Biochar, Beneficial Microbes, and Agro-Industrial Byproducts in Seed Coatings: Improving Germination and Biomass in Multiple Crops
Abstract
:1. Introduction
- The combination of biochar with agro-industrial by-products (buffalo digestate and/or olive pomace) mitigates their phytotoxic effects while simultaneously enhancing plant growth.
- The synergistic action of beneficial microbiomes and agro-industrial by-products reduces the phytotoxicity of these materials, while biochar further improves plant resilience and growth by mediating these interactions.
2. Materials and Methods
2.1. Study Site, Soil and Material Analyses
2.2. Coating Preparation and Application
2.3. Germination Test In Vitro
2.4. Open Field Trial
3. Results
3.1. D. tenuifolia, L. sativa, S. lycopersicum and Z. mays Germination
3.2. Response of L. sativa, S. lycopersicum and Z. mays to Coating in the Field
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lichtfouse, E.; Navarrete, M.; Debaeke, P.; Souchère, V.; Alberola, C.; Ménassieu, J. Agronomy for sustainable agriculture: A review. Sustain. Agric. 2009, 1, 1–7. [Google Scholar]
- Pacini, C.; Wossink, A.; Giesen, G.; Vazzana, C.; Huirne, R. Evaluation of sustainability of organic, integrated and conventional farming systems: A farm and field-scale analysis. Agric. Ecosyst. Environ. 2003, 95, 273–288. [Google Scholar] [CrossRef]
- Bonanomi, G.; D’Ascoli, R.; Antignani, V.; Capodilupo, M.; Cozzolino, L.; Marzaioli, R.; Zoina, A. Assessing soil quality under intensive cultivation and tree orchards in Southern Italy. Appl. Soil Ecol. 2011, 47, 184–194. [Google Scholar] [CrossRef]
- Brunelle, T.; Chakir, R.; Carpentier, A.; Dorin, B.; Goll, D.; Guilpart, N.; Tang, F.H. Reducing chemical inputs in agriculture requires a system change. Commun. Earth Environ. 2024, 5, 369. [Google Scholar] [CrossRef]
- Javed, T.; Afzal, I.; Shabbir, R.; Ikram, K.; Zaheer, M.S.; Faheem, M.; Iqbal, J. Seed coating technology: An innovative and sustainable approach for improving seed quality and crop performance. J. Saudi Soc. Agric. Sci. 2022, 21, 536–545. [Google Scholar] [CrossRef]
- Miyamoto, H.; Shigeta, K.; Suda, W.; Ichihashi, Y.; Nihei, N.; Matsuura, M.; Hirai, Y. Agricultural quality matrix-based multiomics structural analysis of carrots in soils fertilized with thermophile-fermented compost. arXiv 2022, arXiv:2202.03132. [Google Scholar]
- Kamali, M.; Sweygers, N.; Al-Salem, S.; Appels, L.; Aminabhavi, T.M.; Dewil, R. Biochar for soil applications—Sustainability aspects, challenges and future prospects. Chem. Eng. J. 2022, 428, 131189. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Iacomino, G.; Sarker, T.C.; Ippolito, F.; Bonanomi, G.; Vinale, F.; Staropoli, A.; Idbella, M. Biochar and compost application either alone or in combination affects vegetable yield in a volcanic Mediterranean soil. Agronomy 2022, 12, 1996. [Google Scholar] [CrossRef]
- Singh, H.; Northup, B.K.; Rice, C.W.; Prasad, P.V. Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: A meta-analysis. Biochar 2022, 4, 8. [Google Scholar] [CrossRef]
- Bonanomi, G.; Alioto, D.; Minutolo, M.; Marra, R.; Cesarano, G.; Vinale, F. Organic amendments modulate soil microbiota and reduce virus disease incidence in the TSWV-tomato pathosystem. Pathogens 2020, 9, 379. [Google Scholar] [CrossRef]
- Bonanomi, G.; Zotti, M.; Idbella, M.; Cesarano, G.; Al-Rowaily, S.L.; Abd-ElGawad, A.M. Mixtures of organic amendments and biochar promote beneficial soil microbiota and affect Fusarium oxysporum f. sp. lactucae, Rhizoctonia solani and Sclerotinia minor disease suppression. Plant Pathol. 2022, 71, 818–829. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Williams, M.I.; Dumroese, R.K.; Page-Dumroese, D.S.; Hardegree, S.P. Can biochar be used as a seed coating to improve native plant germination and growth in arid conditions? J. Arid. Environ. 2016, 125, 8–15. [Google Scholar] [CrossRef]
- Debode, J.; Viaene, J.; Maenhout, K.; Joos, L.; França, S.C.; Cuypers, A.; Vandecasteele, B. Wood-based biochars produced at low pyrolysis temperatures are good carriers for a Trichoderma-based biopesticide. Biochar 2024, 6, 1–8. [Google Scholar] [CrossRef]
- Bolan, S.; Hou, D.; Wang, L.; Hale, L.; Egamberdieva, D.; Tammeorg, P.; Bolan, N. The potential of biochar as a microbial carrier for agricultural and environmental applications. Sci. Total Environ. 2023, 886, 163968. [Google Scholar] [CrossRef] [PubMed]
- Jellali, S.; El-Bassi, L.; Charabi, Y.; Usman, M.; Khiari, B.; Al-Wardy, M.; Jeguirim, M. Recent advancements on biochars enrichment with ammonium and nitrates from wastewaters: A critical review on benefits for environment and agriculture. J. Environ. Manag. 2022, 305, 114368. [Google Scholar] [CrossRef]
- Hammerschmiedt, T.; Holatko, J.; Sudoma, M.; Kintl, A.; Vopravil, J.; Ryant, P.; Brtnicky, M. Biochar and sulphur enriched digestate: Utilization of agriculture-associated waste products for improved soil carbon and nitrogen content, microbial activity, and plant growth. Agronomy 2021, 11, 2041. [Google Scholar] [CrossRef]
- Qayyum, M.F.; Liaquat, F.; Rehman, R.A.; Gul, M.; ul Hye, M.Z.; Rizwan, M.; Rehaman, M.Z.U. Effects of co-composting of farm manure and biochar on plant growth and carbon mineralization in an alkaline soil. Environ. Sci. Pollut. Res. 2017, 24, 26060–26068. [Google Scholar] [CrossRef]
- Difonzo, G.; Troilo, M.; Squeo, G.; Pasqualone, A.; Caponio, F. Functional compounds from olive pomace to obtain high-added value foods: A review. J. Sci. Food Agric. 2021, 101, 15–26. [Google Scholar] [CrossRef]
- Scotto Di Petra, E.; Cervelli, E.; Caro, S.; Faugno, S.; Pindozzi, S. Monitoring of ammonia emissions from stored buffalo digestate covered with biochar. In Proceedings of the 28th European Biomass Conference and Exhibition, Virtual, 6–9 July 2020. ETA-Florence Renewable Energies. [Google Scholar]
- Risberg, K.; Cederlund, H.; Pell, M.; Arthurson, V.; Schnürer, A. Comparative characterization of digestate versus pig slurry and cow manure: Chemical composition and effects on soil microbial activity. Waste Manag. 2017, 61, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Medouni-Haroune, L.A.M.; Zaidi, F.; Medouni-Adrar, S.O.N.; Kecha, M. Olive pomace: From an olive mill waste to a resource, an overview of the new treatments. J. Crit. Rev. 2018, 5, 1–6. [Google Scholar] [CrossRef]
- Alaoui, I.; El Ghadraoui, O.; Tanji, K.; Harrach, A.; Farah, A. The olive mill pomace: A sustainable biofertilizer to improve soil proprieties and plant nutrient uptake. Waste Biomass Valorization 2024, 15, 2575–2590. [Google Scholar] [CrossRef]
- Enaime, G.; Baçaoui, A.; Yaacoubi, A.; Belaqziz, M.; Wichern, M.; Lübken, M. Phytotoxicity assessment of olive mill wastewater treated by different technologies: Effect on seed germination of maize and tomato. Environ. Sci. Pollut. Res. 2020, 27, 8034–8045. [Google Scholar] [CrossRef]
- Makádi, M.; Tomócsik, A.; Orosz, V. Digestate: A new nutrient source—Review. Biogas 2012, 14, 295–312. [Google Scholar]
- Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sustain. Dev. 2014, 34, 473–492. [Google Scholar] [CrossRef]
- Bonanomi, G.; Lorito, M.; Vinale, F.; Woo, S.L. Organic amendments, beneficial microbes, and soil microbiota: Toward a unified framework for disease suppression. Annu. Rev. Phytopathol. 2018, 56, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Amoroso, G.; Cozzolino, A.; Idbella, M.; Iacomino, G.; Motti, R.; Bonanomi, G. The decomposition dynamics and substrate component potential of biomass from the seagrass Posidonia oceanica (L.) Delile. Horticulturae 2024, 10, 58. [Google Scholar] [CrossRef]
- Alori, E.T.; Babalola, O.O. Microbial inoculants for improving crop quality and human health in Africa. Front. Microbiol. 2018, 9, 2213. [Google Scholar] [CrossRef]
- Rocha, I.; Ma, Y.; Souza-Alonso, P.; Vosátka, M.; Freitas, H.; Oliveira, R.S. Seed coating: A tool for delivering beneficial microbes to agricultural crops. Front. Plant Sci. 2019, 10, 1357. [Google Scholar] [CrossRef]
- Idbella, M.; Iacomino, G.; Abd-ElGawad, A.M.; Bonanomi, G. Soil microbial co-occurrence networks across climate and land use gradient in Southern Italy. Environ. Microbiol. Rep. 2025, 17, e70093. [Google Scholar] [CrossRef] [PubMed]
- Hoitink, H.A.J.; Madden, L.V.; Dorrance, A.E. Systemic resistance induced by Trichoderma spp.: Interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. Phytopathology 2006, 96, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Zin, N.A.; Badaluddin, N.A. Biological functions of Trichoderma spp. for agriculture applications. Ann. Agric. Sci. 2020, 65, 168–178. [Google Scholar] [CrossRef]
- Turkan, S.; Mierek-Adamska, A.; Kulasek, M.; Konieczna, W.B.; Dąbrowska, G.B. New seed coating containing Trichoderma viride with anti-pathogenic properties. PeerJ 2023, 11, e15392. [Google Scholar] [CrossRef]
- Juntahum, S.; Klinsukon, C.; Senawong, K.; Katekaew, S.; Sokudlor, N.; Laloon, K. Assessing the Potential for Producing Compost Pellets with Binders from Cassava Industry By-products and Supplemented with Trichoderma. In Case Studies in Chemical and Environmental Engineering; Elsevier: Amsterdam, The Netherlands, 2025; p. 101221. [Google Scholar] [CrossRef]
- Munnysha, S.; Bunker, R.N.; Abhi, R.; Shree, D.; Mondal, K.; Akodiya, S.; Beniwal, M. Trichoderma: A Multifaceted Ally in Plant Growth Promotion and Disease Resistance. Plant Arch. 2025, 25, 1472–1478. [Google Scholar]
- Rodríguez-Martínez, E.S.; Torres-Torres, E.; Guigón-López, C.; Alvarado-González, M. Trichoderma Roles in Sustainable Agriculture. In Sustainable Engineering and Agro-Food Processing; Apple Academic Press: Palm Bay, FL, USA, 2025; pp. 147–187. [Google Scholar]
- Ali, A.; Elrys, A.S.; Liu, L.; Xia, Q.; Wang, B.; Li, Y.; Cai, Z. Deciphering the synergies of reductive soil disinfestation combined with biochar and antagonistic microbial inoculation in cucumber fusarium wilt suppression through rhizosphere microbiota structure. Microb. Ecol. 2023, 85, 980–997. [Google Scholar] [CrossRef]
- de Medeiros, E.V.; da Costa, D.P.; Silva, E.L.D.; de França, A.F.; de Sousa Lima, J.R.; Hammecker, C.; Araujo, A.S.F. Biochar and Trichoderma as an eco-friendly and low-cost alternative to improve soil chemical and biological properties. Waste Biomass Valorization 2024, 15, 1439–1450. [Google Scholar] [CrossRef]
- Jatuwong, K.; Aiduang, W.; Kiatsiriroat, T.; Kamopas, W.; Lumyong, S. A Review of Biochar from Biomass and Its Interaction with Microbes: Enhancing Soil Quality and Crop Yield in Brassica Cultivation. Life 2025, 15, 284. [Google Scholar] [CrossRef]
- Idbella, M.; Bonanomi, G. Uncovering the dark side of agriculture: How land use intensity shapes soil microbiome and increases potential plant pathogens. Appl. Soil Ecol. 2023, 192, 105090. [Google Scholar] [CrossRef]
- Couto, A.P.S.; Pereira, A.E.; Abati, J.; Fontanela, M.L.C.; Dias-Arieira, C.R.; Krohn, N.G. Seed treatment with Trichoderma and chemicals to improve physiological and sanitary quality of wheat cultivars. Rev. Caatinga 2021, 34, 813–823. [Google Scholar] [CrossRef]
- Pedrini, S.; Merritt, D.J.; Stevens, J.; Dixon, K. Seed coating: Science or marketing spin? Trends Plant Sci. 2017, 22, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Sohail, M.; Pirzada, T.; Opperman, C.H.; Khan, S.A. Recent advances in seed coating technologies: Transitioning toward sustainable agriculture. Green Chem. 2022, 24, 6052–6085. [Google Scholar] [CrossRef]
- Afzal, I.; Javed, T.; Amirkhani, M.; Taylor, A.G. Modern seed technology: Seed coating delivery systems for enhancing seed and crop performance. Agriculture 2020, 10, 526. [Google Scholar] [CrossRef]
- Jarecki, W.; Wietecha, J. Effect of seed coating on the yield of soybean Glycine max (L.) Merr. Plant Soil Environ. 2021, 67, 468–473. [Google Scholar] [CrossRef]
- Vitti, A.; Elshafie, H.S.; Logozzo, G.; Marzario, S.; Scopa, A.; Camele, I.; Nuzzaci, M. Physico-chemical characterization and biological activities of a digestate and a more stabilized digestate-derived compost from agro-waste. Plants 2021, 10, 386. [Google Scholar] [CrossRef] [PubMed]
- Marra, R.; Vinale, F.; Cesarano, G.; Lombardi, N.; d’Errico, G.; Crasto, A.; Bonanomi, G. Biochars from olive mill waste have contrasting effects on plants, fungi and phytoparasitic nematodes. PLoS ONE 2018, 13, e0198728. [Google Scholar] [CrossRef]
- Pinho, I.A.; Lopes, D.V.; Martins, R.C.; Quina, M.J. Phytotoxicity assessment of olive mill solid wastes and the influence of phenolic compounds. Chemosphere 2017, 185, 258–267. [Google Scholar] [CrossRef]
- Mekki, A.; Arous, F.; Aloui, F.; Sayadi, S. Disposal of agro-industrial wastes as soil amendments. Am. J. Environ. Sci. 2013, 9, 458. [Google Scholar] [CrossRef]
- Bonanomi, G.; Giorgi, V.; Neri, D.; Scala, F. Olive mill residues affect saprophytic growth and disease incidence of foliar and soilborne plant fungal pathogens. Agric. Ecosyst. Environ. 2006, 115, 194–200. [Google Scholar] [CrossRef]
- Pan, M.; Chu, L.M. Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops. Ecotoxicol. Environ. Saf. 2016, 126, 228–237. [Google Scholar] [CrossRef]
- Abou Jaoude, L.; Nassif, N.; Garau, G.; Darwish, T.; Castaldi, P. Biochar addition decreases the mobility, bioavailability, and phytotoxicity of potentially toxic elements in an agricultural contaminated soil. Commun. Soil Sci. Plant Anal. 2022, 53, 1655–1671. [Google Scholar] [CrossRef]
- Bu, X.; Xue, J.; Wu, Y.; Ma, W. Effect of biochar on seed germination and seedling growth of Robinia pseudoacacia L. in karst calcareous soils. Commun. Soil Sci. Plant Anal. 2020, 51, 352–363. [Google Scholar] [CrossRef]
- Zhang, K.; Khan, Z.; Yu, Q.; Qu, Z.; Liu, J.; Luo, T.; Luo, L. Biochar coating is a sustainable and economical approach to promote seed coating technology, seed germination, plant performance, and soil health. Plants 2022, 11, 2864. [Google Scholar] [CrossRef]
- Bonanomi, G.; Zotti, M.; Abd-ElGawad, A.M.; Iacomino, G.; Nappi, A.; Grauso, L.; Idbella, M. Plant-growth promotion by biochar–organic amendments mixtures explained by selective chemicals adsorption of inhibitory compounds. J. Environ. Chem. Eng. 2023, 11, 109009. [Google Scholar] [CrossRef]
- Li, S.; Harris, S.; Anandhi, A.; Chen, G. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. J. Clean. Prod. 2019, 215, 890–902. [Google Scholar] [CrossRef]
- Phillips, C.L.; Meyer, K.M.; Garcia-Jaramillo, M.; Weidman, C.S.; Stewart, C.E.; Wanzek, T.; Grusak, M.A.; Watts, D.W.; Novak, J. Towards predicting biochar impacts on plant-available soil nitrogen content. Biochar 2022, 4, 9. [Google Scholar] [CrossRef]
- Głodowska, M.; Husk, B.; Schwinghamer, T.; Smith, D. Biochar is a growth-promoting alternative to peat moss for the inoculation of corn with a pseudomonad. Agron. Sustain. Dev. 2016, 36, 1–10. [Google Scholar] [CrossRef]
- Khan, Z.; Zhang, K.; Khan, M.N.; Bi, J.; Zhu, K.; Luo, L.; Hu, L. How biochar affects nitrogen assimilation and dynamics by interacting soil and plant enzymatic activities: Quantitative assessment of 2 years potted study in a rapeseed-soil system. Front. Plant Sci. 2022, 13, 853449. [Google Scholar] [CrossRef]
- Zhang, K.; Han, X.; Fu, Y.; Zhou, Y.; Khan, Z.; Bi, J.; Luo, L. Biochar coating as a cost-effective delivery approach to promoting seed quality, rice germination, and seedling establishment. Plants 2023, 12, 3896. [Google Scholar] [CrossRef]
- Tan, X.; Wang, Z.; Zhang, Y.; Wang, X.; Shao, D.; Wang, C.; Zhou, G. Biochar-based pelletized seed enhances the yield of late-sown rapeseed by improving the relative growth rate and cold resistance of seedlings. Ind. Crops Prod. 2025, 223, 119993. [Google Scholar] [CrossRef]
- Chaudhary, T.; Dixit, M.; Gera, R.; Shukla, A.K.; Prakash, A.; Gupta, G.; Shukla, P. Techniques for improving formulations of bioinoculants. Biotech 2020, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.J.; Mead, A.; Whipps, J.M. Performance of carrot and onion seed primed with beneficial microorganisms in glasshouse and field trials. Biol. Control. 2009, 51, 417–426. [Google Scholar] [CrossRef]
- Cardarelli, M.; Woo, S.L.; Rouphael, Y.; Colla, G. Seed treatments with microorganisms can have a biostimulant effect by influencing germination and seedling growth of crops. Plants 2022, 11, 259. [Google Scholar] [CrossRef]
- Naz, R.; Asif, T.; Mubeen, S.; Khushhal, S. Seed application with microbial inoculants for enhanced plant growth. In Sustainable Horticulture; Academic Press: London, UK, 2022; pp. 333–368. [Google Scholar]
- Kumar, S.; Arutselvan, R.; Greeshma, K.; Bodhankar, S.; Akash, A.U.; Prasad, V.S.S.K.; Keswani, C. Unraveling the seed bio-priming contours for managing plant health. J. Plant Growth Regul. 2024, in press. [CrossRef]
- Paravar, A.; Piri, R.; Balouchi, H.; Ma, Y. Microbial seed coating: An attractive tool for sustainable agriculture. Biotechnol. Rep. 2023, 37, e00781. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y. Seed coating with beneficial microorganisms for precision agriculture. Biotechnol. Adv. 2019, 37, 107423. [Google Scholar] [CrossRef]
- Iacomino, G.; Idbella, M.; Laudonia, S.; Vinale, F.; Bonanomi, G. The suppressive effects of biochar on above—And belowground plant pathogens and pests: A review. Plants 2022, 11, 3144. [Google Scholar] [CrossRef] [PubMed]
- Thies, J.E.; Rillig, M.C. Characteristics of biochar: Biological properties. In Biochar for Environmental Management; Routledge: London, UK, 2012; pp. 117–138. [Google Scholar]
- Malik, M.A.; Ahmad, N.; Bhat, M.Y. The green shield: Trichoderma’s role in sustainable agriculture against soil-borne fungal threats. Curr. Res. Microb. Sci. 2024, 7, 100313. [Google Scholar] [CrossRef]
- Gutiérrez-Chávez, A.; Robles-Hernández, L.; Guerrero, B.I.; González-Franco, A.C.; Medina-Pérez, G.; Acevedo-Barrera, A.A.; Hernández-Huerta, J. Potential of Trichoderma asperellum as a growth promoter in hydroponic lettuce cultivated in a floating-root system. Plants 2025, 14, 382. [Google Scholar] [CrossRef]
- Ahmad, C.A.; Akhter, A.; Haider, M.S.; Abbas, M.T.; Hashem, A.; Avila-Quezada, G.D.; Abd_Allah, E.F. Demonstration of the synergistic effect of biochar and Trichoderma harzianum on the development of Ralstonia solanacearum in eggplant. Front. Microbiol. 2024, 15, 1360703. [Google Scholar] [CrossRef]
- Almasrahi, A.; Alamin, M.Y.; Molan, Y.Y.; Alhashel, A.F.; Widyawan, A.; Ibrahim, Y.E.; El-Komy, M.H. Synergistic effects of Trichoderma asperellum mixture strains and biochar-amended soil on Fusarium wilt of strawberry. Plant Pathol. 2025, 1–16. [Google Scholar] [CrossRef]
- Sani, M.N.H.; Hasan, M.; Uddain, J.; Subramaniam, S. Impact of application of Trichoderma and biochar on growth, productivity and nutritional quality of tomato under reduced NPK fertilization. Ann. Agric. Sci. 2020, 65, 107–115. [Google Scholar] [CrossRef]
- Mei, L.I.; Hua, L.I.A.N.; Su, X.L.; Ying, T.I.A.N.; Huang, W.K.; Jie, M.E.I.; Jiang, X.L. The effects of Trichoderma on preventing cucumber fusarium wilt and regulating cucumber physiology. J. Integr. Agric. 2019, 18, 607–617. [Google Scholar] [CrossRef]
- Da Silva, J.S.A.; de Medeiros, E.V.; Da Costa, D.P.; de Souza, C.A.F.; De Oliveira, J.B.; da França, R.F.; Hammecker, C. Biochar and Trichoderma aureoviride URM 5158 as alternatives for the management of cassava root rot. Appl. Soil Ecol. 2022, 172, 104353. [Google Scholar] [CrossRef]
- Vecstaudza, D.; Grantina-Ievina, L.; Makarenkova, G.; Kasparinskis, R.; Selga, T.; Steinberga, V.; Muter, O. The impact of wood-derived biochar on the survival of Trichoderma spp. and growth of Secale cereale L. in sandy soil. Biocontrol. Sci. Technol. 2018, 28, 341–358. [Google Scholar] [CrossRef]
- Iacomino, G.; Bonanomi, G.; Motti, R.; Idbella, M. Trick of the trade: Unveiling the importance of feedstock chemistry in Trichoderma-organic amendments-based bio-stimulants. Horticulturae 2023, 9, 957. [Google Scholar] [CrossRef]
- Osorio-Guerrero, K.V.; Patiño-Moscoso, M.A.; Flórez-Gómez, D.L.; Cortés-Rojas, D.F. Trichoderma koningiopsis applied as seed coating protects sweet sorghum (Sorghum bicolor (L.) Moench) from fungal contaminants during storage. Eur. J. Plant Pathol. 2024, 169, 581–591. [Google Scholar] [CrossRef]
- Abdukerim, R.; Li, L.; Li, J.H.; Xiang, S.; Shi, Y.X.; Xie, X.W.; Li, B.J. Coating seeds with biocontrol bacteria-loaded sodium alginate/pectin hydrogel enhances the survival of bacteria and control efficacy against soil-borne vegetable diseases. Int. J. Biol. Macromol. 2024, 279, 135317. [Google Scholar] [CrossRef]
- Poveda, J.; Eugui, D. Combined use of Trichoderma and beneficial bacteria (mainly Bacillus and Pseudomonas): Development of microbial synergistic bio-inoculants in sustainable agriculture. Biol. Control 2022, 176, 105100. [Google Scholar] [CrossRef]
- Herrera-Estrella, A.; Chet, I. The biological control agent Trichoderma: From fundamentals to applications. Mycol. Ser. 2004, 21, 147–156. [Google Scholar]
Biochar | Olive Pomace | Buffalo Digestate | |
---|---|---|---|
C (%) | 55.7 | 54.6 | - |
N (%) | 0.49 | 1.6 | - |
C/N | 113.6735 | 34.13 | - |
H/C | - | 1.66 | - |
P (%) | 0.08 | - | - |
K (%) | 0.92 | - | - |
Ca (%) | 2.95 | - | - |
Mg (%) | 0.43 | - | - |
Na (mg/kg) | 1258 | - | - |
pH | 7.9 | 5.78 | - |
CE (mS/m) | 29 | 1067 | - |
Ashes (g) | 26.51 | - | - |
UR (% m/m) | 59.2 | - | - |
WR (% m/m) | 74.85 | - | - |
TS (g/kg) | - | - | 43.96 |
VS (%) | - | - | 64.9 |
TKN (%) | - | - | 6.3 |
TAN (%) | - | - | 3.7 |
TAN/TKN | - | - | 58.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amoroso, G.; Idbella, M.; Motti, R.; Gemini, A.; Cozzolino, A.; Bonanomi, G. Biochar, Beneficial Microbes, and Agro-Industrial Byproducts in Seed Coatings: Improving Germination and Biomass in Multiple Crops. Horticulturae 2025, 11, 554. https://doi.org/10.3390/horticulturae11050554
Amoroso G, Idbella M, Motti R, Gemini A, Cozzolino A, Bonanomi G. Biochar, Beneficial Microbes, and Agro-Industrial Byproducts in Seed Coatings: Improving Germination and Biomass in Multiple Crops. Horticulturae. 2025; 11(5):554. https://doi.org/10.3390/horticulturae11050554
Chicago/Turabian StyleAmoroso, Giandomenico, Mohamed Idbella, Riccardo Motti, Adriano Gemini, Alessia Cozzolino, and Giuliano Bonanomi. 2025. "Biochar, Beneficial Microbes, and Agro-Industrial Byproducts in Seed Coatings: Improving Germination and Biomass in Multiple Crops" Horticulturae 11, no. 5: 554. https://doi.org/10.3390/horticulturae11050554
APA StyleAmoroso, G., Idbella, M., Motti, R., Gemini, A., Cozzolino, A., & Bonanomi, G. (2025). Biochar, Beneficial Microbes, and Agro-Industrial Byproducts in Seed Coatings: Improving Germination and Biomass in Multiple Crops. Horticulturae, 11(5), 554. https://doi.org/10.3390/horticulturae11050554