Microbiome Dynamics in Four Different Casing Materials Used for Milky Mushroom (Calocybe indica) Cultivation
Abstract
:1. Introduction
2. Material and Methods
2.1. Strains and Substrate
2.2. Preparation of Casing Mixture and Casing
2.3. Cultivation and Sampling
2.4. Determination of Physicochemical Properties of Casing Materials
2.5. Estimation of Microbial Population in Casing Material
2.6. Determination of Microbiomass C, N, and P
2.7. Illumina Genome Analyzer IIx
2.8. Statistical Analysis
3. Results
3.1. Effect of Different Casing Materials on Yield
3.2. Physical and Chemical Properties of Different Casing Materials
3.3. Effects of Casing Materials on Microflora
3.4. Effects of Different Casing Materials on Microbial Biomass C, N, and P
3.5. High-Throughput Sequencing of Bacteria and Fungi
3.6. Alpha Diversity Analysis of Different Soil Covering Materials
3.7. Classification of Bacteria and Fungi in Different Soil Casing Materials at Phylum Level
3.8. RDA of Microbial Community Composition and Environmental Factors in Different Casing Materials
4. Discussion
4.1. Effects of Different Casing Materials on the Yield of Calocybe indica
4.2. Differences in the Physical and Chemical Properties of Different Soil Covering Materials
4.3. Effects of Different Soil Casing Materials on Soil Microbial Biomass and Soil Microflora Microorganisms
4.4. Effects of Different Casing Materials on Composition and Structure of Microbial Community
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alam, N.; Amin, R.; Khair, A.; Lee, T.S. Influence of different supplements on the commercial cultivation of milky white mushroom. Mycobiology 2010, 38, 184. [Google Scholar] [CrossRef]
- Bokaria, K.; Balsundram, S.K.; Bhattarai, I.; Kaphle, K. Commercial production of milky mushroom (Calocybe indica). Merit Res. J. Agric. Sci. Soil Sci. 2014, 2, 32–37. [Google Scholar] [CrossRef]
- Zhao, J.L.; Zhang, M.; Wei, J.F.; Yao, X.H.; Qin, P.S.; Huang, F.C.; Li, J.F.; Liu, B. Effects of different supplements and casing materials on growth and yield of Calocybe indica. J. South. Agric. 2018, 8, 1581–1587. [Google Scholar]
- Heera, G.; Suharban, M.; Geetha, D. Solarisation—An effective low cost substrate sterilization technique for the cultivation of milky mushroom (Calocybe indica). Mushroom Res. 2020, 29, 51. [Google Scholar] [CrossRef]
- Walsh, L.; Schmidt, O.; Tracy, S.; Grogan, H.; Noble, R.; Young, G. Peat alternative casing materials for the cultivation of Agaricus bisporus mushrooms—A systematic review. Clean. Circ. Bioeconomy 2024, 9, 100100. [Google Scholar] [CrossRef]
- Kumar, K.; Biswas, S.; Husain, A.; Baboo, D.; Kumar, S. Influence of different casing material on growth parameters and yield of white button mushroom (Agaricus bisporus (Longe. Imboch). J. Pharmacogn. Phytochem. 2020, 9, 902–905. [Google Scholar]
- Carrasco, J.; Preston, G.M. Growing edible mushrooms: A conversation between bacteria and fungi. Environ. Microbiol. 2020, 22, 858–872. [Google Scholar] [CrossRef]
- Colak, M.; Ergun, B.; Simsek, H.; Hilmi, T.; Yilmaz, F. Cultivation of Agaricus bisporus on wheat straw and waste tea leaves based composts and locally available casing materials part iii: Dry matter, protein, and carbohydrate contents of agaricus bisporus. Afr. J. Biotechnol. 2007, 6, 2855–2859. [Google Scholar] [CrossRef]
- Chinara, N.; Mahapatra, S.S. Evaluation of casing materials on productivity of milky mushroom (Calocybe indica P&C). Mushroom Res. 2022, 31, 167–170. [Google Scholar] [CrossRef]
- Alam, N.; Lee, T.S.; Khair, A.; Amin, R. Effect of Different Substrates and Casing Materials on the Growth and Yield of Calocybe indica. Mycobiology 2010, 38, 97–101. [Google Scholar] [CrossRef]
- Dias, E.S.; Zied, D.C.; Pardogimenez, A. Revisiting the casing layer: Casing materials and management in Agaricus mushroom cultivation. Ciência Agrotecnologia 2021, 45, 21. [Google Scholar] [CrossRef]
- Eicker, A.; van Greuning, M. Economical alternatives for topogenous peat as casing material in the cultivation of Agaricus bisporus in South Africa. S. Afr. J. Plant Soil 1988, 6, 129–135. [Google Scholar] [CrossRef]
- Braat, N.; Koster, M.C.; Wösten, H.A.B. Beneficial interactions between bacteria and edible mushrooms. Fungal Biol. Rev. 2022, 39, 60–72. [Google Scholar] [CrossRef]
- Liu, Z.; Qian, K.; Dong, P.; Li, W.; Xu, A.; Su, W.; Li, Y.; Li, Y.; Jacob, M.S.; Zhang, B.; et al. Microbial community succession patterns and assembly mechanisms in the white button mushroom (Agaricus bisporus) production with corn straw-based compost. Environ. Technol. Innov. 2025, 38, 104135. [Google Scholar] [CrossRef]
- Chellapandi, S.; Vaidyanathan, L.; Srinivasan, M.K.; Malinika, J. Calocybe indica extract inhibits the growth and enzyme production of microbes that impair the healing of burn wounds. Malays. J. Microbiol. 2024, 20, 3. [Google Scholar] [CrossRef]
- Sorrells, L.; Glenn, S. Review of sampling techniques used in studies of grassland plant communities. Proc. Okla. Acad. Sci. 1991, 71, 43–45. [Google Scholar]
- Kumar, U.; Mishra, V.N.; Kumar, N.; Rathiya, G.R. Methods of Soil Analysis; KALYANI: New Delhi, India, 2018. [Google Scholar]
- Zhang, Y.; Chen, T.; Li, J.; Dong, H. Acceptance intention and behavioral response to soil-testing formula fertilization technology: An empirical study of agricultural land in shaanxi province. Int. J. Environ. Res. Public Health 2023, 20, 951. [Google Scholar] [CrossRef]
- Schackart, K.E.; Kaarj, K. Bacterial plating quantification v1. protocols.io. 2019. [Google Scholar] [CrossRef]
- Criste, A.; Henţ, T.; Giuburuncă, M.; Zăhan, M.; Niste, M.; Fit, N.; Mitrea, M. Characterization of microorganisms isolated from petroleum hydrocarbon polluted soil. Bulletin of university of agricultural sciences and veterinary medicine Cluj-Napoca. Anim Sci Biotechnol. 2016, 73, 1. [Google Scholar] [CrossRef]
- Obidiebube, E.A.; Okolie, H.; Obasi, C.C.; Ochuenwike, K.L. Effects of different rates of wood ash on the growth and yield of carrot (Daucus carota) in Awka, south eastern Nigeria. Curr. Res. Agric. Sci. 2022, 9, 13–21. [Google Scholar] [CrossRef]
- Cai, Y.F.; Liao, Z.W. Advancement of methods in soil microbial ecology. Soil Environ. Sci. 2008, 11, 167–171. [Google Scholar]
- Hrbacek, J.; Morais, D.; Cermak, P.; Hanacek, V.; Zachoval, R. Alpha-diversity and microbial community structure of the male urinary microbiota depend on urine sampling method. Sci. Rep. 2021, 11, 23758. [Google Scholar] [CrossRef]
- Estruch, G.; Collado, M.C.; Peñaranda, D.S.; Vidal, A.T.; Cerdá, M.J.; Martínez, G.P.; Martinez-Llorens, S. Rarefaction curves (chao1 index) showing the microbial community complexes in the different gut sections of the gilthead sea bream. PLoS ONE 2015. [Google Scholar] [CrossRef]
- Cheng, J.; Li, Y.; Gao, W.; Chen, Y.; Pan, W.; Lee, X.; Tang, Y. Effects of biochar on Cd and Pb mobility and microbial community composition in a calcareous soil planted with tobacco. Biol Fertil Soils. 2018, 54, 373–383. [Google Scholar] [CrossRef]
- Yip, K.H.A.; Liu, R.; Wu, J.; Hau, B.C.H.; Lin, Y.; Zhang, H. Community-based plant diversity monitoring of a dense-canopy and species-rich tropical forest using airborne LiDAR data. Ecol. Indic. 2024, 12, 158. [Google Scholar] [CrossRef]
- Spatharis, S.; Roelke, D.L.; Dimitrakopoulos, P.G.; Kokkoris, G.D. Analyzing the (mis)behavior of shannon index in eutrophication studies using field and simulated phytoplankton assemblages. Ecol Indic. 2011, 11, 697–703. [Google Scholar] [CrossRef]
- Sanni, A.; Omikunle, A.; Emenaha, P.; Adebayo, A.; Okubena-Dipeolu, E.; Oke, O. Studies on different substrate effects on the growth, yield and nutritional contents of Pleurotus ostreatus (oyster mushroom) and Calocybe indica (milky mushroom). J. Agric. Food Sci. Biotechnol. 2023, 1, 162–168. [Google Scholar] [CrossRef]
- Li, Z.; Dai, J.; Zhang, Y.; Du, H.; Zhang, Y.; Wu, D.; Zhou, Y.; Guo, X.; Yang, W.; Yao, F.; et al. Cow dung-based superabsorbent polymers as water-retaining amendments of soils. ACS Sustain. Chem. Eng. 2024, 12, 14821–14831. [Google Scholar] [CrossRef]
- Sangeetha, A.; Rajappan, K. Substrate comparison for yield maximization in white milky mushroom (Calocybe indica). Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 106–113. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, J.; Yu, H.; Wang, Y.; Wang, R.; Tang, L. Mathematical study of the effects of temperature and humidity on the morphological development of pleurotus eryngiia fruit body. Int. Fed. Inf. Process.-Publ.-IFIP. 2013, 1, 312–323. [Google Scholar] [CrossRef]
- Singh, V.; Kumar, P.; Sinha, A.P. Influence of different media, ph and temperature on growth and sporulation of Alternaria alternata (fr.) keissler, causing alternaria blight of chickpea. Legume Res.-Int. J. 2001, 24, 238–242. [Google Scholar]
- Mandal, N.C.; Majumdar, N. Effect of pH on Mycelial growth and sporulation of postharvest pathogen Colletotrichum gloeosporioides (penz.) Penz & sacc. and Pestalotiopsis mangiferae (henn.) Steyaert. Int. J. Bio Resour. Stress Manag. 2018, 9, 416–420. [Google Scholar] [CrossRef]
- Xiao, C.; Huang, L.; Gao, X.; Liu, J.; Wei, J.; Zhao, H. Influence of culture media and environmental factors on mycelial growth and conidial production of Diplocarpon mali. Lett. Appl. Microbiol. 2010, 50, 639–644. [Google Scholar] [CrossRef]
- Wang, Q.; Jun, J.; Zhang, J.; Xia, S.X.; Hui, C.; Yan, Z.; Xia, Y.C.; Huang, J.C. Effect of casing soil water content on the yield, quality and water utilization of fruiting bodies of Agaricus bisporus. Acta Agr. Shanghai 2018, 34, 7–12. [Google Scholar]
- Wang, J.H.; Liu, J.S.; Yu, J.B.; Bao, Y.J.; Da, W.J. Effect of fertilizing N and P on soil microbial biomass carbon and nitrogen of black soil corn agroecosystem. J. Soil Water Conserv. 2004, 18, 5–38. [Google Scholar] [CrossRef]
- Yang, Z.; Qin, A.; Mei, B.; Mei, H.; Zhang, F.; Sun, Z.; Zhou, Y.; Zhang, S. Geochemical characteristics of the shallow soil above the Muli gas hydrate reservoir in the permafrost region of the Qilian Mountains, China. J. Geochem. Explor. 2014, 139, 160–169. [Google Scholar] [CrossRef]
- Masunaga, T.; Fong, J.D.M. Strategies for increasing micronutrient availability in soil for plant uptake—Sciencedirect. Plant Micronutr. Use Effic. 2018, 13, 195–208. [Google Scholar] [CrossRef]
- Ni, Y.; Yu, J.; Liu, F.; Wan, L.; Deng, X.; Liu, X.; Sun, H.; Tang, J.; Wang, R.; Wu, J.; et al. Calcium dynamics during the growth of Agaricus bisporus: Implications for mushroom development and nutrition. Chem. Biol. Technol. Agric. 2023, 10, 99. [Google Scholar] [CrossRef]
- Chen, H.-B.; Fan, X.-L. Effects of magnesium remobilization and allocation on banana plant growth. J. Plant Nutr. 2018, 41, 1312–1320. [Google Scholar] [CrossRef]
- Bloem, J.; Lair, G.; Lehtinen, T.; de Ruiter, P.; Hemerik, L.; Djukic, I.; van Leeuwen, J. Effects of land use on soil microbial biomass, activity and community structure at different soil depths in the Danube floodplain. Eur. J. Soil Biol. 2017, 79, 14–20. [Google Scholar] [CrossRef]
- Stenberg, B. Monitoring Soil Quality of Arable Land: Microbiological Indicators. Acta Agric. Scand. Sect. B Soil Plant Sci. 1999, 49, 1–24. [Google Scholar] [CrossRef]
- Du Preez, C.; Kutu, F.; Baloyi, T. Soil ameliorants to improve soil chemical and microbial biomass properties in some South African soils. J. Agric. Sci. 2014, 9, 58–68. [Google Scholar] [CrossRef]
- Chen, X.; Li, M.; Zhang, H.; Tang, J.; Luan, H.; Gao, W.; Masiliūnas, D.; Huang, S. Substitution of manure for chemical fertilizer affects soil microbial community diversity, structure and function in greenhouse vegetable production systems. PLoS ONE 2020, 15, 21. [Google Scholar] [CrossRef]
- Renella, G. Evolution of Physico-Chemical Properties, Microbial biomass and microbial activity of an urban soil after de-sealing. Agriculture 2020, 10, 596. [Google Scholar] [CrossRef]
- Stewart, A.; Condron, L.M.; Di, H.J.; O’callaghan, M.; Stark, C. Effects of past and current crop management on soil microbial biomass and activity. Biol. Fertil. Soils 2007, 43, 531–540. [Google Scholar] [CrossRef]
- Liu, J.; Sui, Y.; Yu, Z.; Shi, Y.; Chu, H.; Jin, J.; Xiu, L.; Wang, G. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biol. Biochem. 2014, 70, 113–122. [Google Scholar] [CrossRef]
- Deng, J.J.; Zhou, Y.B.; Yang, L.X.; Zhang, S.Z.; Li, H.; Wei, Y.W.; Deng, J.F.; Qin, S.J.; Zhu, W.X. Effects of mixed Fraxinus mandshurica and Larix olgensis plantation on the function diversity of soil microbial community. Chin. J. Ecol. 2016, 35, 2684–2691. [Google Scholar] [CrossRef]
- Huang, L.-N.; Zhou, Q.-X.; He, X.-X.; Lin, X.-R.; Chen, W.-C.; Shu, W.-S.; Liu, J. Ecological effects of combined pollution associated with E-Waste recycling on the composition and diversity of soil microbial communities. Environ. Sci. Technol. 2015, 49, 6438–6447. [Google Scholar] [CrossRef]
Soil Environmental | LS (CK) | LS + CD | PA | LS + S |
---|---|---|---|---|
pH | 7.68 ± 0.01 d | 8.36 ± 0.04 a | 7.93 ± 0.01 c | 8.24 ± 0.02 b |
Soil water content (%) | 10.50 ± 0.55 b | 19.70 ± 0.01 a | 10.30 ± 0.12 b | 5.30 ± 0.03 c |
Soil nitrate nitrogen (mg/kg) | 27.63 ± 2.53 b | 36.35 ± 5.61 a | 10.73 ± 1.86 d | 23.19 ± 3.14 c |
Soil available potassium (mg/kg) | 59.27 ± 0.36 c | 255.20 ± 2.80 b | 334.77 ± 2.55 a | 47.75 ± 0.17 d |
Soil available phosphorus (mg/kg) | 38.21 ± 0.03 b | 59.63 ± 0.61 a | 25.20 ± 0.15 d | 34.06 ± 0.53 c |
Soil active copper (mg/kg) | 40.98 ± 0.14 b | 54.83 ± 0.07 a | 40.73 ± 0.04 b | 29.83 ± 0.03 c |
Soil available calcium (mg/kg) | 133.25 ± 0.59 c | 212.68 ± 1.15 a | 156.37 ± 1.70 b | 133.27 ± 1.44 c |
Soil available magnesium (mg/kg) | 17.78 ± 0.15 d | 46.36 ± 0.26 a | 38.08 ± 0.07 b | 19.50 ± 0.11 c |
Treatment | Bacteria (106 cfu/g) | Fungi (104 cfu/g) | Actinobacteria (106 cfu/g) |
---|---|---|---|
LS (CK) | 29.33 ± 2.69 a | 3.55 ± 0.98 c | 5.41 ± 1.21 a |
LS + CD | 18.73 ± 1.89 c | 12.33 ± 1.92 a | 6.15 ± 3.31 a |
LS + S | 27.80 ± 1.32 b | 6.59 ± 2.67 b | 1.52 ± 1.09 b |
PA | 19.70 ± 5.24 c | 2.74 ± 1.01 c | 1.07 ± 2.45 b |
Name | Number | ||||
---|---|---|---|---|---|
OTU | Genus | Species | Sequences | Base Pairs (bp) | |
Bacteria | 477 | 245 | 346 | 191,722 | 103,521,448 |
Fungal | 11 | 10 | 10 | 257,776 | 83,520,289 |
Treatment | α-Diversity Index | |||
---|---|---|---|---|
Chao | Ace | Shannoneven | Shannon | |
LS(CK) | 126.00 ± 4.12 b | 125.37 ± 9.24 c | 0.77 ± 0.24 b | 3.70 ± 0.68 b |
LS + CD | 126.25 ± 11.45 b | 126.38 ± 13.01 b | 0.79 ± 0.06 a | 3.29 ± 0.55 d |
PA | 119.88 ± 6.78 c | 120.76 ± 5.65 d | 0.73 ± 0.12 c | 3.51 ± 1.41 c |
LS + S | 128.00 ± 11.56 a | 127.53 ± 3.21 a | 0.68 ± 0.34 d | 3.85 ± 1.05 a |
Treatment | α-Diversity Index | |||
---|---|---|---|---|
Chao | Ace | Shannoneven | Shannon | |
LS(CK) | 18.00 ± 2.12 c | 18.00 ± 1.24 c | 0.58 ± 0.14 a | 1.67 ± 0.58 a |
LS + CD | 16.00 ± 1.35 d | 16.50 ± 3.06 d | 0.38 ± 0.07 d | 1.15 ± 0.57 c |
PA | 21.00 ± 0.78 b | 21.48 ± 2.65 b | 0.47 ± 0.02 c | 1.29 ± 0.43 b |
LS + S | 31.00 ± 1.66 a | 32.00 ± 1.21 a | 0.49 ± 0.04 b | 1.65 ± 0.05 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.-L.; Shao, Y.-Y.; Liu, B. Microbiome Dynamics in Four Different Casing Materials Used for Milky Mushroom (Calocybe indica) Cultivation. Horticulturae 2025, 11, 667. https://doi.org/10.3390/horticulturae11060667
Zhao J-L, Shao Y-Y, Liu B. Microbiome Dynamics in Four Different Casing Materials Used for Milky Mushroom (Calocybe indica) Cultivation. Horticulturae. 2025; 11(6):667. https://doi.org/10.3390/horticulturae11060667
Chicago/Turabian StyleZhao, Jia-Ling, Yuan-Yuan Shao, and Bin Liu. 2025. "Microbiome Dynamics in Four Different Casing Materials Used for Milky Mushroom (Calocybe indica) Cultivation" Horticulturae 11, no. 6: 667. https://doi.org/10.3390/horticulturae11060667
APA StyleZhao, J.-L., Shao, Y.-Y., & Liu, B. (2025). Microbiome Dynamics in Four Different Casing Materials Used for Milky Mushroom (Calocybe indica) Cultivation. Horticulturae, 11(6), 667. https://doi.org/10.3390/horticulturae11060667