Optimization of Irrigation and Nitrogen Fertilization Improves Biomass, Yield, and Quality of Fertigation Tomatoes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Test Materials
- Plot layout
- Crop Management
- Drip irrigationsystem
2.3. Experiment Design
- Nutrient application
- Irrigation application
2.4. Measurements
- (1)
- Meteorological data monitoring
- (2)
- Determination of soil characteristics
- (3)
- Net photosynthesis rate (Pn) measurements
- (4)
- Determination of plant biomass
- (5)
- Determination of fruit yield
- (6)
- Determination of tomato quality
2.5. Calculations
- (1)
- Reference crop evapotranspiration (ET0)
- (2)
- Determination of IWP and PFPN.
2.6. Statistical Analysis
3. Results
3.1. Net Photosynthetic Rate (Pn)
3.2. Dry Biomass Cumulative
3.3. Yield, IWP, and PFPN
3.4. Relationship Between Nitrogen Application and Irrigation Amounts and Tomato Yield, Net Pn, and Total Dry Biomass Cumulation
3.5. Tomato Quality
3.6. Principal Component Analysis and Comprehensive Evaluation of Tomato Quality
4. Discussion
4.1. Pn and Dry Biomass
4.2. Yield, IWP, and PFPN
4.3. Fruit Quality
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chu, X.; Zheng, L.; Ye, G.; Chen, J. Comparison of greenhouse gas emissions between open field and facility tomato production in China. J. Agric. Environ. Sci. 2023, 42, 1870–1881. [Google Scholar]
- Guo, R.; Yang, Y.; Li, J. Comparative study of nitrogen budget in three different vegetable planting patterns under greenhouse condition. Chin. J. Eco Agric. 2014, 22, 10–15. [Google Scholar] [CrossRef]
- Luo, Q.; Chen, Z.; Yan, B.; Lei, J.; Zhang, X.; Bai, X.; Zhou, J. Effects of reducing water and fertilizer rates on soil moisture and yield and quality of tomato in solar greenhouse. J. Plant Nutr. 2015, 21, 449–457. [Google Scholar]
- Liu, H.; Duan, A.; Li, F.; Sun, J.; Wang, Y.; Sun, C. Drip irrigation scheduling for tomato grown in solar greenhouse based on pan evaporation in North China Plain. J. Integr. Agric. 2013, 12, 520–531. [Google Scholar] [CrossRef]
- Li, Y.; Wu, X.; Wu, Q.; Wu, H. Effects of irrigation and nitrogen application on ammonia volatilization loss from vegetable fields under greenhouse cultivation. J. Plant Nutr. 2016, 22, 949–957. [Google Scholar]
- Boyacı, S.; Kocięcka, J.; Atilgan, A.; Niemiec, M.; Liberacki, D.; Rolbiecki, R. Determination of the Effects of Different Irrigation Levels and Vermicompost Doses on Water Consumption and Yield of Greenhouse-Grown Tomato. Water 2024, 16, 1095. [Google Scholar] [CrossRef]
- Song, C.; Jiao, Y.; Yang, W.; Yu, Y.; Zhang, J.; Liu, Y. Research progress on the influence of irrigation methods on ammonia volatilization in farmland. IOP Conf. Ser. Earth Environ. Sci. 2021, 647, 012170. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, X.; Lv, D.; Li, W.; Wang, T.; Wei, C. Effects of water and fertilizer coupling on the yield and quality of processing tomato under aerated drip irrigation. Trans. Chin. Soc. Agric. Eng. 2020, 36, 66–75. [Google Scholar]
- He, Z.H.; Li, M.N.; Cai, Z.L.; Zhao, R.S.; Hong, T.T.; Yang, Z.; Zhang, Z. Optimal irrigation and fertilizer amounts based on multi-level fuzzy comprehensive evaluation of yield, growth and fruit quality on cherry tomato. Agric. Water Manag. 2021, 243, 106360. [Google Scholar] [CrossRef]
- Mahajan, G.; Singh, K. Response of Greenhouse tomato to irrigation and fertigation. Agric. Water Manag. 2006, 84, 202–206. [Google Scholar] [CrossRef]
- Volpi, I.; Bosco, S.; Ragaglini, G.; Laville, P.; Bonari, E. Tomato productivity and soil greenhouse gas emissions under reduced water and N fertilizers in a Mediterranean environment. Agric. Ecosyst. Environ. 2022, 326, 107819. [Google Scholar] [CrossRef]
- Cui, J.; Liu, W.; Li, B. Effects of different water and nitrogen treatments on greenhouse tomato yield, water use efficiency, and physiological responses. Irrig Sci. 2024, 42, 509–523. [Google Scholar] [CrossRef]
- Abioye, E.A.; Abidin, M.S.Z.; Aman, M.N.; Mahmud, M.S.A.; Buyamin, S. A model predictive controller for precision irrigation using discrete lagurre networks. Comput. Electron. Agric. 2021, 181, 105953. [Google Scholar] [CrossRef]
- Gu, Z.; Qi, Z.M.; Burghate, R.; Yuan, S.Q.; Jiao, X.Y.; Xu, J.Z. Irrigation scheduling approaches and applications: A review. J. Irrig. Drain. Eng. 2020, 146, 04020007. [Google Scholar] [CrossRef]
- Li, Y.; Xu, J.; Liu, X.; Liu, B.; Liu, W.; Jiao, X.; Zhou, J. Win-win for monosodium glutamate industry and paddy agriculture: Replacing chemical nitrogen with liquid organic fertilizer from wastewater mitigates reactive nitrogen losses while sustaining yields. J. Clean. Prod. 2022, 347, 131287. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, S.; Fan, J.; Zhang, F.; Zhao, W.; Zheng, J.; Guo, J.; Xiang, Y.; Wu, L. Combined effects of irrigation level and fertilization practice on yield, economic benefit and water-nitrogen use efficiency of drip-irrigated greenhouse tomato. Agric. Water Manag. 2022, 262, 107401. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, Z.; Zhang, Y.; Shi, Y. Finding the fertilization optimization to balance grain yield and soil greenhouse gas emissions under water-saving irrigation. Soil Tillage Res. 2021, 214, 105167. [Google Scholar] [CrossRef]
- Cecilio, F.; Nascimento, C.; Pereira, B.; Nascimento, C. Nitrogen fertilisation impacts greenhouse gas emissions, carbon footprint, and agronomic responses of beet intercropped with arugula. J. Environ. Manag. 2022, 307, 114568. [Google Scholar] [CrossRef]
- Xiao, C.; Zhang, F.; Li, Y.; Fan, J.; Ji, Q.; Jiang, F.; He, Z. Optimizing drip irrigation and nitrogen fertilization regimes to reduce greenhouse gas emissions, increase net ecosystem carbon budget and reduce carbon footprint in saline cotton fields. Agr. Ecosyst. Environ. 2024, 366, 108912. [Google Scholar] [CrossRef]
- Wu, Y.; Si, W.; Yan, S.; Wu, L.; Zhao, W.; Zhang, J.; Zhang, F.; Fan, J. Water consumption, soil nitrate-nitrogen residue and fruit yield of drip-irrigated greenhouse tomato under various irrigation levels and fertilization practices. Agric. Water Manag. 2023, 277, 108092. [Google Scholar] [CrossRef]
- Rajput, T.; Patel, N. Water and nitrate movement in drip-irrigated onion under fertigation and irrigation treatments. Agric. Water Manag. 2006, 79, 293–311. [Google Scholar] [CrossRef]
- Xin, L.; Ma, J.; Liu, R.; Tang, M.; Jiang, M.; Wang, P. Effects of alternate irrigation with salt and fresh water on enzyme activity, yield and quality of protected tomato in southern Xinjiang. Water Sav. Irrig. 2023, 1, 33–39. [Google Scholar]
- Zhang, M.; Xiao, N.; Li, Y.; Li, Y.; Zhang, D.; Xu, Z.; Zhang, Z. Growth and Fruit Yields of Greenhouse Tomato under the Integrated Water and Fertilizer by Moistube Irrigation. Agronomy 2022, 12, 1630. [Google Scholar] [CrossRef]
- Yue, W.; Chen, S.; Gao, L.; Li, N.; Liu, L. Effects of Water and Nitrogen Coupling on Yield, Quality, Water and Nitrogen Use Efficiencies of Greenhouse Muskmelon. Water 2023, 15, 2603. [Google Scholar] [CrossRef]
- Qi, D.; Hu, T. Effects of nitrogen application rates and irrigation regimes on root growth and nitrogen-use efficiency of maize under alternate partial root-zone irrigation. J. Soil. Sci. Plant Nutr. 2022, 22, 2793–2804. [Google Scholar] [CrossRef]
- Wang, H.; Cao, H.; Hao, S.; Pan, X. Responses of Plant Nutrient and Photosynthesis in Greenhouse Tomato to Water-Fertilizer Coupling and Their Relationship with Yield. Sci. Agric. Sin. 2019, 52, 1761–1771. [Google Scholar]
- Xing, Y.; Zhang, F.; Zhang, Y.; Li, Z.; Qiang, S.; Wu, L. Effect of Irrigation and Fertilizer Coupling on Greenhouse Tomato Yield, Quality, Water and Nitrogen Utilization Under Fertigation. Sci. Agric. Sin. 2015, 48, 713–726. [Google Scholar]
- Zhang, Y.; Zhang, F.; Yuan, Y.; Qiang, C.; Fang, D. The effect of irrigation and fertilization on growth and quality of tomato under fertigation in greenhouse. Agric. Res. Arid. Areas 2014, 32, 206–212. [Google Scholar]
- Du, Y.; Cao, H.; Liu, S.; Gu, X.; Cao, Y. Response of yield, quality, water and nitrogen use efficiency of tomato to different levels of water and nitrogen under drip irrigation in Northwestern China. J. Integr. Agric. 2017, 16, 1153–1161. [Google Scholar] [CrossRef]
- Singandhupe, R.; Rao, G.; Patil, N.; Brahmanand, P. Fertigation studies and irrigation scheduling in drip irrigation system in tomato crop (Lycopersicum esculentum L.). Eur. J. Agron. 2003, 19, 327–340. [Google Scholar] [CrossRef]
- Fan, Y.; He, L.; Liu, Y.; Wang, S. Spatiotemporally optimize water-nitrogen management of crop planting in response to carbon emissions mitigation. J. Clean. Prod. 2022, 380, 134974. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, T.; Ding, H.; Guo, L.; Li, C.; Jiang, Y.; Cao, C. Application rates of nitrogen fertilizers change the pattern of soil organic carbon fractions in a rice-wheat rotation system in China. Agric. Ecosyst. Environ. 2022, 338, 108081. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Wan, Y.; Wang, B.; Cai, W.; Qin, X.; Zhou, Z.; Wang, X.; Yuan, J.; Deng, Q. Annual greenhouse gas emissions from a rice paddy with different water-nitrogen management strategies in Central China. Soil Tillage Res. 2024, 235, 105906. [Google Scholar] [CrossRef]
- Kamran, M.; Yan, Z.; Chang, S.; Chen, X.; Ahmad, I.; Jia, Q.; Ghani, M.; Nouman, M.; Hou, F. Enhancing resource use efficiency of alfalfa with appropriate irrigation and fertilization strategy mitigate greenhouse gases emissions in the arid region of Northwest China. Field Crops Res. 2022, 289, 108715. [Google Scholar] [CrossRef]
- Si, G.; Peng, C.; Yuan, J.; Xu, X.; Zhao, S.; Xu, D.; Wu, J. Changes in soil microbial community composition and organic carbon fractions in an integrated rice–crayfish farming system in subtropical China. Sci. Rep. 2017, 7, 2856. [Google Scholar] [CrossRef]
- Bao, S. Soil and agricultural chemistry analysis; China Agricultural Press: Beijing, China, 2005. [Google Scholar]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop evapotranspiration: Guidelines for Computing Crop Water Requirements; Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Fernández, M.; Bonachela, S.; Orgaz, F.; Thompson, R. Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrig. Sci. 2010, 28, 497–509. [Google Scholar] [CrossRef]
- Wang, J.; Cai, H.; Li, H.; Chen, X. Study and evaluation of the calculation methods of reference crop evapotranspiration in solar-heated greenhouse. Irrig. Drain. 2006, 25, 1–14. [Google Scholar]
- Li, H. Principles and Techniques of Plant Physiological and Biochemical Experiment; Higher Education Press: Beijing, China, 2000. [Google Scholar]
- Li, J.; Pan, T.; Wang, L.; Du, Q.; Chang, Y.; Zhang, D.; Liu, Y. Effects of water-fertilizer coupling on tomato photosynthesis, yield and water use efficiency. Trans. Chin. Soc. Agric. Eng. 2014, 30, 82–90. [Google Scholar]
- Mofokeng, M.; Steyn, J.; Plooy, C.; Prinsloo, G.; Araya, H. Growth of Pelargonium sidoides DC. in response to water and nitrogen level. S. Afr. J. Bot. 2015, 100, 183–190. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Ahammed, G.; Li, Z.; Wei, J.; Shen, C.; Yan, P.; Zhang, L.P.; Han, W. Nitrogen excess exacerbates oxidative stress and photosynthetic inhibition in maize under drought conditions. Environ. Exp. Bot. 2021, 182, 104333. [Google Scholar]
- Chen, R.; Cheng, W.; Cui, J.; Fan, H.; Zheng, Z.; Ma, F. Lateral spacing in drip-irrigated wheat: The effects on soil moisture, yield, and water use efficiency. Field Crops Res. 2015, 179, 52–62. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Liu, J.; Chen, X.; Li, Z. Drought-induced reduction in nitrogen allocation to photosynthesis is more critical than stomatal limitation in maize. Field Crops Res. 2023, 302, 109075. [Google Scholar]
- Li, Y.; Niu, W.; Cao, X.; Wang, J.; Zhang, M.; Duan, X.; Zhang, Z. Effect of soil aeration on root morphology and photosynthetic characteristics of potted tomato plants (Solanum lycopersicum) at different NaCl salinity levels. BMC Plant Biol. 2019, 19, 331. [Google Scholar] [CrossRef]
- Xu, L.; Huang, S.; Tao, H.; Wang, Y.; Qi, L.; Pan, W. Effects of Different Nitrogen Regimes on Canopy Structure and Partial Physiological and Agronomic Traits in Summer Maize. Acta Agron. Sin. 2012, 38, 301–306. [Google Scholar] [CrossRef]
- Shen, R.; Wang, K. Field Test and Study on Yield, Water Use and N Uptake under Varied Irrigation and Fertilizer in Crops. Trans. Chin. Soc. Agric. Eng. 2001, 17, 40–43. [Google Scholar]
- Marcelis, L. Sink strength as a determinant of dry matter partitioning in the whole plant. J. Exp. Bot. 1996, 47, 1281–1291. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Cao, H.; Yang, H.; Liu, S. The Correlation Analysis between Tomato Yield, Growth Characters and Water and Nitrogen Supply. Sci. Agric. Sin. 2014, 47, 4445–4452. [Google Scholar]
- Ma, Z.; Du, S.; Xue, L. Coupling Effects of Water and Fertilizer on tomato in Plastic Greenhouse of Gravel-Mulched Field Under Drip Fertigation. Sci. Agric. Sin. 2016, 49, 2164–2173. [Google Scholar]
- Nye, P.; Tinker, P. Solute Movement in the Soil-Root System; University of California Press: Oakland, CA, USA, 1977. [Google Scholar]
- Stefan, H.; Bernhard, K. Chlorophyll Breakdown: Current Status and Future Challenges. Annu. Rev. Plant Biol. 2011, 62, 1–24. [Google Scholar]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef]
- Song, N.; Wang, F.; Yang, C.; Yang, K. Coupling effects of water and nitrogen on yield, quality and water use of potato with drip irrigation under plastic film mulch. Trans. Chin. Soc. Agric. Eng. 2013, 29, 98–105. [Google Scholar]
- Chen, R.; Meng, R.; Liang, H.; Zhang, J.; Wang, Y.; Wang, C. Effects of Different Treatments of Irrigation and Fertilization on the Yield and Nitrogen Utilization Characteristic of Potato. Chin. Agric. Sci. Bull. 2012, 28, 196–201. [Google Scholar]
- Ertek, A.; Sensoy, S. Irrigation frequency and amounts affect yield components of summer squash (Cucurbita pepo L.). Agric. Water Manag. 2004, 67, 63–76. [Google Scholar] [CrossRef]
- Erdem, T.; Arin, L.; Erdem, Y.; Polat, S.; Deveci, M.; Okursoy, H. Yield and quality response of drip irrigated broccoli (Brassica oleracea L. var. italica) under different irrigation regimes, nitrogen applications and cultivation periods. Agric. Water Manag. 2010, 97, 681–688. [Google Scholar] [CrossRef]
- Rockström, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 2017, 46, 4–17. [Google Scholar] [CrossRef]
- Li, Y.; Niu, W.; Dyck, M.; Zhang, M. The effects of soil aeration, irrigation, and nitrogen fertilization on root morphology, soil water status, and yield of tomato plants. Agric. Water Manag. 2016, 176, 226–236. [Google Scholar]
- Ju, X.; Xing, G.; Chen, X.; Zhang, S.; Zhang, L.; Liu, X. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.D.; Li, J.; Cheng, M.H.; Zhang, F.C.; Wang, X.K.; Fan, J.L.; Wu, L.F.; Fang, D.P.; Zou, H.Y.; Xiang, Y.Z. Optimal drip fertigation management improves yield, quality, water and nitrogen use efficiency of greenhouse cucumber. Sci. Hortic. 2019, 243, 357–366. [Google Scholar] [CrossRef]
- Yin, S.; Hu, X.; Kang, S.; Cai, H.; Liang, B. Effects of Deficit Irrigation on Yields and Quality of Tomato in Green House at Maturing Stage. J. Irrig. Drain. 2011, 30, 39–42+81. [Google Scholar]
- An, S.; Wang, Y.; Li, H.; Wang, S.; Gao, L. Effects of Different Irrigation Quantities on Growth, Yield and Fruit Quality of Tomato in Solar Greenhouse. Acta Agric. Bor. Occid. Sin. 2010, 19, 188–192. [Google Scholar]
- Zhen, R.; Kang, S.; Hu, X.; Li, S. Effects of water and nitrogen conditions on the diurnal variation of photosynthesis characteristic and yield of grapevine in arid oasis region. Trans. Chin. Soc. Agric. Eng. 2013, 29, 133–141. [Google Scholar]
- Chen, J.; Kang, S.; Du, T.; Qiu, R.; Guo, P.; Chen, R. Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agric. Water Manag. 2013, 129, 152–162. [Google Scholar] [CrossRef]
- Cheng, M.H.; Wang, H.D.; Fan, J.L.; Xiang, Y.Z.; Tang, Z.J.; Pei, S.Z.; Zeng, H.L.; Zhang, C.; Dai, Y.L.; Li, Z.J.; et al. Effects of nitrogen supply on tomato yield, water use efficiency and fruit quality: A global meta-analysis. Sci. Hortic. 2021, 290, 110553. [Google Scholar] [CrossRef]
- Patan`e, C.; Tringali, S.; Sortino, O. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Sci. Hortic. 2011, 129, 590–596. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Zhang, F.; Cai, H.; Li, Z.; Yang, Q.; Yang, J. Effect of Water and Nitrogen Supply on Tomato Yield and Quality Under Alternative Irrigation. J. Soil Water Conserv. 2013, 27, 283–287. [Google Scholar]
- García-Caparrós, P.; Romero, M.; Llanderal, A.; Lao, M. Irrigation at 125%ETc alters sugar metabolism and volatile profiles in tomato fruits: A targeted metabolomics approach. Food Chem. 2023, 408, 135231. [Google Scholar]
- Zeng, B.; Sun, Q.; Liu, Z.; Wang, L.; Dai, P.; Jie, H. Effects of different nitrogen application rates on growth, quality and nitrogen accumulation of cherry tomato. Jiangsu Agric. Sci. 2024, 52, 148–154. [Google Scholar]
- Min, J.; Shi, W. Effects of different N rates on the yield, N use efficiency and fruit quality of vegetables cultivated in plastic greenhouse in Taihu lake region. Plant Nutr. Fert. Sci. 2009, 15, 151–157. [Google Scholar]
- Wu, W.; Lin, Z.; Zhu, X.; Li, G.; Zhang, W.; Chen, Y.; Ren, L.; Luo, S.; Lin, H.; Zhou, H. Improved tomato yield and quality by altering soil physicochemical properties and nitrification processes in the combined use of organic-inorganic fertilizers. Eur. J. Soil Biol. 2022, 109, 103384. [Google Scholar] [CrossRef]
- Wang, X.; Xing, Y. Evaluation of the effects of irrigation and fertilization on tomato fruit yield and quality: A principal component analysis. Sci. Rep. 2017, 6, 3975. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, R.; Huang, S.; Jin, J. Effects of potassium application on flavor compounds of cherry tomato fruits. J. Plant Nutr. 2009, 32, 1451–1468. [Google Scholar] [CrossRef]
Soil Depth (cm) | PH | Total N (g·kg−1) | Available N (mg·kg−1) | Available P (mg·kg−1) | Available K (mg·kg−1) | Organic (g·kg−1) | FC (Vw) | Soil Conductivity (dS·m−1) | Soil Density (g·cm−3) | Soil Texture |
---|---|---|---|---|---|---|---|---|---|---|
0–40 | 6.9 | 1.1 | 77.1 | 74.3 | 131.2 | 17.8 | 24.31 | 0.42 | 1.38 | Sandy-loam |
Processing Number | W1N1 | W1N2 | W1N3 | W1N4 | W2N1 | W2N2 | W2N3 | W2N4 | W3N1 | W3N2 | W3N3 | W3N4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Nitrogen (kg·hm−2) | 120 | 220 | 320 | 420 | 120 | 220 | 320 | 420 | 120 | 220 | 320 | 420 |
Irrigation Regime | 0.75 ETc | 0.75 ETc | 0.75 ETc | 0.75 ETc | 1.0 ETc | 1.0 ETc | 1.0 ETc | 1.0 ETc | 1.25 ETc | 1.25 ETc | 1.25 ETc | 1.25 ETc |
Nutrition Index | Measurement Methods |
---|---|
Total soluble solids (TSS) | Hand-held refractometer (BX-1, KEM, SHH., China) |
Ascorbic acid (Vc) | Titration method |
Soluble protein (SP) | Titration method |
Lycopene (LY) | spectrophotometer |
Organic acid (OA) | spectrophotometer |
Irrigation Volume | Nitrogen Application Rate | Dry Weight of Different Organs (g·Plant−1) | ||||
---|---|---|---|---|---|---|
Root | Stem | Leaf | Fruit | Total | ||
W1 (0.75 ETc) | N1 | 9.05 ± 0.06 e | 81.46 ± 4.15 g | 87.56 ± 1.40 g | 85.49 ± 4.20 f | 263.56 ± 3.33 h |
N2 | 9.38 ± 0.33 e | 90.82 ± 2.34 f | 98.96 ± 2.83 f | 93.49 ± 4.41 f | 292.66 ± 9.28 g | |
N3 | 9.53 ± 0.46 e | 98.53 ± 2.37 e | 111.22 ± 1.17 de | 105.55 ± 3.56 e | 324.83 ± 5.08 f | |
N4 | 9.34 ± 0.47 e | 97.47 ± 2.24 e | 107.37 ± 6.30 e | 103.64 ± 1.96 e | 317.82 ± 5.09 f | |
W2(1.0 ETc) | N1 | 12.20 ± 0.64 cd | 95.74 ± 2.95 ef | 114.00 ± 4.43 de | 134.33 ± 5.98 c | 356.26 ± 13.66 e |
N2 | 13.13 ± 1.44 bc | 116.94 ± 4.79 c | 118.13 ± 6.54 cd | 143.94 ± 4.84 b | 392.13 ± 12.10 cd | |
N3 | 14.73 ± 0.91 a | 129.22 ± 4.27 b | 126.51 ± 6.95 bc | 154.20 ± 5.27 a | 424.66 ± 6.62 a | |
N4 | 14.06 ± 0.89 ab | 121.32 ± 1.74 c | 118.53 ± 5.59 cd | 152.20 ± 3.68 a | 406.11 ± 8.79 bc | |
W3 (1.25 ETc) | N1 | 10.91 ± 0.74 d | 109.73 ± 6.63 d | 126.40 ± 5.57 bc | 111.26 ± 6.95 e | 358.29 ± 14.81 e |
N2 | 12.15 ± 0.80 cd | 121.62 ± 2.34 c | 133.51 ± 3.76 ab | 121.14 ± 5.46 d | 388.41 ± 7.69 d | |
N3 | 13.02 ± 0.74 bc | 137.28 ± 2.59 a | 139.82 ± 3.23 a | 123.52 ± 4.80 d | 413.65 ± 7.82 ab | |
N4 | 12.26 ± 1.13 cd | 128.84 ± 4.26 b | 138.63 ± 2.30 a | 121.17 ± 2.26 d | 400.90 ± 9.23 bcd |
Irrigation Volume | Nitrogen Amounts | Yield (t hm−2) | IWP (kg m−3) | PFPN (kg kg−1 N) |
---|---|---|---|---|
W1 (0.75 ETc) | N1 | 51.45 ± 1.45 f | 22.94 ± 0.65 e | 428.78 ± 12.12 c |
N2 | 55.64 ± 2.62 f | 24.80 ± 1.17 d | 252.92 ± 11.92 g | |
N3 | 62.62 ± 2.49 e | 27.91 ± 1.11 bc | 195.69 ± 7.78 ij | |
N4 | 61.49 ± 1.45 e | 27.41 ± 0.65 bc | 146.40 ± 3.45 k | |
W2(1.0 ETc) | N1 | 79.76 ± 4.65 c | 26.67 ± 1.55 c | 664.69 ± 8.72 a |
N2 | 85.34 ± 2.49 b | 28.53 ± 0.83 b | 387.89 ± 11.34 d | |
N3 | 92.32 ± 3.28 a | 30.87 ± 1.10 a | 288.50 ± 10.24 f | |
N4 | 90.95 ± 1.88 a | 30.41 ± 0.63 a | 216.54 ± 4.48 hi | |
W3 (1.25 ETc) | N1 | 65.77 ± 4.05 e | 17.59 ± 1.08 g | 548.08 ± 12.76 b |
N2 | 71.67 ± 2.75 d | 19.17 ± 0.73 fg | 325.79 ± 12.48 e | |
N3 | 72.96 ± 3.14 d | 19.51 ± 0.84 f | 227.99 ± 9.81 gh | |
N4 | 72.20 ± 0.90 d | 19.31 ± 0.24 f | 171.90 ± 2.15 jk |
Dependent Variable | Regression Equation | R2 |
---|---|---|
Yield | Y1 = −0.0041 × X12 − 0.0002 × X22 − 0.0001 × X1 × X2 + 2.56 × X1 + 0.151 × X2 − 331.521 | 0.9918 |
Net photosynthetic rate | Y2 = −0.0005 × X12 − 0.0001 × X22 + 0.3311 × X1 + 0.0348 × X2 − 34.1605 | 0.9780 |
Total dry biomass cumulative | Y3 = −0.0089 × X12 − 0.0011 × X22 − 0.0003 × X1 × X2 + 6.0029 × X1 + 0.8607 × X2 − 719.6685 | 0.9897 |
Irrigation Volume | Nitrogen Amounts | Vc (mg·kg−1) | LY (mg·kg−1) | TSS (%) | OA(%) | SP (%) |
---|---|---|---|---|---|---|
W1 (0.75 ETc) | N1 | 14.20 ± 0.22 h | 23.48 ± 2.20 e | 4.93 ± 0.18 g | 0.43 ± 0.02 h | 15.9 ± 2.32 c |
N2 | 14.33 ± 0.37 gh | 24.64 ± 1.15 e | 5.12 ± 0.19 g | 0.49 ± 0.01 efg | 17.40 ± 1.93 bc | |
N3 | 15.11 ± 0.30 g | 25.99 ± 1.88 de | 5.75 ± 0.30 de | 0.54 ± 0.02 cd | 19.19 ± 2.70 ab | |
N4 | 14.77 ± 0.44 gh | 24.54 ± 1.62 e | 5.22 ± 0.10 fg | 0.51 ± 0.02 def | 18.13 ± 2.26 abc | |
W2 (1.0 ETc) | N1 | 17.63 ± 0.74 cd | 30.53 ± 1.28 bc | 5.60 ± 0.22 ef | 0.47 ± 0.02 fgh | 18.69 ± 1.39 abc |
N2 | 18.52 ± 0.39 ab | 32.56 ± 1.56 ab | 6.40 ± 0.30 bc | 0.56 ± 0.03 cd | 19.47 ± 1.21 ab | |
N3 | 19.12 ± 0.23 a | 34.91 ± 1.86 a | 7.24 ± 0.19 a | 0.65 ± 0.03 a | 20.74 ± 0.77 a | |
N4 | 18.07 ± 0.47 bc | 32.98 ± 2.44 ab | 6.50 ± 0.26 bc | 0.62 ± 0.02 ab | 19.81 ± 0.99 ab | |
W3 (1.25 ETc) | N1 | 16.16 ± 0.34 f | 28.56 ± 1.00 cd | 5.19 ± 0.10 fg | 0.45 ± 0.03 gh | 18.30 ± 0.67 abc |
N2 | 16.85 ± 0.78 def | 29.69 ± 2.63 bc | 5.75 ± 0.37 de | 0.53 ± 0.02 de | 19.10 ± 0.88 ab | |
N3 | 17.43 ± 0.39 cde | 31.35 ± 1.79 bc | 6.63 ± 0.19 b | 0.58 ± 0.03 bc | 20.61 ± 0.69 a | |
N4 | 16.74 ± 0.29 ef | 30.19 ± 1.92 bc | 6.09 ± 0.41 cd | 0.48 ± 0.05 efg | 20.45 ± 1.04 a |
Serial Number | Eigenvalue | Contribution (%) | Cumulative Contribution (%) |
---|---|---|---|
P1 | 4.311 | 86.23 | 86.23 |
P2 | 0.412 | 8.23 | 94.46 |
P3 | 0.228 | 4.56 | 99.02 |
P4 | 0.041 | 0.82 | 99.84 |
P5 | 0.008 | 0.16 | 100 |
Indicators | Eigenvectors | ||||
---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | |
X1 | 0.450 | −0.493 | 0.315 | 0.145 | 0.659 |
X2 | 0.460 | −0.425 | 0.180 | 0.133 | −0.747 |
X3 | 0.470 | 0.197 | −0.013 | −0.860 | 0.022 |
X4 | 0.415 | 0.732 | 0.376 | 0.389 | −0.001 |
X5 | 0.439 | 0.048 | −0.853 | 0.266 | 0.085 |
Irrigation Amounts | Nitrogen Application Rate | The First Principle Component (P1) | The Second Principle Component (P2) | Comprehensive Principle Component (P) | Rank |
---|---|---|---|---|---|
W1 (0.75 ETc) | N1 | −3.498 | −0.054 | −3.021 | 12 |
N2 | −2.362 | 0.528 | −1.993 | 11 | |
N3 | −0.710 | 0.919 | −0.536 | 8 | |
N4 | −1.842 | 0.678 | −1.532 | 10 | |
W2 (1.00 ETc) | N1 | −0.151 | −1.161 | −0.226 | 7 |
N2 | 1.660 | −0.434 | 1.396 | 4 | |
N3 | 3.611 | 0.369 | 3.144 | 1 | |
N4 | 2.130 | 0.339 | 1.865 | 2 | |
W3 (1.25 ETc) | N1 | −1.304 | −0.844 | −1.194 | 9 |
N2 | 0.128 | −0.129 | 0.100 | 6 | |
N3 | 1.843 | 0.344 | 1.618 | 3 | |
N4 | 0.495 | −0.556 | 0.381 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Qi, D.; Ding, C.; Chen, S.; Gao, L.; Yue, W. Optimization of Irrigation and Nitrogen Fertilization Improves Biomass, Yield, and Quality of Fertigation Tomatoes. Horticulturae 2025, 11, 521. https://doi.org/10.3390/horticulturae11050521
Liu L, Qi D, Ding C, Chen S, Gao L, Yue W. Optimization of Irrigation and Nitrogen Fertilization Improves Biomass, Yield, and Quality of Fertigation Tomatoes. Horticulturae. 2025; 11(5):521. https://doi.org/10.3390/horticulturae11050521
Chicago/Turabian StyleLiu, Linsong, Dongliang Qi, Chunmei Ding, Si Chen, Lihua Gao, and Wenjun Yue. 2025. "Optimization of Irrigation and Nitrogen Fertilization Improves Biomass, Yield, and Quality of Fertigation Tomatoes" Horticulturae 11, no. 5: 521. https://doi.org/10.3390/horticulturae11050521
APA StyleLiu, L., Qi, D., Ding, C., Chen, S., Gao, L., & Yue, W. (2025). Optimization of Irrigation and Nitrogen Fertilization Improves Biomass, Yield, and Quality of Fertigation Tomatoes. Horticulturae, 11(5), 521. https://doi.org/10.3390/horticulturae11050521