The Behavior of Electrostatic Droplets After Impacting Pepper Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Crop
2.2. Leaf Division
2.3. Measurement of the Static Contact Angle on the Leaf Surface
2.4. Electrostatic Single-Droplet Generation System
2.5. Experimental Platform
2.6. Test Method for Droplet Impact Behavior
2.7. Data Processing and Analysis
3. Results and Discussion
3.1. Droplet Spreading Behavior Under Different Applied Voltages
3.2. Behavior Analysis of Adherent Droplets
3.2.1. Effects of Impact Position, Impact Velocity, Droplet Size, and Applied Voltage on Droplet Adhesion
3.2.2. Growth Rate of Maximum Diffusion Factor of Droplet
3.3. Analysis of Splash Behavior in Droplets
3.3.1. Effects of Droplet Size, Impact Velocity, Impact Position, and Charge Voltage on Droplet Splashing
3.3.2. Splash Critical Value Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, D.; Yoo, D.; Kim, T. Analysis of Social Welfare Impact of Crop Pest and Disease Damages Due to Climate Change: A Case Study of Dried Red Peppers. Humanit. Soc. Sci. Commun. 2023, 10, 378. [Google Scholar] [CrossRef]
- Zheng, L.; Cao, C.; Cao, L.; Chen, Z.; Huang, Q.; Song, B. Bounce Behavior and Regulation of Pesticide Solution Droplets on Rice Leaf Surfaces. J. Agric. Food. Chem. 2018, 66, 11560–11568. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Yang, S.; Gao, Y.; Wang, Z.; Zhai, C.; Qiu, W. Evaluation of Spray Drift from an Electric Boom Sprayer: Impact of Boom Height and Nozzle Type. Agronomy 2025, 15, 160. [Google Scholar] [CrossRef]
- Tavares, R.M.; Cunha, J.P.; Alves, T.C.; Bueno, M.R.; Silva, S.M.; Zandonadi, C.H. Electrostatic Spraying in the Chemical Control of Triozoida Limbata (Enderlein) (Hemiptera: Triozidae) in Guava Trees (Psidium guajava L.). Pest Manag. Sci. 2017, 73, 1148–1153. [Google Scholar] [CrossRef]
- Salcedo, R.; Sánchez, E.; Zhu, H.; Fàbregas, X.; García-Ruiz, F.; Gil, E. Evaluation of an Electrostatic Spray Charge System Implemented in Three Conventional Orchard Sprayers Used on a Commercial Apple Trees Plantation. Crop Prot. 2023, 167, 106212. [Google Scholar] [CrossRef]
- Appah, S.; Zhou, H.; Wang, P.; Ou, M.; Jia, W. Charged Monosized Droplet Behaviour and Wetting Ability on Hydrophobic Leaf Surfaces Depending on Surfactant-Pesticide Concentrate Formulation. J. Electrostat. 2019, 100, 103356. [Google Scholar] [CrossRef]
- Xu, H.; Wang, J.; Wang, Z.; Yu, K.; Xu, H.; Wang, D.; Zhang, W. Impact Dynamics of a Charged Droplet onto Different Substrates. Phys. Fluids 2021, 33, 102111. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, B.; Huang, K.; Wang, S.; Quirino, R.L.; Zhang, Z.; Zhang, C. Eco-Friendly Castor Oil-Based Delivery System with Sustained Pesticide Release and Enhanced Retention. ACS Appl. Mater. Interfaces 2020, 12, 37607–37618. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, X.; Soh, S. Solid-to-liquid Charge Transfer for Generating Droplets with Tunable Charge. Angew. Chem. Int. Ed. 2016, 55, 9956–9960. [Google Scholar] [CrossRef]
- Appah, S.; Jia, W.; Ou, M.; Wang, P.; Gong, C. Investigation of Optimum Applied Voltage, Liquid Flow Pressure, and Spraying Height for Pesticide Application by Induction Charging. Appl. Eng. Agric. 2019, 35, 795–804. [Google Scholar] [CrossRef]
- Higuera, F.J. Neutralization of a Spray of Electrically Charged Droplets by a Corona Discharge. J. Fluid Mech. 2016, 801, 130–149. [Google Scholar] [CrossRef]
- Hislop, E.C. Electrostatic Ground-Rig Spraying: An Overview. Weed Technol. 1988, 2, 94–105. [Google Scholar] [CrossRef]
- Appah, S.; Wang, P.; Ou, M.; Gong, C.; Jia, W. Review of Electrostatic System Parameters, Charged Droplets Characteristics and Substrate Impact Behavior from Pesticides Spraying. Int. J. Agric. Biol. Eng. 2019, 12, 1–9. [Google Scholar] [CrossRef]
- Gao, J.; Xu, K.; He, R.; Chen, X.; Hussain Tunio, M. Development and Experiments of Low Frequency Ultrasonic Electrostatic Atomizing Nozzle with Double Resonators. Int. J. Agric. Biol. Eng. 2022, 15, 39–48. [Google Scholar] [CrossRef]
- Dai, S.; Zhang, J.; Jia, W.; Ou, M.; Zhou, H.; Dong, X.; Chen, H.; Wang, M.; Chen, Y.; Yang, S. Experimental Study on the Droplet Size and Charge-to-Mass Ratio of an Air-Assisted Electrostatic Nozzle. Agriculture 2022, 12, 889. [Google Scholar] [CrossRef]
- Patel, M.K.; Ghanshyam, C.; Kapur, P. Characterization of Electrode Material for Electrostatic Spray Charging: Theoretical and Engineering Practices. J. Electrostat. 2013, 71, 55–60. [Google Scholar] [CrossRef]
- Lin, Z.; Xie, J.; Tian, S.; Wang, X.; Sun, W.; Mo, X. Research and Experiment of Electrostatic Spraying System for Agricultural Plant Protection Unmanned Vehicle. Front. Ecol. Evol. 2023, 11, 1138180. [Google Scholar] [CrossRef]
- Sánchez-Hermosilla, J.; Pérez-Alonso, J.; Martínez-Carricondo, P.; Carvajal-Ramírez, F.; Agüera-Vega, F. Evaluation of Electrostatic Spraying Equipment in a Greenhouse Pepper Crop. Horticulturae 2022, 8, 541. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, H.; Xie, Z.; Zhou, X.; Tian, Y.; Zhang, Q.; Zhu, X.; Chen, R.; Liao, Q. Behaviors of the Water Droplet Impacting on Subcooled Superhydrophobic Surfaces in the Electrostatic Field. Chem. Eng. Sci. 2023, 266, 118282. [Google Scholar] [CrossRef]
- Kumar, A.; Ahmad, I.; Pathak, M. Droplet Impact on a Hydrophobic Surface Integrated with Electrowetting Technique. Colloids Surf. A 2023, 656, 130423. [Google Scholar] [CrossRef]
- Appah, S.; Jia, W.; Ou, M.; Wang, P.; Asante, E.A. Analysis of Potential Impaction and Phytotoxicity of Surfactant-Plant Surface Interaction in Pesticide Application. Crop Prot. 2020, 127, 104961. [Google Scholar] [CrossRef]
- Gong, C.; Jia, F.; Kang, C. Deposition of Water and Emulsion Hollow Droplets on Hydrophilic and Hydrophobic Surfaces. Agriculture 2024, 14, 960. [Google Scholar] [CrossRef]
- Srivastava, T.; Jena, S.K.; Kondaraju, S. Droplet Impact and Spreading on Inclined Surfaces. Langmuir 2021, 37, 13737–13745. [Google Scholar] [CrossRef]
- He, Y.; Wu, J.; Xiao, S.; Fang, H.; Zheng, Q. Investigating the Wettability of Rapeseed Leaves. Appl. Eng. Agric. 2021, 37, 399–409. [Google Scholar] [CrossRef]
- Hu, B.; Li, H.; Jiang, Y.; Tang, P.; Du, L. Review of the Interaction Mechanism for Droplets and Foliage under Sprinkler Irrigation and Water-Fertilizer Integration. Int. J. Agric. Biol. Eng. 2024, 17, 31–43. [Google Scholar] [CrossRef]
- Wu, S.; Liu, J.; Wang, J.; Hao, D.; Wang, R. The Motion of Strawberry Leaves in an Air-Assisted Spray Field and Its Influence on Droplet Deposition. Trans. Asabe 2021, 64, 83–93. [Google Scholar] [CrossRef]
- Li, Q.-P.; Ouyang, Y.; Niu, X.-D.; Jiang, Y.; Wen, M.-F.; Li, Z.-Q.; Chen, M.-F.; Li, D.-C.; Yamaguchi, H. Maximum Spreading of Impacting Ferrofluid Droplets under the Effect of Nonuniform Magnetic Field. Langmuir 2022, 38, 2601–2607. [Google Scholar] [CrossRef]
- Tan, J.; Wang, H.; Sun, M.; Tian, P.; Wang, Y.; Wang, K.; Jiang, D. Regulating Droplet Impact on a Solid Hydrophobic Surface through Alternating Current Electrowetting-on-Dielectric. Phys. Fluids 2021, 33, 42101. [Google Scholar] [CrossRef]
- Pan, L.; Chen, Y.; Li, Z.; Xie, X. Dynamical Behaviors of Nanodroplets Impinging on Solid Surfaces in the Presence of Electric Fields. Nanoscale 2023, 15, 6215–6224. [Google Scholar] [CrossRef]
- Kaiser, E.; Morales, A.; Harbinson, J.; Kromdijk, J.; Heuvelink, E.; Marcelis, L.F.M. Dynamic Photosynthesis in Different Environmental Conditions. J. Exp. Bot. 2015, 66, 2415–2426. [Google Scholar] [CrossRef]
- Myster, J.; Moe, R. Effect of Diurnal Temperature Alternations on Plant Morphology in Some Greenhouse Crops—A Mini Review. Sci. Hortic. 1995, 62, 205–215. [Google Scholar] [CrossRef]
- Stuerz, S.; Asch, F. Responses of Rice Growth to Day and Night Temperature and Relative Air Humidity—Dry Matter, Leaf Area, and Partitioning. Plants 2019, 8, 521. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, C.; Li, T.; He, X. Analysing the Preference for Pesticide Spray to Be Deposited at Leaf-Tips. Biosyst. Eng. 2021, 204, 247–256. [Google Scholar] [CrossRef]
- Cerkanowicz, A.E. Rayleigh Limit for Nonstationary Charged Drops. In Proceedings of the 1981 Annual Meeting Industry Applications Society, Philadelphia, PA, USA, 5–9 October 1981; pp. 1161–1165. [Google Scholar]
- Ding, S.; Hu, Z.; Dai, L.; Zhang, X.; Wu, X. Droplet Impact Dynamics on Single-Pillar Superhydrophobic Surfaces. Phys. Fluids 2021, 33, 102108. [Google Scholar] [CrossRef]
- Qiu, W.; Guo, H.B.; Zheng, H.; Cao, Y.B.; Lv, X.; Fang, J.; Zhai, C.Y.; Yu, H.F. CFD Modelling to Analyze the Droplets Deposition Behavior on Vibrating Rice Leaves. Comput. Electron. Agric. 2022, 201, 107330. [Google Scholar] [CrossRef]
- Zhang, Z. A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, H.; Zheng, J.; Ru, Y. Study on oblique impact behavior of spray droplets on tea leaf surface. J. Agric. Mach. 2019, 50, 96–103. [Google Scholar]
- Massinon, M.; Lebeau, F. Experimental Method for the Assessment of Agricultural Spray Retention Based on High-Speed Imaging of Drop Impact on a Synthetic Superhydrophobic Surface. Biosyst. Eng. 2012, 112, 56–64. [Google Scholar] [CrossRef]
- Yarin, A.L. DROP IMPACT DYNAMICS: Splashing, Spreading, Receding, Bouncing…. Annu. Rev. Fluid Mech. 2006, 38, 159–192. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, X.; Gao, Z.; Zhu, C.; Dong, L.; Qiu, B. Study on the impact behavior of droplets on the surface of flexible pepper leaves. J. Agric. Mach. 2024, 55, 188–201. [Google Scholar] [CrossRef]
- Dong, X.; Dong, L.; Gao, Z.; Wang, K.; Wang, X.; Wang, S.; Qiu, B.; Wang, X. Droplet Deposition Behavior on the Surface of Flexible Pepper Leaves. Agronomy 2025, 15, 708. [Google Scholar] [CrossRef]
- Chen, D.-R.; Pui, D.Y.H. Experimental Investigation of Scaling Laws for Electrospraying: Dielectric Constant Effect. Aerosol Sci. Technol. 1997, 27, 367–380. [Google Scholar] [CrossRef]
- Mundo, C.; Sommerfeld, M.; Tropea, C. Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process. Int. J. Multiph. Flow 1995, 21, 151–173. [Google Scholar] [CrossRef]
- Wal, R.L.V.; Berger, G.M.; Mozes, S.D. The Splash/Non-Splash Boundary upon a Dry Surface and Thin Fluid Film. Exp. Fluids 2006, 40, 53–59. [Google Scholar] [CrossRef]
- Yoon, S.S.; DesJardin, P.E.; Presser, C.; Hewson, J.C.; Avedisian, C.T. Numerical Modeling and Experimental Measurements of Water Spray Impact and Transport over a Cylinder. Int. J. Multiph. Flow 2006, 32, 132–157. [Google Scholar] [CrossRef]
- Delele, M.A.; Nuyttens, D.; Duga, A.T.; Ambaw, A.; Lebeau, F.; Nicolai, B.M.; Verboven, P. Predicting the Dynamic Impact Behaviour of Spray Droplets on Flat Plant Surfaces. Soft Matter 2016, 12, 7195–7211. [Google Scholar] [CrossRef]
- Forster, W.; Mercer, G.N.; Schou, W. Process-Driven Models for Spray Droplet Shatter, Adhesion or Bounce. In Proceedings of the 9th International Symposium on Adjuvants for Agrochemicals, Freising, Germany, 16–20 August 2010; p. 285. [Google Scholar]
Source of Variation | Sum of Squares | Degree of Freedom | Mean Square | F | p | Partial η2 |
---|---|---|---|---|---|---|
Modified model | 99.417 | 255 | 0.390 | 103.698 | <0.001 | 0.972 |
Intercept | 9011.015 | 1 | 9011.015 | 2,396,760.278 | <0.001 | 0.999 |
Position of impact | 24.577 | 3 | 8.192 | 2179.006 | <0.001 | 0.895 |
Impact velocity | 41.736 | 3 | 13.912 | 3700.308 | <0.001 | 0.935 |
Droplet size | 2.943 | 3 | 0.981 | 260.918 | <0.001 | 0.505 |
Voltage of charge | 28.222 | 3 | 9.407 | 2502.153 | <0.001 | 0.907 |
Error | 2.887 | 768 | 0.004 | |||
Total | 9113.319 | 1024 | ||||
Correction total | 102.304 | 1023 |
Item (Factor) | Value (Horizontal) | Number of Samples | Maximum Diffusion Factor |
---|---|---|---|
Position of impact (%) | 20 | 192 | 2.746 d |
40 | 192 | 2.919 c | |
60 | 192 | 3.033 b | |
80 | 192 | 3.168 a | |
Impact velocity (m·s−1) | 1.389 | 192 | 2.658 d |
1.931 | 192 | 2.933 c | |
2.370 | 192 | 3.074 b | |
2.750 | 192 | 3.201 a | |
Droplet size (μm) | 1051 | 192 | 2.899 d |
1413 | 192 | 2.936 c | |
1647 | 192 | 2.992 b | |
1741 | 192 | 3.039 a | |
Voltage of charge (kV) | 0.00 | 256 | 2.732 d |
14.00 | 256 | 2.909 c | |
16.00 | 256 | 3.043 b | |
18.00 | 256 | 3.181 a |
Partial Regression Coefficient | Standard Error | Chi-Square | Degree of Freedom | p | Odds Ratio | |
---|---|---|---|---|---|---|
Droplet size | 0.022 | 0.001 | 229.405 | 1 | <0.001 | 1.023 |
Impact velocity | 17.556 | 1.130 | 241.489 | 1 | <0.001 | 4.212 × 10−7 |
Position of impact | 154.230 | 3 | <0.001 | |||
Impact position (1) | −4.723 | 0.390 | 146.400 | 1 | 0.002 | 0.009 |
Impact position (2) | −2.450 | 0.289 | 71.629 | 1 | <0.001 | 0.086 |
Impact position (3) | −1.008 | 0.255 | 15.624 | 1 | <0.001 | 0.365 |
Voltage of charge | 0.220 | 0.019 | 136.244 | 1 | <0.001 | 1.246 |
Constant | −82.343 | 5.320 | 239.557 | 1 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Dong, X.; Wang, S.; Dong, L.; Gao, Z.; Wang, T.; Wang, X.; Lu, X.; Qiu, B. The Behavior of Electrostatic Droplets After Impacting Pepper Leaves. Horticulturae 2025, 11, 608. https://doi.org/10.3390/horticulturae11060608
Wang K, Dong X, Wang S, Dong L, Gao Z, Wang T, Wang X, Lu X, Qiu B. The Behavior of Electrostatic Droplets After Impacting Pepper Leaves. Horticulturae. 2025; 11(6):608. https://doi.org/10.3390/horticulturae11060608
Chicago/Turabian StyleWang, Kaiyuan, Xiaoya Dong, Song Wang, Liang Dong, Zhouming Gao, Tao Wang, Xiaolong Wang, Xin Lu, and Baijing Qiu. 2025. "The Behavior of Electrostatic Droplets After Impacting Pepper Leaves" Horticulturae 11, no. 6: 608. https://doi.org/10.3390/horticulturae11060608
APA StyleWang, K., Dong, X., Wang, S., Dong, L., Gao, Z., Wang, T., Wang, X., Lu, X., & Qiu, B. (2025). The Behavior of Electrostatic Droplets After Impacting Pepper Leaves. Horticulturae, 11(6), 608. https://doi.org/10.3390/horticulturae11060608