Evolutionary Dynamics of Codon Usage Bias in Tomato Spotted Wilt Virus: Insights into Viral Adaptation and Host Interactions
Abstract
1. Introduction
2. Materials and Methods
2.1. Virus Isolates
2.2. Recombination Analysis
2.3. Nucleotide (nt) Composition Analysis
2.4. Relative Synonymous Codon Usage (RSCU) Analysis
2.5. Effective Number of Codons (ENC) Analysis
2.6. Principal Component Analysis (PCA)
2.7. Neutrality Analysis
2.8. ENC-Plot Analysis
2.9. Codon Adaptation Index (CAI) Analysis
2.10. Relative Codon Deoptimization Index (RCDI) Analysis
3. Results
3.1. Recombination Analysis
3.2. Nucleotide Composition Analysis
3.3. A- and U-Ended Codons Were Preferred in TSWV
3.4. Codon Usage Analysis
3.4.1. Trends in Codon Usage Variations
3.4.2. Neutrality Plot
3.4.3. Natural Selection and Mutation Pressure Both Play Roles in CUB of TSWV
3.5. Codon Usage Adaptation in TSWV
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nilon, A.; Robinson, K.; Pappu, H.R.; Mitter, N. Current Status and Potential of RNA Interference for the Management of Tomato Spotted Wilt Virus and Thrips Vectors. Pathogens 2021, 10, 320. [Google Scholar] [CrossRef] [PubMed]
- Scholthof, K.-B.G.; Adkins, S.; Czosnek, H.; Palukaitis, P.; Jacquot, E.; Hohn, T.; Hohn, B.; Saunders, K.; Candresse, T.; Ahlquist, P.; et al. Top 10 Plant Viruses in Molecular Plant Pathology. Mol. Plant Pathol. 2011, 12, 938–954. [Google Scholar] [CrossRef] [PubMed]
- Pappu, H.R.; Jones, R.A.C.; Jain, R.K. Global Status of Tospovirus Epidemics in Diverse Cropping Systems: Successes Achieved and Challenges Ahead. Virus Res. 2009, 141, 219–236. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.E.; Whitfield, A.E. The Genus Tospovirus: Emerging Bunyaviruses That Threaten Food Security. Annu. Rev. Virol. 2016, 3, 101–124. [Google Scholar] [CrossRef]
- Loebenstein, G.; Lawson, R.H.; Brunt, A. Virus and Virus-like Diseases of Bulb and Flower Crops. Plant Pathology 1995, 47, 801. [Google Scholar]
- Asano, S.; Hirayama, Y.; Matsushita, Y. Distribution of Tomato Spotted Wilt Virus in Dahlia Plants. Lett. Appl. Microbiol. 2017, 64, 297–303. [Google Scholar] [CrossRef]
- Whitfield, A.E.; Ullman, D.E.; German, T.L. Tospovirus-Thrips Interactions. Annu. Rev. Phytopathol. 2005, 43, 459–489. [Google Scholar] [CrossRef]
- Ullman, D.E.; German, T.L.; Sherwood, J.L.; Westcot, D.M.; Cantone, F.A. Tospovirus Replication in Insect Vector Cells: Immunocytochemical Evidence That the Nonstructural Protein Encoded by the S RNA of Tomato Spotted Wilt Tospovirus Is Present in Thrips Vector Cells. Phytopathology 1993, 83, 456–463. [Google Scholar] [CrossRef]
- Wijkamp, I.; van Lent, J.; Kormelink, R.; Goldbach, R.; Peters, D. Multiplication of Tomato Spotted Wilt Virus in Its Insect Vector, Frankliniella Occidentalis. J. Gen. Virol. 1993, 74 Pt 3, 341–349. [Google Scholar] [CrossRef]
- Lee, J.-S.; Cho, W.K.; Kim, M.-K.; Kwak, H.-R.; Choi, H.-S.; Kim, K.-H. Complete Genome Sequences of Three Tomato Spotted Wilt Virus Isolates from Tomato and Pepper Plants in Korea and Their Phylogenetic Relationship to Other TSWV Isolates. Arch. Virol. 2011, 156, 725–728. [Google Scholar] [CrossRef]
- de Haan, P.; Kormelink, R.; de Oliveira Resende, R.; van Poelwijk, F.; Peters, D.; Goldbach, R. Tomato Spotted Wilt Virus L RNA Encodes a Putative RNA Polymerase. J. Gen. Virol. 1991, 72 Pt 9, 2207–2216. [Google Scholar] [CrossRef] [PubMed]
- Kormelink, R.; de Haan, P.; Meurs, C.; Peters, D.; Goldbach, R. The Nucleotide Sequence of the M RNA Segment of Tomato Spotted Wilt Virus, a Bunyavirus with Two Ambisense RNA Segments. J. Gen. Virol. 1993, 74 Pt 4, 790. [Google Scholar] [CrossRef] [PubMed]
- Bucher, E.; Sijen, T.; de Haan, P.; Goldbach, R.; Prins, M. Negative-Strand Tospoviruses and Tenuiviruses Carry a Gene for a Suppressor of Gene Silencing at Analogous Genomic Positions. J. Virol. 2003, 77, 1329–1336. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Yasunaga, T.; Miyata, T. Secondary Structure of MS2 Phage RNA and Bias in Code Word Usage. Nucleic Acids Res. 1979, 7, 2073–2079. [Google Scholar] [CrossRef]
- Iriarte, A.; Lamolle, G.; Musto, H. Codon Usage Bias: An Endless Tale. J. Mol. Evol. 2021, 89, 589–593. [Google Scholar] [CrossRef]
- Plotkin, J.B.; Kudla, G. Synonymous but Not the Same: The Causes and Consequences of Codon Bias. Nat. Rev. Genet. 2011, 12, 32–42. [Google Scholar] [CrossRef]
- Hershberg, R.; Petrov, D.A. Selection on Codon Bias. Annu. Rev. Genet. 2008, 42, 287–299. [Google Scholar] [CrossRef]
- Moutinho, A.F.; Eyre-Walker, A. No Evidence That Selection on Synonymous Codon Usage Affects Patterns of Protein Evolution in Bacteria. Genome Biol. Evol. 2024, 16, evad232. [Google Scholar] [CrossRef]
- Wang, L.; Xing, H.; Yuan, Y.; Wang, X.; Saeed, M.; Tao, J.; Feng, W.; Zhang, G.; Song, X.; Sun, X. Genome-Wide Analysis of Codon Usage Bias in Four Sequenced Cotton Species. PLoS ONE 2018, 13, e0194372. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Y.; Xi, M. Analysis of Codon Usage Patterns of Six Sequenced Brachypodium Distachyon Lines Reveals a Declining CG Skew of the CDSs from the 5?-Ends to the 3?-Ends. Genes 2021, 12, 1467. [Google Scholar] [CrossRef]
- Buchan, J.R.; Aucott, L.S.; Stansfield, I. tRNA Properties Help Shape Codon Pair Preferences in Open Reading Frames. Nucleic Acids Res. 2006, 34, 1015–1027. [Google Scholar] [CrossRef] [PubMed]
- Duret, L.; Mouchiroud, D. Expression Pattern and, Surprisingly, Gene Length Shape Codon Usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc. Natl. Acad. Sci. USA 1999, 96, 4482–4487. [Google Scholar] [CrossRef] [PubMed]
- Sueoka, N. Translation-Coupled Violation of Parity Rule 2 in Human Genes Is Not the Cause of Heterogeneity of the DNA G+C Content of Third Codon Position. Gene 1999, 238, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Tsompana, M.; Abad, J.; Purugganan, M.; Moyer, J.W. The Molecular Population Genetics of the Tomato Spotted Wilt Virus (TSWV) Genome. Mol. Ecol. 2005, 14, 53–66. [Google Scholar] [CrossRef]
- Aravintharaj, R.; Asokan, R.; Prasad Babu, K.; Manamohan, M.; Nagendran, K. Molecular Characterization of the Indian Isolate (Ka-To) of Tomato Spotted Wilt Virus (TSWV) Infecting Tomato (Solanum lycopersicum L.). 3 Biotech 2023, 13, 169. [Google Scholar] [CrossRef]
- Almási, A.; Csilléry, G.; Csömör, Z.; Nemes, K.; Palkovics, L.; Salánki, K.; Tóbiás, I. Phylogenetic Analysis of Tomato Spotted Wilt Virus (TSWV) NSs Protein Demonstrates the Isolated Emergence of Resistance-Breaking Strains in Pepper. Virus Genes. 2015, 50, 71–78. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X Version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef]
- Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. RDP4: Detection and Analysis of Recombination Patterns in Virus Genomes. Virus Evol. 2015, 1, vev003. [Google Scholar] [CrossRef]
- Salminen, M.O.; Carr, J.K.; Burke, D.S.; McCutchan, F.E. Identification of Breakpoints in Intergenotypic Recombinants of HIV Type 1 by Bootscanning. AIDS Res. Hum. Retroviruses 1995, 11, 1423–1425. [Google Scholar] [CrossRef]
- Boni, M.F.; Posada, D.; Feldman, M.W. An Exact Nonparametric Method for Inferring Mosaic Structure in Sequence Triplets. Genetics 2007, 176, 1035–1047. [Google Scholar] [CrossRef]
- Smith, J.M. Analyzing the Mosaic Structure of Genes. J. Mol. Evol. 1992, 34, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Posada, D.; Crandall, K.A. Evaluation of Methods for Detecting Recombination from DNA Sequences: Computer Simulations. Proc. Natl. Acad. Sci. USA 2001, 98, 13757–13762. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, M.J.; Armstrong, J.S.; Gibbs, A.J. Sister-Scanning: A Monte Carlo Procedure for Assessing Signals in Recombinant Sequences. Bioinformatics 2000, 16, 573–582. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Gan, H.; Liang, X. Analysis of Synonymous Codon Usage Bias in Potato Virus M and Its Adaption to Hosts. Viruses 2019, 11, 752. [Google Scholar] [CrossRef]
- He, Z.; Dong, Z.; Qin, L.; Gan, H. Phylodynamics and Codon Usage Pattern Analysis of Broad Bean Wilt Virus 2. Viruses 2021, 13, 198. [Google Scholar] [CrossRef]
- He, Z.; Dong, Z.; Gan, H. Genetic Changes and Host Adaptability in Sugarcane Mosaic Virus Based on Complete Genome Sequences. Mol. Phylogenetics Evol. 2020, 149, 106848. [Google Scholar] [CrossRef]
- He, Z.; Ding, S.; Guo, J.; Qin, L.; Xu, X. Synonymous Codon Usage Analysis of Three Narcissus Potyviruses. Viruses 2022, 14, 846. [Google Scholar] [CrossRef]
- He, M.; Guan, S.-Y.; He, C.-Q. Evolution of Rice Stripe Virus. Mol. Phylogenet Evol. 2017, 109, 343–350. [Google Scholar] [CrossRef]
- Puigbò, P.; Aragonès, L.; Garcia-Vallvé, S. RCDI/eRCDI: A Web-Server to Estimate Codon Usage Deoptimization. BMC Res. Notes 2010, 3, 87. [Google Scholar] [CrossRef]
- Sharp, P.M.; Li, W.H. An Evolutionary Perspective on Synonymous Codon Usage in Unicellular Organisms. J. Mol. Evol. 1986, 24, 28–38. [Google Scholar] [CrossRef]
- Belalov, I.S.; Lukashev, A.N. Causes and Implications of Codon Usage Bias in RNA Viruses. PLoS ONE 2013, 8, e56642. [Google Scholar] [CrossRef] [PubMed]
- Behura, S.K.; Singh, B.K.; Severson, D.W. Antagonistic Relationships between Intron Content and Codon Usage Bias of Genes in Three Mosquito Species: Functional and Evolutionary Implications. Evol. Appl. 2013, 6, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Parvathy, S.T.; Udayasuriyan, V.; Bhadana, V. Codon Usage Bias. Mol. Biol. Rep. 2022, 49, 539–565. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, H.; Wang, S.; Xing, G.; Zhang, C.; Zhang, W.; Liu, J.; Zhang, J.; Su, S.; Zhou, J. Insights into the Genetic and Host Adaptability of Emerging Porcine Circovirus 3. Virulence 2018, 9, 1301–1313. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, R.; Zhang, L.; Shen, B.; Wang, N.; Xu, Q.; He, W.; He, W.; Li, G.; Su, S. Evolutionary Changes of the Novel Influenza D Virus Hemagglutinin-Esterase Fusion Gene Revealed by the Codon Usage Pattern. Virulence 2019, 10, 1–9. [Google Scholar] [CrossRef]
- Butt, A.M.; Nasrullah, I.; Qamar, R.; Tong, Y. Evolution of Codon Usage in Zika Virus Genomes Is Host and Vector Specific. Emerg. Microbes Infect. 2016, 5, e107. [Google Scholar] [CrossRef]
- He, W.; Zhao, J.; Xing, G.; Li, G.; Wang, R.; Wang, Z.; Zhang, C.; Franzo, G.; Su, S.; Zhou, J. Genetic Analysis and Evolutionary Changes of Porcine Circovirus 2. Mol. Phylogenet Evol. 2019, 139, 106520. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, L.; He, W.; Zhang, X.; Wen, B.; Wang, C.; Xu, Q.; Li, G.; Zhou, J.; Veit, M.; et al. Genetic Evolution and Molecular Selection of the HE Gene of Influenza C Virus. Viruses 2019, 11, 167. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, H.; Wang, Z.; Ding, S.; Qin, L.; Jiang, R.; Deng, X.; He, Z.; Li, L. An Evolutionary Perspective of Codon Usage Pattern, Dinucleotide Composition and Codon Pair Bias in Prunus Necrotic Ringspot Virus. Genes 2023, 14, 1712. [Google Scholar] [CrossRef]
- Chakraborty, P.; Das, S.; Saha, B.; Sarkar, P.; Karmakar, A.; Saha, A.; Saha, D.; Saha, A. Phylogeny and Synonymous Codon Usage Pattern of Papaya Ringspot Virus Coat Protein Gene in the Sub-Himalayan Region of North-East India. Can. J. Microbiol. 2015, 61, 555–564. [Google Scholar] [CrossRef]
- Biswas, K.K.; Palchoudhury, S.; Chakraborty, P.; Bhattacharyya, U.K.; Ghosh, D.K.; Debnath, P.; Ramadugu, C.; Keremane, M.L.; Khetarpal, R.K.; Lee, R.F. Codon Usage Bias Analysis of Citrus Tristeza Virus: Higher Codon Adaptation to Citrus Reticulata Host. Viruses 2019, 11, 331. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, T.; Yang, D.; Nong, X.; Xie, Y.; Fu, Y.; Wu, X.; Huang, X.; Gu, X.; Wang, S.; et al. Analysis of Codon Usage Patterns in Taenia Pisiformis through Annotated Transcriptome Data. Biochem. Biophys. Res. Commun. 2013, 430, 1344–1348. [Google Scholar] [CrossRef] [PubMed]
- Khandia, R.; Singhal, S.; Kumar, U.; Ansari, A.; Tiwari, R.; Dhama, K.; Das, J.; Munjal, A.; Singh, R.K. Analysis of Nipah Virus Codon Usage and Adaptation to Hosts. Front. Microbiol. 2019, 10, 886. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Ding, S.; He, Z. Compositional Biases and Evolution of the Largest Plant RNA Virus Order Patatavirales. Int. J. Biol. Macromol. 2023, 240, 124403. [Google Scholar] [CrossRef] [PubMed]
- Sharp, P.M.; Emery, L.R.; Zeng, K. Forces That Influence the Evolution of Codon Bias. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1203–1212. [Google Scholar] [CrossRef]
- Rao, Y.; Wu, G.; Wang, Z.; Chai, X.; Nie, Q.; Zhang, X. Mutation Bias Is the Driving Force of Codon Usage in the Gallus Gallus Genome. DNA Res. 2011, 18, 499–512. [Google Scholar] [CrossRef]
- Lu, M.; Wan, W.; Li, Y.; Li, H.; Sun, B.; Yu, K.; Zhao, J.; Franzo, G.; Su, S. Codon Usage Bias Analysis of the Spike Protein of Human Coronavirus 229E and Its Host Adaptability. Int. J. Biol. Macromol. 2023, 253, 127319. [Google Scholar] [CrossRef]
- Li, G.; Zhang, W.; Wang, R.; Xing, G.; Wang, S.; Ji, X.; Wang, N.; Su, S.; Zhou, J. Genetic Analysis and Evolutionary Changes of the Torque Teno Sus Virus. Int. J. Mol. Sci. 2019, 20, 2881. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, W.; Wang, R.; Zhang, W.; Li, G.; Lu, M.; Shao, Y.; Yang, Y.; Wang, N.; Gao, Q.; et al. Analysis of the Codon Usage Pattern of HA and NA Genes of H7N9 Influenza A Virus. Int. J. Mol. Sci. 2020, 21, 7129. [Google Scholar] [CrossRef]
- Zeng, L.; Chen, M.; Wang, M.; Zhu, L.; Yan, J.; Zhang, X.; Xu, J.; Zhang, S. Enterovirus A Shows Unique Patterns of Codon Usage Bias in Conventional Versus Unconventional Clade. Front. Cell Infect. Microbiol. 2022, 12, 941325. [Google Scholar] [CrossRef]
- Pan, S.; Mou, C.; Wu, H.; Chen, Z. Phylogenetic and Codon Usage Analysis of Atypical Porcine Pestivirus (APPV). Virulence 2020, 11, 916–926. [Google Scholar] [CrossRef]
RdRp | NSm | GnGc | NSs | N | |
---|---|---|---|---|---|
A% | 37.71 ± 0.10% | 32.70 ± 0.28% | 32.94 ± 0.17% | 31.89 ± 0.21% | 32.78 ± 0.42% |
U% | 28.35 ± 0.11% | 28.14 ± 0.30% | 31.38 ± 0.21% | 30.42 ± 0.26% | 27.81 ± 0.33% |
C% | 14.61 ± 0.13% | 17.64 ± 0.33% | 17.31 ± 0.30% | 20.09 ± 0.28% | 17.14 ± 0.35% |
G% | 19.33 ± 0.09% | 21.52 ± 0.27% | 18.37 ± 0.16% | 17.60 ± 0.22% | 22.26 ± 0.56% |
A3s | 49.37 ± 0.32% | 36.13 ± 1.00% | 43.80 ± 0.63% | 35.90 ± 0.56% | 28.86 ± 1.25% |
U3s | 41.68 ± 032% | 48.28 ± 0.96% | 46.24 ± 0.70% | 48.77 ± 0.96% | 48.49 ± 1.06% |
C3s | 19.61 ± 0.34% | 21.43 ± 1.14% | 20.64 ± 0.67% | 24.20 ± 0.84% | 24.90 ± 0.94% |
G3s | 21.92 ± 0.37% | 23.73 ± 1.15% | 18.32 ± 0.67% | 19.39 ± 0.51% | 28.30 ± 1.44% |
AC% | 52.33 ± 0.11% | 50.34 ± 0.39% | 50.25 ± 0.24% | 51.98 ± 0.32% | 49.93 ± 0.47% |
GU% | 47.67 ± 0.11% | 49.66 ± 0.39% | 49.75 ± 0.24% | 48.02 ± 0.32% | 50.07 ± 0.47% |
GC12 | 34.50 ± 0.13% | 40.21 ± 0.29% | 38.03 ± 0.24% | 39.10 ± 0.25% | 38.27 ± 0.24% |
GC3 | 32.81 ± 0.34% | 37.07 ± 1.01% | 30.96 ± 0.66% | 34.86 ± 0.65% | 41.68 ± 1.35% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Qin, L.; Deng, X.; Reitz, S.; Wu, S.; He, Z. Evolutionary Dynamics of Codon Usage Bias in Tomato Spotted Wilt Virus: Insights into Viral Adaptation and Host Interactions. Horticulturae 2025, 11, 721. https://doi.org/10.3390/horticulturae11070721
Zhao H, Qin L, Deng X, Reitz S, Wu S, He Z. Evolutionary Dynamics of Codon Usage Bias in Tomato Spotted Wilt Virus: Insights into Viral Adaptation and Host Interactions. Horticulturae. 2025; 11(7):721. https://doi.org/10.3390/horticulturae11070721
Chicago/Turabian StyleZhao, Haiting, Lang Qin, Xiaolong Deng, Stuart Reitz, Shengyong Wu, and Zhen He. 2025. "Evolutionary Dynamics of Codon Usage Bias in Tomato Spotted Wilt Virus: Insights into Viral Adaptation and Host Interactions" Horticulturae 11, no. 7: 721. https://doi.org/10.3390/horticulturae11070721
APA StyleZhao, H., Qin, L., Deng, X., Reitz, S., Wu, S., & He, Z. (2025). Evolutionary Dynamics of Codon Usage Bias in Tomato Spotted Wilt Virus: Insights into Viral Adaptation and Host Interactions. Horticulturae, 11(7), 721. https://doi.org/10.3390/horticulturae11070721