agriculture. J. Biotechnol. 2022, 352, 36–46. [Google Scholar] [CrossRef]
- Zhuang, L.; Zhang, X.; Dhanasekaran, S.; Godana, E.A.; Li, J.; Luo, R.; Zhao, L.; Li, Y.; Liu, X.; Zhang, H. Developing composite biocontrol agents based on microbiome dynamics during postharvest storage of tomatoes. Postharvest Biol. Technol. 2025, 225, 113509. [Google Scholar] [CrossRef]
- Whitehead, S.R.; Wisniewski, M.E.; Droby, S.; Abdelfattah, A.; Freilich, S.; Mazzola, M. The apple microbiome: Structure, function, and manipulation for improved plant health. In The Apple Genome; Springer: Cham, Switzerland, 2021; pp. 341–382. [Google Scholar]
- Salvetti, E.; Campanaro, S.; Campedelli, I.; Fracchetti, F.; Gobbi, A.; Tornielli, G.B.; Torriani, S.; Felis, G.E. Whole-metagenome-sequencing-based community profiles of Vitis vinifera L. cv. Corvina berries withered in two post-harvest conditions. Front. Microbiol. 2016, 7, 937. [Google Scholar] [CrossRef]
- Ayivi, R.D.; Gyawali, R.; Krastanov, A.; Aljaloud, S.O.; Worku, M.; Tahergorabi, R.; Silva, R.C.d.; Ibrahim, S.A. Lactic acid bacteria: Food safety and human health applications. Dairy 2020, 1, 202–232. [Google Scholar] [CrossRef]
- Mokoena, M.P.; Omatola, C.A.; Olaniran, A.O. Applications of lactic acid bacteria and their bacteriocins against food spoilage microorganisms and foodborne pathogens. Molecules 2021, 26, 7055. [Google Scholar] [CrossRef] [PubMed]
- Sarim, K.M.; Srivastava, R.; Ramteke, P.W. Next-generation omics technologies for exploring complex metabolic regulation during plant-microbe interaction. In Microbial Services in Restoration Ecology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 123–138. [Google Scholar]
- Araújo, W.; Tohge, T.; Nunes-Nesi, A.; Obata, T.; Fernie, A. Analysis of kinetic labeling of amino acids and organic acids by GC-MS. Methods Mol. Biol. 2014, 1090, 107–119. [Google Scholar]
- Fan, K.-T. Advancements in metabolomics: Illuminating plant-microbe interactions for enhanced ecosystems and agricultural productivity. Preprint 2024. [Google Scholar] [CrossRef]
- Singh, S.P.; Thakur, R. Postharvest applications of cold plasma treatment for improving food safety and sustainability outcomes for fresh horticultural produce. Postharvest Biol. Technol. 2024, 209, 112694. [Google Scholar] [CrossRef]
- Li, Y.; He, W.; Liu, S.; Hu, X.; He, Y.; Song, X.; Yin, J.; Nie, S.; Xie, M. Innovative omics strategies in fermented fruits and vegetables: Unveiling nutritional profiles, microbial diversity, and future prospects. Compr. Rev. Food Sci. Food Saf. 2024, 23, e70030. [Google Scholar] [CrossRef]
- Khayum, A.; Siddiqua, A.; Lokesh, T.H.; Prakash, K.; Gouthami, Y.; Behera, H.S.; Reddypriya, P. Beneficial microbiomes in fruit post-harvest management. Int. J. Adv. Biochem. Res. 2024, 8, 280–285. [Google Scholar] [CrossRef]
- Osei-Kwarteng, M.; Ogwu, M.C.; Mahunu, G.K.; Afoakwah, N.A. Post-harvest Food Quality and Safety in the Global South: Sustainable Management Perspectives. In Food Safety and Quality in the Global South; Springer: Singapore, 2024; pp. 151–195. [Google Scholar]
- Tan, G.H.; Ali, A.; Siddiqui, Y. Current strategies, perspectives and challenges in management and control of postharvest diseases of papaya. Sci. Hortic. 2022, 301, 111139. [Google Scholar] [CrossRef]
- Wisniewski, M.; Droby, S.; Norelli, J.; Liu, J.; Schena, L. Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biol. Technol. 2016, 122, 3–10. [Google Scholar] [CrossRef]
- Carmona-Hernandez, S.; Reyes-Pérez, J.J.; Chiquito-Contreras, R.G.; Rincon-Enriquez, G.; Cerdan-Cabrera, C.R.; Hernandez-Montiel, L.G. Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: A review. Agronomy 2019, 9, 121. [Google Scholar] [CrossRef]
- Nortjie, E.; Basitere, M.; Moyo, D.; Nyamukamba, P. Extraction methods, quantitative and qualitative phytochemical screening of medicinal plants for antimicrobial textiles: A review. Plants 2022, 11, 2011. [Google Scholar] [CrossRef] [PubMed]
- Huber, D.M.; Graham, R.D. The role of nutrition in crop resistance and tolerance to diseases. In Mineral Nutrition of Crops; CRC Press: Boca Raton, FL, USA, 2024; pp. 169–204. [Google Scholar]
- Wessels, S.; Axelsson, L.; Hansen, E.; Vuyst, L.; Laulund, S.; Lähteenmäki, L.; Lindgren, S.; Mollet, B.; Salminen, S. The lactic acid bacteria, the food chain, and their regulation. Trends Food Sci. Technol. 2004, 15, 498–505. [Google Scholar] [CrossRef]
- Thompson, T.; Kilders, V.; Widmar, N.; Ebner, P. Consumer acceptance of bacteriophage technology for microbial control. Sci. Rep. 2024, 14, 25279. [Google Scholar] [CrossRef]
- Cordaillat-Simmons, M.; Rouanet, A.; Pot, B. Live biotherapeutic products: The importance of a defined regulatory framework. Exp. Mol. Med. 2020, 52, 1397–1406. [Google Scholar] [CrossRef]
- R, S.; Nyika, J.; Yadav, S.; Mackolil, J.; G, R.P.; Workie, E.; Ragupathy, R.; Ramasundaram, P. Genetically modified foods: Bibliometric analysis on consumer perception and preference. GM Crops Food 2022, 13, 65–85. [Google Scholar] [CrossRef]
- Van Bussel, L.; Kuijsten, A.; Mars, M.; Van‘t Veer, P. Consumers’ perceptions on food-related sustainability: A systematic review. J. Clean. Prod. 2022, 341, 130904. [Google Scholar] [CrossRef]
- Ali, B.M.; Ang, F.; Van Der Fels-Klerx, H.J. Consumer willingness to pay for plant-based foods produced using microbial applications to replace synthetic chemical inputs. PLoS ONE 2021, 16, e0260488. [Google Scholar] [CrossRef] [PubMed]
- Fadiji, T.; Bokaba, T.; Fawole, O.A.; Twinomurinzi, H. Artificial intelligence in postharvest agriculture: Mapping a research agenda. Front. Sustain. Food Syst. 2023, 7, 1226583. [Google Scholar] [CrossRef]
- Miller, T.; Mikiciuk, G.; Kisiel, A.; Mikiciuk, M.; Paliwoda, D.; Sas-Paszt, L.; Cembrowska-Lech, D.; Krzemińska, A.; Kozioł, A.; Brysiewicz, A. Machine learning approaches for forecasting the best microbial strains to alleviate drought impact in agriculture. Agriculture 2023, 13, 1622. [Google Scholar] [CrossRef]
- Zhao, L.; Walkowiak, S.; Fernando, W.G.D. Artificial intelligence: A promising tool in exploring the phytomicrobiome in managing disease and promoting plant health. Plants 2023, 12, 1852. [Google Scholar] [CrossRef]
- Rahman, F.U.; Zhu, Q.; Wu, Z.; Li, X.; Chen, W.; Xiong, T.; Zhu, X. Current insights into the biocontrol and biotechnological approaches for postharvest disease management of Botrytis cinerea. Postharvest Biol. Technol. 2024, 216, 113055. [Google Scholar] [CrossRef]
- Haghbin, N.; Bakhshipour, A.; Mousanejad, S.; Zareiforoush, H. Monitoring Botrytis cinerea infection in kiwifruit using electronic nose and machine learning techniques. Food Bioprocess Technol. 2023, 16, 749–767. [Google Scholar] [CrossRef]
- Naveed, M.; Memon, Z.-n.; Abdullah, M.; Makhdoom, S.I.; Azeem, A.; Mehmood, S.; Salahuddin, M.; Rajpoot, Z.; Majeed, M. Use Cases and Future Aspects of Intelligent Techniques in Microbial Data Analysis. In Microbial Data Intelligence and Computational Techniques for Sustainable Computing; Springer: Singapore, 2024; pp. 259–280. [Google Scholar]
- Sarma, B.K.; Yadav, S.K.; Singh, S.; Singh, H.B. Microbial consortium-mediated plant defense against phytopathogens: Readdressing for enhancing efficacy. Soil Biol. Biochem. 2015, 87, 25–33. [Google Scholar] [CrossRef]
- Ram, R.M.; Debnath, A.; Negi, S.; Singh, H.B. Use of microbial consortia for broad spectrum protection of plant pathogens: Regulatory hurdles, present status and future prospects. Biopesticides 2022, 2, 319–335. [Google Scholar]
- Lastochkina, O.; Seifikalhor, M.; Aliniaeifard, S.; Baymiev, A.; Pusenkova, L.; Garipova, S.; Kulabuhova, D.; Maksimov, I. Bacillus spp.: Efficient biotic strategy to control postharvest diseases of fruits and vegetables. Plants 2019, 8, 97. [Google Scholar] [CrossRef]
- Taha, N.A.; Elsharkawy, M.M.; Shoughy, A.A.; El-Kazzaz, M.K.; Khedr, A.A. Biological control of postharvest tomato fruit rots using Bacillus spp. and Pseudomonas spp. Egypt. J. Biol. Pest Control 2023, 33, 106. [Google Scholar]
- Wang, X.; Li, X.; Fu, D.; Vidrih, R.; Zhang, X. Ethylene Sensor-Enabled Dynamic Monitoring and Multi-Strategies Control for Quality Management of Fruit Cold Chain Logistics. Sensors 2020, 20, 5830. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Nan, X.; Wu, Q.; Zhang, L. Ethylene distribution and ventilation strategies of apple cold storage. E3S Web Conf. 2022, 356, 01060. [Google Scholar] [CrossRef]
- Lane, C.; Al Shoffe, Y.; Schafran, P.; Li, F.-W.; Kao-Kniffin, J.; Watkins, C.B. Amplicon sequencing and shotgun metagenomics reveal functional impacts of aminoethoxyvinylglycine-mediated ripening and cold storage on the microbiome of ‘NY1’ apples. Postharvest Biol. Technol. 2024, 213, 112969. [Google Scholar] [CrossRef]
Microbial Species | Key Mechanisms for Postharvest Enhancement | References |
---|---|---|
Bacillus subtilis | Antimicrobial activity (surfactin, iturin, fengycin) Suppression of ethylene production Induction of systemic resistance (ISR) via volatile organic compounds | [63] |
Pseudomonas fluorescens | Antimicrobial activity (produces phenazines, pyoluteorin) Ethylene suppression Induction of systemic resistance (ISR) via jasmonic acid (JA) and ethylene pathways | [64] |
Pseudomonas aeruginosa | Antimicrobial activity (produces pyocyanin, phenazines) Suppression of ethylene production Ability to form biofilms contributing to resistance against pathogens | [65,66] |
Pseudomonas protegens | Antimicrobial activity (produces 2,4-diacetylphloroglucinol) Induction of systemic resistance (ISR) Rhizosphere colonization and pathogen suppression | [67] |
Bacillus amyloliquefaciens | Antimicrobial activity (produces surfactin, bacillomycin) Induction of systemic resistance Plant growth promotion through nutrient competition | [68] |
Bacillus cereus | Antimicrobial activity (produces chitinases, lipopeptides) Inhibition of fungal growth Root colonization promoting plant health and disease suppression | [69] |
Pseudomonas corrugata | Biocontrol agent against Phytophthora blight of pepper Antimicrobial activity through biofilm formation and motility Root colonization and pathogen suppression | [70] |
Pseudomonas pseudoalcaligenes | Antimicrobial activity (produces protease and lecithinase) Enzyme production for pathogen inhibition Biofilm formation contributing to pathogen resistance | [71] |
Pseudomonas fluorescens biovar III | Antimicrobial activity against various food spoilage microorganisms Ethylene suppression and pathogen inhibition | [72] |
Pseudomonas sp. GOM7 | Antimicrobial activity (produces bioactive metabolites against methicillin-resistant Staphylococcus aureus) Potential biocontrol agent for foodborne pathogens | [73] |
Commercial Product | Active Ingredient(s) | Application Area | Pathogens Controlled | Effectiveness | References |
---|---|---|---|---|---|
Bio-save 10LP | Pseudomonas syringae | Postharvest fruit and vegetable treatments | Botrytis cinerea, Penicillium spp. Fusarium spp. | Effective in reducing postharvest rots, particularly on potatoes, cherries, and pome fruits. | [127] |
Bio-save | Pseudomonas syringae | Postharvest fruit treatments, especially for citrus and apples | Botrytis cinerea, Penicillium expansum | Demonstrates substantial effectiveness against Botrytis and Penicillium in apples and citrus, reducing disease incidence. | [128,129,130,131] |
Aspire | Candida sake and Candida oleophila | Postharvest fruit treatment | Penicillium spp. Botrytis cinerea, Monilinia spp. | High efficacy in reducing rots in stored fruits such as apples and pears. Results show disease reduction of up to 50–70%. | [132,133,134,135] |
Kodiak | Bacillus subtilis | Postharvest fruit and vegetable treatment | Botrytis cinerea, Alternaria spp. Rhizopus stolonifer | Strong inhibitory effects on Botrytis and Alternaria, effective in preventing spoilage and improving shelf life by 30–40%. | [136] |
Serenade | Bacillus subtilis | Postharvest fruit and vegetable treatment | Botrytis cinerea, Rhizopus spp. Fusarium spp. | Shows broad-spectrum biocontrol activity, particularly in reducing Botrytis on grapes, with efficacy rates of over 60% under controlled conditions. | [136] |
Soilguard | Trichoderma harzianum | Soil and postharvest fruit treatment | Fusarium oxysporum, Rhizoctonia solani, Alternaria spp. | Effective at controlling soilborne pathogens and postharvest pathogens such as Fusarium. Reduces spoilage by up to 45%. | [136] |
Trichojet | Trichoderma spp. | Postharvest fruit and vegetable treatment | Botrytis cinerea, Penicillium expansum, Alternaria spp. | Controls major postharvest pathogens such as Penicillium and Alternaria with significant reductions in rotting and increased shelf life of treated produce. | [136] |
Prev-Am Plus | Citrus essential oils | Citrus postharvest treatment | Penicillium spp., Alternaria spp., Geotrichum candidum | Controls Penicillium and Alternaria in citrus with significant reductions in decay and fungal growth, ensuring longer shelf life. | [137] |
Biorend | Chitosan | Postharvest treatment for pears and apples | Botrytis cinerea, Penicillium expansum, Alternaria spp. | High efficacy in controlling Botrytis and Penicillium, with a reduction in disease incidence by up to 71% compared with copper-based treatments. | [137] |
Kiram | Mineral fertilizers | Postharvest control of citrus anthracnose | Colletotrichum gloeosporioides | Demonstrates effectiveness in reducing disease incidence and severity in citrus fruits in field trials, significantly better than chemical treatments. | [137] |
Omics Tool | Technology/Approach | Application in Plant–Microbe Postharvest Research | Role in Quality Prediction | References |
---|---|---|---|---|
Metabolomics | Mass spectrometry, NMR, GC-MS | Detects and quantifies metabolites at the plant–microbe interface | Used for detecting metabolic changes that reflect plant stress or microbial interaction, predicting spoilage or ripeness. | [144,151] |
Transcriptomics | RNA-Seq, microarray | Analyzes gene expression in response to microbial interactions | Assesses plant’s genetic response to microbial activity, predicting quality traits such as pathogen resistance and ripening. | [148,152] |
Microbiomics | Metagenomics, 16S rRNA sequencing | Studies microbial community composition on plant surfaces | Determines microbial community impact on postharvest quality and pathogen control. | [40,153] |
Proteomics | LC-MS/MS, 2D gel electrophoresis | Identifies proteins involved in plant–microbe interactions | Identifies key proteins that influence plant resistance, shelf life, and quality | [154] |
Fluxomics | Stable isotope labeling, GC-MS | Studies metabolic flux changes in response to microbial interaction | Determines changes in metabolic pathways that impact plant quality attributes such as nutrient content and storage capacity. | [155,156] |
Integrated Omics | Multi-omics data integration | Combines genomics, proteomics, metabolomics, and transcriptomics to assess microbial interactions | Predicts quality outcomes by integrating diverse omics data to understand holistic changes in plant metabolism and microbial influence. | [144,145] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaman, W.; Amin, A.; Khalil, A.A.K.; Akhtar, M.S.; Ali, S. Plant–Microbe Interactions for Improving Postharvest Shelf Life and Quality of Fresh Produce Through Protective Mechanisms. Horticulturae 2025, 11, 732. https://doi.org/10.3390/horticulturae11070732
Zaman W, Amin A, Khalil AAK, Akhtar MS, Ali S. Plant–Microbe Interactions for Improving Postharvest Shelf Life and Quality of Fresh Produce Through Protective Mechanisms. Horticulturae. 2025; 11(7):732. https://doi.org/10.3390/horticulturae11070732
Chicago/Turabian StyleZaman, Wajid, Adnan Amin, Atif Ali Khan Khalil, Muhammad Saeed Akhtar, and Sajid Ali. 2025. "Plant–Microbe Interactions for Improving Postharvest Shelf Life and Quality of Fresh Produce Through Protective Mechanisms" Horticulturae 11, no. 7: 732. https://doi.org/10.3390/horticulturae11070732
APA StyleZaman, W., Amin, A., Khalil, A. A. K., Akhtar, M. S., & Ali, S. (2025). Plant–Microbe Interactions for Improving Postharvest Shelf Life and Quality of Fresh Produce Through Protective Mechanisms. Horticulturae, 11(7), 732. https://doi.org/10.3390/horticulturae11070732