The Influence of Storage Conditions and Fruit Quality Parameters on the Minimization of Surface Pitting in Sweet Cherries
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Site Description
2.2. Orchard Management and Fertilization
2.3. Experimental Design and Genotypes
2.4. Harvest Periods and Maturity Assessment
2.5. Sample Selection and Fruit Preparation
2.6. Fruit Quality Measurements
2.7. Induction of Mechanical Damage-Induced Surface Pitting
2.8. Storage Condition
2.9. Damage Assessment and Resistance Index
2.10. Statistical Analysis
3. Results
3.1. Genotypic Variability
3.2. Harvest Period Dynamics
3.3. Interannual Stability
3.4. The Influence of Fruit Firmness, Size, and SSC on Resistance Index
3.5. Variation in Surface Pitting Resistance Across Accessions
3.6. Effect of Storage Conditions on Resistance Index
3.7. Effect of Storage Conditions on Resistance Index Prior to Induced Damage
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kader, A.A. Postharvest technology of horticultural crops—An overview from farm to fork. Ethiop. J. Appl. Sci. Technol. 2013, 1, 1–8. [Google Scholar]
- Zoffoli, J.P.; Latorre, B.A.; Naranjo, P. Preharvest applications of growth regulators and their effect on postharvest quality of table grapes during cold storage. Postharvest Biol. Technol. 2009, 51, 183–192. [Google Scholar] [CrossRef]
- Stan, A.; Mareși, E.; Chivu, M.; Butac, M. Fruits quality of some sweet cherry cultivars in correlation with consumer preferences. Fruit. Grow. Res. 2023, 39, 54–61. [Google Scholar] [CrossRef]
- González, M.E.; Valderrama, N.F.; Bastías, R.M.; Baeza, R.; Valdebenito, A.M.; Díaz, G.; Shackel, K.A. Evaluation of induced pitting damage of late season cherries ‘Regina’ and ‘Sweetheart’ using an impact energy method. Chil. J. Agric. Res. 2016, 76, 471–478. [Google Scholar] [CrossRef]
- Kappel, F.; Toivonen, P.; Stan, S.; Mckenzie, D.L. Resistance of sweet cherry cultivars to fruit surface pitting. Can. J. Plant Sci. 2006, 86, 1197–1202. [Google Scholar] [CrossRef]
- Usenik, V.; Kastelec, D.; Štampar, F. Physicochemical changes of sweet cherry fruits related to application of gibberellic acid. Food Chem. 2005, 90, 663–671. [Google Scholar] [CrossRef]
- Taylor, S. Advances in Food and Nutrition Research: Cumulative Index; Gulf Professional Publishing: Waltham, MA, USA, 2003; Volume 1–46. [Google Scholar]
- Adaskaveg, J.E.; Förster, H.; Thompson, D.F. Identification and etiology of visible quiescent infections of Monilinia fructicola and Botrytis cinerea in sweet cherry fruit. Plant Dis. 2000, 84, 328–333. [Google Scholar] [CrossRef]
- Grimm, E.; Peschel, S.; Becker, T.; Knoche, M. Stress and strain in the sweet cherry skin. J. Am. Soc. Hortic. Sci. 2012, 137, 383–390. [Google Scholar] [CrossRef]
- Lara, I.; García, P.; Vendrell, M. Modifications in cell wall composition after cold storage of calcium-treated strawberry (Fragaria × ananassa Duch.). Fruit Postharvest Biol. Technol. 2004, 34, 331–339. [Google Scholar] [CrossRef]
- Fonseca, S.C.; Oliveira, F.A.; Brecht, J.K. Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: A review. J. Food Eng. 2002, 52, 99–119. [Google Scholar] [CrossRef]
- Li, Z.; Thomas, C. Quantitative evaluation of mechanical damage to fresh fruits. Trends Food Sci. Technol. 2014, 35, 138–150. [Google Scholar] [CrossRef]
- Zeebroeck, M.; Linden, V.; Ramon, H.; Baerdemaeker, J.; Nicolai, B.; Tijskens, E. Impact damage of apples during transport and handling. Postharvest Biol. Technol. 2007, 45, 157–167. [Google Scholar] [CrossRef]
- Wang, Z.-W. Study of mechanisms of mechanical damage and transport packaging in fruits transportation. Packag. Eng. 2004, 25, 131–134. [Google Scholar]
- Crisosto, C.H.; Garner, D.; Doyle, J.; Day, K.R. Relationship between fruit respiration, bruising susceptibility, and temperature in sweet cherries. HortScience 1993, 28, 132–135. [Google Scholar] [CrossRef]
- Sediqi, A.G.; Kramchote, S.; Itamura, H.; Esumi, T. Physiological changes in sweet cherry fruit in response to physical damage. In Proceedings of the VIII International Cherry Symposium, Yamagata, Japan, 5–9 June 2017; Volume 1235, pp. 495–502. [Google Scholar] [CrossRef]
- Candan, A.P.; Raffo, M.D.; Calvo, G.; Gomila, T. Study of the main points of impact during cherry handling and factors affecting pitting sensitivity. Acta Hortic. 2014, 1020, 137–141. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, X.; Long, L. The effect of postharvest calcium application in hydro-cooling water on tissue calcium content, biochemical changes, and quality attributes of sweet cherry fruit. Food Chem. 2014, 160, 22–30. [Google Scholar] [CrossRef]
- Lin, M.; Fawole, O.A.; Saeys, W.; Wu, D.; Wang, J.; Opara, U.L.; Chen, K. Mechanical damages and packaging methods along the fresh fruit supply chain: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 10283–10302. [Google Scholar] [CrossRef]
- Ponce, E.; Alzola, B.; Cáceres, N.; Gas, M.; Ferreira, C.; Vidal, J.; Chirinos, R.; Campos, D.; Rubilar, M.; Campos-Vargas, R.; et al. Biochemical and phenotypic characterization of sweet cherry (Prunus avium L.) cultivars with induced surface pitting. Postharvest Biol. Technol. 2021, 175, 111494. [Google Scholar] [CrossRef]
- Fuentealba, C.; Ejsmentewicz, T.; Campos-Vargas, R.; Saa, S.; Aliaga, O.; Chirinos, R.; Campos, D.; Pedreschi, R. Cell wall and metabolite composition of sweet cherry fruits from two cultivars with contrasting susceptibility to surface pitting during storage. Food Chem. 2020, 342, 128307. [Google Scholar] [CrossRef]
- Cronjé, P.J.; Zacarías, L.; Alférez, F. Susceptibility to postharvest peel pitting in citrus fruits as related to albedo thickness, water loss and phospholipase activity. Postharvest Biol. Technol. 2017, 123, 77–82. [Google Scholar] [CrossRef]
- Brüggenwirth, M.; Knoche, M. Cell wall swelling, fracture mode, and the mechanical properties of cherry fruit skins are closely related. Planta 2017, 245, 765–777. [Google Scholar] [CrossRef]
- Wade, N.; Bain, J. Physiological and anatomical studies of surface pitting of sweet cherry fruit in relation to bruising, chemical treatments, and storage conditions. J. Hortic. Sci. 1980, 55, 375–384. [Google Scholar] [CrossRef]
- Lidster, P.; Tung, M. Effects of fruit temperatures at time of impact damage and subsequent storage temperature and duration on the development of surface disorders in sweet cherries. Can. J. Plant Sci. 1980, 60, 555–559. [Google Scholar] [CrossRef]
- Zoffoli, J.; Rodríguez, J. Fruit temperature affects physical injury sensitivity of sweet cherry during postharvest handling. Acta Hortic. 2014, 1020, 111–114. [Google Scholar] [CrossRef]
- Verma, L.R.; Joshi, V.K. Post-harvest technology of fruits and vegetables. Post. Harvest. Technol. Fruits Veg. 2000, 1, 1–76. [Google Scholar]
- Mishra, V.K.; Gamage, T.V. Postharvest handling and treatments of fruits and vegetables. In Handbook of Food Preservation; CRC Press: Boca Raton, FL, USA, 2007; pp. 67–90. [Google Scholar]
- Martinez-Romero, D.; Serrano, M.; Carbonell, A.; Castillo, S.; Riquelme, F.; Valero, D. Mechanical damage during fruit post-harvest handling: Technical and physiological implications. In Production Practices and Quality Assessment of Food Crops: Quality Handling and Evaluation; Springer: Dordrecht, The Netherlands, 2004; pp. 233–252. [Google Scholar]
- Arancibia, R.; Motsenbocker, C. Pectin methylesterase activity in vivo differs from activity in vitro and enhances polygalacturonase-mediated pectin degradation in tabasco pepper. J. Plant Physiol. 2006, 163, 488–496. [Google Scholar] [CrossRef]
- Micheli, F. Pectin methylesterases: Cell wall enzymes with important roles in plant physiology. Trends Plant Sci. 2001, 6, 414–419. [Google Scholar] [CrossRef]
- Correia, S.; Schouten, R.; Silva, A.P.; Gonçalves, B. Factors affecting quality and health promoting compounds during growth and postharvest life of sweet cherry (Prunus avium L.). Front. Plant Sci. 2017, 8, 2166. [Google Scholar] [CrossRef]
- Brüggenwirth, M.; Knoche, M. Factors affecting mechanical properties of the skin of sweet cherry fruit. J. Am. Soc. Hortic. Sci. 2016, 141, 45–53. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef]
- Kovács, E.; Kristóf, Z.; Perlaki, R.; Szőllősi, D. Cell wall metabolism during ripening and storage of nonclimacteric sour cherry (Prunus cerasus L., cv. Kántorjánosi). Acta Aliment. 2008, 37, 415–426. [Google Scholar] [CrossRef]
- Cai, C.; Xu, C.; Li, X.; Ferguson, I.; Chen, K. Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh after harvest. Postharvest Biol. Technol. 2006, 40, 163–169. [Google Scholar] [CrossRef]
- Tarara, J.M.; Ferguson, J.C.; Spayd, S.E. A chamber-free method of heating and cooling grape clusters in the vineyard. Am. J. Enol. Vitic. 2000, 51, 182–188. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Crisosto, G.M.; Echeverria, G. Segregation of plum and pluot cultivars according to their organoleptic characteristics. Postharvest Biol. Technol. 2007, 44, 271–276. [Google Scholar] [CrossRef]
- Toivonen, P.M.A.; Hampson, C.R. Respiration rates of sweet cherry cultivars at optimal and abusive temperatures over three growing seasons. In Proceedings of the VII International Cherry Symposium, Plasencia, Spain, 23–27 June 2013; Volume 1161, pp. 575–580. [Google Scholar]
- Beaudry, R.M. Effect of O2 and CO2 partial pressure on selected phenomena affecting fruit and vegetable quality. Postharvest Biol. Technol. 1999, 15, 293–303. [Google Scholar] [CrossRef]
- Kupferman, E.; Sanderson, P. Temperature management and modified atmosphere packing to preserve sweet cherry quality. Acta Hortic. 2005, 667, 523–528. [Google Scholar] [CrossRef]
- Serradilla, M.J.; Martín, A.; Ruiz-Moyano, S.; Hernández, A.; López-Corrales, M.; Córdoba, M.d.G. Physicochemical and sensorial characterisation of four sweet cherry cultivars grown in Jerte Valley (Spain). Food Chem. 2012, 133, 1551–1559. [Google Scholar] [CrossRef]
- Wang, L.; Vestrheim, S. Controlled atmosphere storage of sweet cherries (Prunus avium L.). Acta Agric. Scand. Sect. B Soil Plant Sci. 2002, 52, 136–142. [Google Scholar] [CrossRef]
- Spotts, R.A.; Cervantes, L.A.; Facteau, T.J. Integrated control of brown rot of sweet cherry with a preharvest fungicide, a postharvest yeast, modified atmosphere packaging, and cold storage temperature. Postharvest Biol. Technol. 2002, 24, 251–257. [Google Scholar] [CrossRef]
- Karabulut, O.A.; Lurie, S.; Droby, S. Evaluation of the use of sodium bicarbonate, potassium sorbate, and yeast antagonists for decreasing postharvest decay of sweet cherries. Postharvest Biol. Technol. 2001, 23, 233–236. [Google Scholar] [CrossRef]
- Meheriuk, M.; Girard, B.; Moyls, L.; Beveridge, H.J.T.; Mckenzie, D.L.; Harrison, J.; Weintraub, S.; Hocking, R. Modified atmosphere packaging of ‘Lapins’ sweet cherry. Food Res. Int. 1995, 28, 239–244. [Google Scholar] [CrossRef]
- Güneyli, A.; Onursal, C.E.; Seçmen, T.; Sevinç Üzümcü, S.; Koyuncu, M.A.; Erbaş, D. The use of controlled atmosphere box in sweet cherry storage. Hortic. Stud. 2022, 39, 33–40. [Google Scholar] [CrossRef]
- Xing, S.H.; Zhang, X.S.; Gong, H.S. The effect of CO2 concentration on sweet cherry preservation in modified atmosphere packaging. Czech J. Food Sci. 2020, 38, 103–108. [Google Scholar] [CrossRef]
- Carrión-Antolí, A.; Badiche-EL Hilali, F.; Lorente-Mento, J.M.; Diaz-Mula, H.M.; Serrano, M.; Valero, D. Antioxidant Systems and Quality in Sweet Cherries Are Improved by Preharvest GABA Treatments Leading to Delay Postharvest Senescence. Int. J. Mol. Sci. 2023, 25, 260. [Google Scholar] [CrossRef]
- Correia, S.; Queiros, F.; Ribeiro, C.; Vilela, A.; Aires, A.; Barros, A.I.; Gonçalves, B. Effects of calcium and growth regulators on sweet cherry (Prunus avium L.) quality and sensory attributes at harvest. Sci. Hortic. 2019, 248, 231–240. [Google Scholar] [CrossRef]
- Zhi, H.; Dong, Y. Effect of hydrogen sulfide on surface pitting and related cell wall metabolism in sweet cherry during cold storage. J. Appl. Bot. Food Qual. 2018, 91, 109–113. [Google Scholar] [CrossRef]
- Hernandéz, I.; Ponce, E.; Vidal, J.; Chirinos, R.; Campos, D.; Pedreschi, R.; Fuentealba, C. Metabolomics Reveals Specific Metabolic Changes in Sweet Cherries (Prunus avium L.) Subjected to Postharvest Treatment with Melatonin after Mechanical Stress. Horticulturae 2023, 9, 940. [Google Scholar] [CrossRef]
- Serradilla, M.; Falagán, N.; Bohmer, B.; Terry, L.; Alamar, M. The role of ethylene and 1-MCP in early-season sweet cherry ‘Burlat’ storage life. Sci. Hortic. 2019, 258, 108787. [Google Scholar] [CrossRef]
- Romanazzi, G.; Nigro, F.; Ippolito, A. Short hypobaric treatments potentiate the effect of chitosan in reducing storage decay of sweet cherries. Postharvest Biol. Technol. 2003, 29, 73–80. [Google Scholar] [CrossRef]
- Maryam, A.; Anwar, R.; Malik, A.; Raheem, M.; Khan, A.; Hasan, M.; Hussain, Z.; Siddique, Z. Combined aqueous ozone and ultrasound application inhibits microbial spoilage, reduces pesticide residues and maintains storage quality of strawberry fruits. J. Food Meas. Charact. 2020, 15, 1437–1451. [Google Scholar] [CrossRef]
- Sharifi-Sangdeh, S.; Mohammad, H.A. Investigation of the mechanical properties of cherry fruit (Prunus cerasus L.) in order to achieve optimum height of fruit storage box. Agric. Res. Tech. Open Access J. 2018, 16, 555996. [Google Scholar] [CrossRef]
- Valero, D.; Valverde, J.M.; Martínez-Romero, D.; Guillén, F.; Castillo, S.; Serrano, M. The combination of modified atmosphere packaging with eugenol or thymol to maintain quality, safety, and functional properties of table grapes. Postharvest Biol. Technol. 2006, 41, 317–327. [Google Scholar] [CrossRef]
- Nuñez-Lillo, G.; Ponce, E.; Alvaro, J.E.; Campos, D.; Meneses, C.; Campos-Vargas, R.; Pedreschi, R. Proteomics analysis reveals new insights into surface pitting of sweet cherry cultivars displaying contrasting susceptibility. J. Hortic. Sci. Biotechnol. 2022, 97, 615–625. [Google Scholar] [CrossRef]
- Lahaye, M.; Tabi, W.; Bot, L.; Delaire, M.; Orsel, M.; Campoy, J.; Garcia, J.; Gall, L. Comparison of cell wall chemical evolution during the development of fruits of two contrasting quality from two members of the Rosaceae family: Apple and sweet cherry. Plant Physiol. Biochem. PPB 2021, 168, 93–104. [Google Scholar] [CrossRef]
- Prskavec, K.; Sedlák, J.; Paprštein, F.; Mrkvica, L.; Metelka, L. Padesát pět let meteorologických pozorování v Holovousích (1955–2009); Výzkumný a šlechtitelský ústav ovocnářský Holovousy s.r.o.: Holovousy, Czech Republic, 2010; ISBN 978-80-87030-17-2. [Google Scholar]
- Param, N.; Zoffoli, J. Genotypic differences in sweet cherries are associated with the susceptibility to mechanical damage. Sci. Hortic. 2016, 211, 410–419. [Google Scholar] [CrossRef]
- Zerbini, P. Role of Maturity for Improved Flavour; Woodhead Publishing: Cambridge, UK, 2008; pp. 180–199. [Google Scholar] [CrossRef]
- Crisosto, C.; Andris, H.; Day, K.; Garner, D. Cold ‘Brooks’ cherries suffer more pitting and bruising. Calif. Agric. 1994, 48, 18–19. [Google Scholar] [CrossRef]
- Balbontín, C.; Ayala, H.; Bastías, R.; Hinrichsen, P. Fruit cuticle properties and their association with resistance to cracking in sweet cherry. Sci. Hortic. 2019, 255, 91–97. [Google Scholar] [CrossRef]
- Bvenura, C.; Hermaan, N.N.P.; Chen, L.; Sivakumar, D. Nutritional and health benefits of temperate fruits. In Postharvest Biology and Technology of Temperate Fruits; Mir, S.A., Shah, M.A., Mir, M.M., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Kappel, F.; Fisher-Fleming, B.; Hogue, E.J. Fruit characteristics and sensory attributes of selected sweet cherry cultivars. HortScience 1996, 31, 443–446. [Google Scholar] [CrossRef]
- Toivonen, P.M.A.; Brummell, D.A. Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biol. Technol. 2008, 48, 1–14. [Google Scholar] [CrossRef]
- Johnson, L.K.; Malladi, A.; Nesmith, D.S. Differences in cell number facilitate fruit size variation in rabbiteye blueberry genotypes. J. Am. Soc. Hortic. Sci. 2011, 136, 10–15. [Google Scholar] [CrossRef]
- Toivonen, P.M.; Kappel, F.; Stan, S.; Mckenzie, D.L.; Hocking, R. Firmness, respiration, and weight loss of ‘Bing’, ‘Lapins’ and ‘Sweetheart’ cherries in relation to fruit maturity and susceptibility to surface pitting. HortScience 2004, 39, 1066–1069. [Google Scholar] [CrossRef]
- Wang, Y.; Einhorn, T. Harvest timing, crop load, and preharvest GA (3) application affect postharvest quality of ‘Lapins’ and ‘Sweetheart’ sweet cherries. Amer Soc. Hortic. Sci. 2013, 48, S399. [Google Scholar]
- Watkins, C.B. Advances in Postharvest Management of Horticultural Produce; Burleigh Dodds Science Publishing: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, A.K. Ethylene perception and signalling in ripening fruit. In The Molecular Biology and Biochemistry of Fruit Ripening; Nath, P., Bouzayen, M., Mattoo, A.K., Pech, J.C., Eds.; CABI: Delémont, Switzerland, 2014; pp. 193–201. [Google Scholar] [CrossRef]
- Liu, M.; Wang, C.; Ji, H.; Sun, M.; Liu, T.; Wang, J.; Cao, H.; Zhu, Q. Ethylene biosynthesis and signal transduction during ripening and softening in non-climacteric fruits: An overview. Front. Plant Sci. 2024, 15, 1368692. [Google Scholar] [CrossRef] [PubMed]
- Carrion-Antoli, A.; Zoffoli, J.P.; Serrano, M.; Valero, D.; Naranjo, P. Preharvest Gibberellic Acid Treatment Increases Both Modulus of Elasticity and Resistance in Sweet Cherry Fruit (cv. ‘Bing’ and ‘Lapins’) at Harvest and Postharvest During Storage at 0 °C. Agronomy 2024, 14, 2738. [Google Scholar] [CrossRef]
- Brummell, D.A. Cell wall disassembly in ripening fruit. Funct. Plant Biol. 2006, 33, 103–119. [Google Scholar] [CrossRef]
- Shani, E.; Burko, Y.; Ben-Yaakov, L.; Berger, Y.; Amsellem, Z.; Goldshmidt, A.; Sharon, E.; Ori, N. Stage-specific regulation of Solanum lycopersicum leaf maturation by class 1 KNOTTED1-like homeobox proteins. Plant Cell 2009, 21, 3078–3092. [Google Scholar] [CrossRef] [PubMed]
- Knoche, M.; Winkler, A. The mechanism of rain cracking of sweet cherry fruit. Italus Hortus 2019, 26, 59–65. [Google Scholar] [CrossRef]
- Knoche, M.; Peschel, S. Water on the surface aggravates microscopic cracking of the sweet cherry fruit cuticle. J. Am. Soc. Hortic. Sci. 2006, 131, 192–200. [Google Scholar] [CrossRef]
- Grimm, E.; Pflugfelder, D.; Van Dusschoten, D.; Knoche, M. Physical rupture of the xylem in developing sweet cherry fruit causes progressive decline in xylem sap inflow rate. Planta 2017, 246, 659–672. [Google Scholar] [CrossRef]
- Kader, A.A. A perspective on postharvest horticulture (1978–2003). HortScience 2003, 38, 1004–1008. [Google Scholar] [CrossRef]
- Tzortzakis, N.; Chrysargyris, A. Postharvest ozone application for the preservation of fruits and vegetables. Food Rev. Int. 2016, 33, 270–315. [Google Scholar] [CrossRef]
- Karaca, H.; Velioglu, Y.S. Ozone applications in fruit and vegetable processing. Food Rev. Int. 2007, 23, 91–106. [Google Scholar] [CrossRef]
- Sisler, E.C.; Serek, M. Inhibitors of ethylene responses in plants at the receptor level: Recent developments. Physiol. Plant. 2006, 100, 577–582. [Google Scholar] [CrossRef]
Variable | 1st Harvest | SD | 2nd Harvest | SD | p-Value |
---|---|---|---|---|---|
Fruit Firmness (g/mm) | 210.74 | 25.46 | 201.31 | 20.99 | <0.001 |
Fruit Size (mm) | 25.32 | 2.22 | 25.86 | 2.23 | <0.001 |
SSC (°Brix) | 13.44 | 2.77 | 14.67 | 2.32 | <0.001 |
Resistance Index | 2.12 | 0.48 | 2.14 | 0.45 | >0.05 |
Variable | 1st Year | SD | 2nd Year | SD | 3rd Year | SD | p-Value |
---|---|---|---|---|---|---|---|
Fruit Firmness (g/mm) | 194.77 | 17.81 | 224.59 | 21.89 | 198.90 | 19.58 | <0.001 |
Fruit Size (mm) | 26.66 | 2.17 | 26.33 | 1.55 | 23.76 | 1.71 | <0.001 |
SSC (°Brix) | 16.17 | 2.07 | 14.36 | 1.74 | 11.62 | 1.63 | <0.001 |
Resistance Index | 2.04 | 0.35 | 1.95 | 0.40 | 2.41 | 0.51 | <0.05 |
Variable | Fruit Firmness | Fruit Size | Soluble Solids Content |
---|---|---|---|
Fruit Firmness | 1 | −0.365 * | −0.304 * |
Fruit Size | −0.365 * | 1 | 0.257 * |
Soluble Solids Content | −0.304 * | 0.257 * | 1 |
*Resistance Index | −0.606 * | −0.069 | −0.022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suran, P.; Danková, V.; Nečas, T.; Knapová, P.; Plecitá, L. The Influence of Storage Conditions and Fruit Quality Parameters on the Minimization of Surface Pitting in Sweet Cherries. Horticulturae 2025, 11, 716. https://doi.org/10.3390/horticulturae11070716
Suran P, Danková V, Nečas T, Knapová P, Plecitá L. The Influence of Storage Conditions and Fruit Quality Parameters on the Minimization of Surface Pitting in Sweet Cherries. Horticulturae. 2025; 11(7):716. https://doi.org/10.3390/horticulturae11070716
Chicago/Turabian StyleSuran, Pavol, Veronika Danková, Tomáš Nečas, Pavlína Knapová, and Lucie Plecitá. 2025. "The Influence of Storage Conditions and Fruit Quality Parameters on the Minimization of Surface Pitting in Sweet Cherries" Horticulturae 11, no. 7: 716. https://doi.org/10.3390/horticulturae11070716
APA StyleSuran, P., Danková, V., Nečas, T., Knapová, P., & Plecitá, L. (2025). The Influence of Storage Conditions and Fruit Quality Parameters on the Minimization of Surface Pitting in Sweet Cherries. Horticulturae, 11(7), 716. https://doi.org/10.3390/horticulturae11070716