Exogenous Cytokinins and Auxins Affect Double Cropping in Vitis vinifera L. cv. ‘Ortrugo’ Grown in a Temperate Climate: Preliminary Results
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Layout
2.2. Vegetative Development and Physiology Measurements
2.3. Yield Components and Fruit Composition
2.4. Statistical Analysis
3. Results
3.1. Weather Course and Phenology
3.2. Vegetative Growth and Physiological Status
3.3. Vine Yield and Fruit Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CK | Cytokinins |
AUX | Auxins |
UC | Unforced Control |
CBA | Control + 6-Benzyladenine |
FR | Forced |
FBA | Forced + 6-Benzyladenine |
FNAA | Forced + Naphthaleneacetic acid |
TSS | Total Soluble Solids |
TA | Titratable Acidity |
References
- Poni, S.; Gatti, M.; Tombesi, S.; Squeri, C.; Sabbatini, P.; Lavado Rodas, N.; Frioni, T. Double Cropping in Vitis vinifera L. Pinot Noir: Myth or Reality? Agronomy 2020, 10, 799. [Google Scholar] [CrossRef]
- Poni, S.; Del Zozzo, F.; Santelli, S.; Gatti, M.; Magnanini, E.; Sabbatini, P.; Frioni, T. Double cropping in Vitis vinifera L. cv. Pinot Noir: Agronomical and physiological validation. Aust. J. Grape Wine Res. 2021, 27, 508–518. [Google Scholar] [CrossRef]
- Martínez-Moreno, A.; Sanz, F.; Yeves, A.; Gil-Muñoz, R.; Martínez, V.; Intrigliolo, D.S.; Buesa, I. Forcing bud growth by double-pruning as a technique to improve grape composition of Vitis vinifera L. cv. Tempranillo in a semi-arid Mediterranean climate. Sci. Hortic. 2019, 256, 108614. [Google Scholar] [CrossRef]
- Lavado Rodas, N.; Hernández, D.U.; Cardona, D.M.; Ramírez, L.A.M.; Losada, M.H.P.; Sánchez, M.E.V. Forcing vine regrowth under different irrigation strategies: Effect on polyphenolic composition and chromatic characteristics of cv. Tempranillo wines grown in a semiarid climate. Front. Plant Sci. 2023, 14, 1128174. [Google Scholar] [CrossRef]
- Lu, G.; Zhang, K.; Que, Y.; Li, Y. Grapevine double cropping: A magic technology. Front. Plant Sci. 2023, 14, 1173985. [Google Scholar] [CrossRef]
- Li-Mallet, A.; Rabot, A.; Geny, L. Factors controlling inflorescence primordia formation of grapevine: Their role in latent bud fruitfulness? A review. Botany 2016, 94, 147–163. [Google Scholar] [CrossRef]
- Lang, G.A.; Early, J.D.; Martin, G.C.; Darnell, R.L. Endo-, Para-, and Ecodormancy: Physiological Terminology and Classification for Dormancy Research. Hortscience 1987, 22, 371–377. [Google Scholar] [CrossRef]
- Or, E. Grape Bud Dormancy Release—The Molecular Aspect. In Grapevine Molecular Physiology & Biotechnology; Springer: Dordrecht, The Netherlands, 2009; pp. 1–29. [Google Scholar] [CrossRef]
- Lavee, S.; May, P. Dormancy of grapevine buds—Facts and speculation. Aust. J. Grape Wine Res. 1997, 3, 31–46. [Google Scholar] [CrossRef]
- Bugnon, F.; Bessis, R. Biologie de la Vigne: Acquisitions Récentes et Problèmes Actuels; Masson: Paris, France, 1968. [Google Scholar]
- Martinez De Toda, F.; Garcia, J.; Balda, P. Preliminary results on forcing vine regrowth to delay ripening to a cooler period. VITIS-J. Grapevine Res. 2019, 58, 17–22. [Google Scholar] [CrossRef]
- Gu, S.; Jacobs, S.D.; McCarthy, B.S.; Gohil, H.L. Forcing vine regrowth and shifting fruit ripening in a warm region to enhance fruit quality in ‘Cabernet Sauvignon’ grapevine (Vitis vinifera L.). J. Hortic. Sci. Biotechnol. 2012, 87, 287–292. [Google Scholar] [CrossRef]
- Noriega, X.; Pérez, F.J. Cell cycle genes are activated earlier than respiratory genes during release of grapevine buds from endodormancy. Plant Signal. Behav. 2017, 12, e1321189. [Google Scholar] [CrossRef]
- Pérez, F.J.; Noriega, X. Sprouting of paradormant and endodormant grapevine buds under conditions of forced growth: Similarities and differences. Planta 2018, 248, 837–847. [Google Scholar] [CrossRef] [PubMed]
- Leonel, S.; Tecchio, M.; Cóser, G. Dormancy Breaking of the Fig Tree with Hydrogen Cyanamide and Garlic Extrate. Br. J. Appl. Sci. Technol. 2015, 10, 1–10. [Google Scholar] [CrossRef]
- Lombard, P.J.; Cook, N.C.; Bellstedt, D.U. Endogenous cytokinin levels of table grape vines during spring budburst as influenced by hydrogen cyanamide application and pruning. Sci. Hortic. 2006, 109, 92–96. [Google Scholar] [CrossRef]
- Jackson, J.E. The Biology of Apples and Pears; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar] [CrossRef]
- Baldini, E. Arboricoltura Generale; CLUEB: Bologna, Italy, 1986. [Google Scholar]
- Abo-Hamed, S.; Collin, H.A.; Hardwick, K. Biochemical and physiological aspects of leaf development in cocoa (Theobroma cacao). New Phytol. 1981, 89, 191–200. [Google Scholar] [CrossRef]
- Thimann, K.V.; Skoog, F.; William, G. On the inhibition of bud development and other functions of growth substance in vicia faba. Proc. R. Soc. London. Ser. B Contain. Pap. Biol. Character 1934, 114, 317–339. [Google Scholar] [CrossRef]
- Shimizu-Sato, S.; Tanaka, M.; Mori, H. Auxin–cytokinin interactions in the control of shoot branching. Plant Mol. Biol. 2009, 69, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Cline, M.G. Apical dominance. Bot. Rev. 1991, 57, 318–358. [Google Scholar] [CrossRef]
- Kurakawa, T.; Ueda, N.; Maekawa, M.; Kobayashi, K.; Kojima, M.; Nagato, Y.; Sakakibara, H.; Kyozuka, J. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 2007, 445, 652–655. [Google Scholar] [CrossRef]
- Blilou, I.; Xu, J.; Wildwater, M.; Willemsen, V.; Paponov, I.; Friml, J.; Heidstra, R.; Aida, M.; Palme, K.; Scheres, B. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 2005, 433, 39–44. [Google Scholar]
- Crane, O.; Halaly, T.; Pang, X.; Lavee, S.; Perl, A.; Vankova, R.; Or, E. Cytokinin-induced VvTFL1A expression may be involved in the control of grapevine fruitfulness. Planta 2012, 235, 181–192. [Google Scholar] [CrossRef]
- Müller, D.; Leyser, O. Auxin, cytokinin and the control of shoot branching. Ann. Bot. 2011, 107, 1203–1212. [Google Scholar] [CrossRef]
- Liu, J.; Sherif, S.M. Hormonal Orchestration of Bud Dormancy Cycle in Deciduous Woody Perennials. Front. Plant Sci. 2019, 10, 1136. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A.; Senning, M.; Hedden, P.; Sonnewald, U.; Sonnewald, S. Reactivation of meristem activity and sprout growth in potato tubers require both cytokinin and gibberellin. Plant Physiol. 2011, 155, 776–796. [Google Scholar] [CrossRef]
- Faust, M.; Erez, A.; Rowland, L.J.; Wang, S.Y.; Norman, H.A. Bud dormancy in perennial fruit trees: Physiological basis for dormancy induction, maintenance, and release. Hortscience 1997, 32, 623–629. [Google Scholar] [CrossRef]
- Winkler, A.J. General Viticulture, 4th ed.; University of California Press: Berkeley, CA, USA, 1974; ISBN 9780520025912. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture. Am. Soc. Agric. Biol. Eng. 1985, 1, 96–99. [Google Scholar]
- Lorenz, D.H.; Eichhorn, K.W.; Bleiholder, H.; Klose, R.; Meier, U.; Weber, E. Growth Stages of the Grapevine: Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera)—Codes and descriptions according to the extended BBCH scale. Aust. J. Grape Wine Res. 1995, 1, 100–103. [Google Scholar] [CrossRef]
- Baker, N.R.; Oxborough, K. Chlorophyll fluorescence as a probe of photosynthetic productivity. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Springer: Dordrecht, The Netherlands, 2004; pp. 65–82. [Google Scholar]
- Blažková, J.; Krekule, J.; Macháčková, I.; Procházka, S. Auxin and Cytokinins in the Control of Apical Dominance in Pea — A Differential Response Due to Bud Position. J. Plant Physiol. 1999, 154, 691–696. [Google Scholar] [CrossRef]
- Brown, C.L.; McAlpine, R.G.; Kormanik, P.P. Apical Dominance and Form in Woody Plants: A Reappraisal. Am. J. Bot. 1967, 54, 153–162. [Google Scholar] [CrossRef]
- Crabbé, J.J. Correlative Effects Modifying the Course of Bud Dormancy in Woody Plants. Z. Pflanzenphysiol. 1984, 113, 465–469. [Google Scholar] [CrossRef]
- Pou, A.; Balda, P.; Albacete, A.; Martínez De Toda, F. Forcing vine regrowth to delay ripening and its association to changes in the hormonal balance. VITIS-J. Grapevine Res. 2019, 58, 95–101. [Google Scholar] [CrossRef]
- Srinivasan, C.; Mullins, M.G. Reproductive Anatomy of the Grape-vine (Vitis vinifera L.): Origin and Development of the Anlage and its Derivatives. Ann. Bot. 1976, 40, 1079–1084. [Google Scholar] [CrossRef]
- Carmona, M.J.; Chaïb, J.; Martínez-Zapater, J.M.; Thomas, M.R. A molecular genetic perspective of reproductive development in grapevine. J. Exp. Bot. 2008, 59, 2579–2596. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Wang, B.; Lin, L.; Cheng, G.; Zhou, S.; Xie, S.; Shi, X.; Cao, M.; Zhang, Y.; Bai, X. Evolutionary, interaction and expression analysis of floral meristem identity genes in inflorescence induction of the second crop in two-crop-a-year grape culture system. J. Genet. 2018, 97, 439–451. [Google Scholar] [CrossRef]
- Srinivasan, C.; Mullins, M.G. Control of Flowering in the Grapevine (Vitis vinifera L.): Formation of Inflorescences in Vitro by Isolated Tendrils. Plant Physiol. 1978, 61, 127–130. [Google Scholar] [CrossRef]
- Srinivasan, C.; Mullins, M.G. Flowering in Vitis: Effects of genotype on cytokinin-induced conversion of tendrils into inflorescences. VITIS-J. Grapevine Res. 1980, 19, 293. [Google Scholar] [CrossRef]
- Carmo Vasconcelos, M.; Greven, M.; Winefield, C.S.; Trought, M.C.T.; Raw, V. The Flowering Process of Vitis vinifera: A Review. Am. J. Enol. Vitic. 2009, 60, 411–434. [Google Scholar] [CrossRef]
- Martínez de Toda, F. Grapevine double cropping: A reality, not a myth. IVES Tech. Rev. Vine Wine 2021. [Google Scholar] [CrossRef]
- Oliver-Manera, J.; García-Tejera, O.; Mata, M.; Girona, J. Cumulative response of Tempranillo vines to the crop forcing technique and pre-forcing and post-veraison water stress in terms of yield and grape and wine quality. Irrig. Sci. 2023, 41, 571–587. [Google Scholar] [CrossRef]
- Oliver-Manera, J.; García-Tejera, O.; Mata, M.; Girona, J. Long-Term Study of the Crop Forcing Technique on cv. Tempranillo (Vitis vinifera L.) Vines and Suggested Irrigation Strategies to Improve Water Use Efficiency of Forced Vines. Agronomy 2024, 14, 130. [Google Scholar] [CrossRef]
- Nikolaou, N.; Koukourikou, M.; Karagiannidis, N. Effects of various rootstocks on xylem exudates cytokinin content, nutrient uptake and growth patterns of grapevine Vitis vinifera L. cv. Thompson seedless. Agronomie 2000, 20, 363. [Google Scholar] [CrossRef]
- Kliewer, W.M.; Dokoozlian, N.K. Leaf Area/Crop Weight Ratios of Grapevines: Influence on Fruit Composition and Wine Quality. Am. J. Enol. Vitic. 2005, 56, 170–181. [Google Scholar] [CrossRef]
- Del Zozzo, F.; Canavera, G.; Pagani, S.; Gatti, M.; Poni, S.; Frioni, T. Post-Spring Frost Canopy Recovery, Vine Balance, and Fruit Composition in cv. Barbera Grapevines. Aust. J. Grape Wine Res. 2022, 2022, 6596021. [Google Scholar] [CrossRef]
- Poni, S.; Frioni, T.; Gatti, M. Summer pruning in Mediterranean vineyards: Is climate change affecting its perception, modalities, and effects? Front. Plant Sci. 2023, 14, 1227628. [Google Scholar] [CrossRef]
- Sweetman, C.; Sadras, V.O.; Hancock, R.D.; Soole, K.L.; Ford, C.M. Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vinifera fruit. J. Exp. Bot. 2014, 65, 5975–5988. [Google Scholar] [CrossRef]
- Frioni, T.; Bertoloni, G.; Squeri, C.; Garavani, A.; Ronney, L.; Poni, S.; Gatti, M. Biodiversity of Local Vitis vinifera L. Germplasm: A Powerful Tool Toward Adaptation to Global Warming and Desired Grape Composition. Front. Plant Sci. 2020, 11, 608. [Google Scholar] [CrossRef]
- Gatti, M.; Garavani, A.; Cantatore, A.; Parisi, M.G.; Bobeica, N.; Merli, M.C.; Vercesi, A.; Poni, S. Interactions of summer pruning techniques and vine performance in the white Vitis vinifera cv. Ortrugo. Aust. J. Grape Wine Res. 2015, 21, 80–89. [Google Scholar] [CrossRef]
Treatments | Primary Shoots/Vine | Forced Shoots/Vine | Forced/Primary Ratio (%) | Removed LA/Vine (m²) | Total Primary LA/Vine (m2) | Total Lateral LA/Vine (m2) | Total Forced LA/Vine (m2) | Total LA/Vine (m2) | Final LA/Y (m²/kg) | Final LA/Y Forced Crop (m²/kg) |
---|---|---|---|---|---|---|---|---|---|---|
UC | 16 | - | - | - | 3.73 a | 1.69 a | - | 5.42 a | 2.07 a | - |
CBA | 16 | - | - | - | 3.72 a | 1.00 b | - | 4.72 a | 1.63 a | - |
F | 16 | 15 b | 94 b | 1.35 | 1.74 b | - | 1.23 b | 2.97 b | 0.99 b | 2.78 |
FBA | 16 | 17 a | 106 a | 1.43 | 1.69 b | - | 3.60 a | 5.29 a | 1.13 b | 2.83 |
FNAA | 16 | 3 c | 21 c | 1.39 | 1.65 b | - | 0.52 c | 2.17 c | 0.84 b | - |
Sig. | ns. | *** | *** | ns. | *** | ** | *** | *** | *** | ns. |
Treatment | A (μmol m−2 s−1) | E (mmol m−2 s−1) | gs (mol m−2 s−1) | WUE (A/gs) | Fv/Fm | SPAD | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | F | t-Test | P | F | t-Test | P | F | t-Test | P | F | t-Test | P | F | t-Test | P | F | t-Test | |
UC | 7.94 a | - | 2.49 b | - | 0.103 b | - | 82.6 | - | 0.73 | - | 32.3 | - | ||||||
CBA | 8.33 a | - | 3.13 a | - | 0.113 b | - | 74.8 | - | 0.74 | - | 38.9 | - | ||||||
FR | 7.07 a | 10.99 | *** | 2.51 b | 3.88 | *** | 0.90 b | 0.170 | *** | 78.9 | 68.9 | ns | 0.72 | 0.74 | ns | 36.5 | 33.6 | ns |
FBA | 7.92 a | 11.19 | *** | 3.00 a | 4.15 | *** | 0.110 b | 0.160 | *** | 75.6 | 68.5 | ns | 0.74 | 0.73 | ns | 37.7 | 39.8 | ns |
FNAA | 6.30 b | - | 2.34 b | - | 0.150 a | - | 77.0 | - | 0.74 | - | 35.7 | - | ||||||
Sig. | * | ns. | * | ns. | ** | ns. | ns. | ns. | ns. | ns. | ns | ns. |
Treatment | Clusters/Vine | Cluster Mass (g) | Berry Mass (g) | Berries/Cluster | Cluster Compactness (g/cm) | Shoot Fruitfulness (Clusters/Shoot) | Yield (kg/Vine) | Total Yield (kg/Vine) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | F | t-Test | P | F | t-Test | P | F | t-Test | P | F | t-Test | P | F | t-Test | P | F | t-Test | P | F | t-Test | P + F | |
UC | 10 | - | 287 | - | 2.1 | - | 141 | - | 20 | - | 0.62 | - | 2.71 | - | 2.71 c | |||||||
CBA | 9 | - | 325 | - | 2.2 | - | 146 | - | 24 | - | 0.59 | - | 3.00 | - | 3.00 c | |||||||
FR | 9 | 11 b | * | 290 | 95 b | *** | 1.9 | 0.9 | *** | 152 | 105 | *** | 22 | 11 | *** | 0.56 | 0.78 b | * | 2.53 | 1.09 b | *** | 3.62 b |
FBA | 9 | 16 a | *** | 311 | 125 a | *** | 1.9 | 1.0 | *** | 156 | 111 | *** | 22 | 12 | *** | 0.62 | 0.99 a | * | 2.76 | 2.02 a | ** | 4.78 a |
FNAA | 9 | - | 300 | - | 2.2 | - | 139 | - | 24 | - | 0.60 | - | 2.68 | - | 2.68 c | |||||||
Sig. | ns. | *** | ns. | ** | ns. | ns. | ns. | ns. | ns. | ns. | ns. | * | ns. | *** | ** |
Treatment | TSS (°Brix) | TA (g/L) | TSS/TA | pH | Tartrate (g/L) | Malate (g/L) | K+ (mg/L) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | F | t-Test | P | F | t-Test | P | F | t-Test | P | F | t-Test | P | F | t-Test | P | F | t-Test | P | F | t-Test | |
UC | 19.3 a | - | 5.11 | - | 3.8 | - | 3.19 | - | 5.96 | - | 0.40 | - | 281.0 a | - | |||||||
CBA | 19.8 a | - | 4.94 | - | 4.0 | - | 3.19 | - | 6.19 | - | 0.45 | - | 282.1 a | - | |||||||
FR | 18.1 b | 22.0 | *** | 4.84 | 10.02 b | *** | 3.8 | 2.1 | *** | 3.19 | 2.92 | *** | 6.09 | 8.87 | *** | 0.35 | 3.08 | *** | 253.6 ab | 151.2 | *** |
FBA | 19.7 a | 21.4 | *** | 4.90 | 11.09 a | *** | 4.1 | 1.9 | *** | 3.22 | 2.91 | *** | 6.12 | 9.04 | *** | 0.38 | 3.53 | *** | 235.6 b | 159.2 | *** |
FNAA | 18.6 b | - | 4.91 | - | 3.8 | - | 3.21 | - | 5.93 | - | 0.35 | - | 256.6 ab | - | |||||||
Sig. | ** | ns. | ns. | * | ns. | ns. | ns. | ns. | ns. | ns. | ns. | * | * | ns. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Zozzo, F.; Tiwari, H.; Canavera, G.; Frioni, T.; Poni, S. Exogenous Cytokinins and Auxins Affect Double Cropping in Vitis vinifera L. cv. ‘Ortrugo’ Grown in a Temperate Climate: Preliminary Results. Horticulturae 2025, 11, 346. https://doi.org/10.3390/horticulturae11040346
Del Zozzo F, Tiwari H, Canavera G, Frioni T, Poni S. Exogenous Cytokinins and Auxins Affect Double Cropping in Vitis vinifera L. cv. ‘Ortrugo’ Grown in a Temperate Climate: Preliminary Results. Horticulturae. 2025; 11(4):346. https://doi.org/10.3390/horticulturae11040346
Chicago/Turabian StyleDel Zozzo, Filippo, Harsh Tiwari, Ginevra Canavera, Tommaso Frioni, and Stefano Poni. 2025. "Exogenous Cytokinins and Auxins Affect Double Cropping in Vitis vinifera L. cv. ‘Ortrugo’ Grown in a Temperate Climate: Preliminary Results" Horticulturae 11, no. 4: 346. https://doi.org/10.3390/horticulturae11040346
APA StyleDel Zozzo, F., Tiwari, H., Canavera, G., Frioni, T., & Poni, S. (2025). Exogenous Cytokinins and Auxins Affect Double Cropping in Vitis vinifera L. cv. ‘Ortrugo’ Grown in a Temperate Climate: Preliminary Results. Horticulturae, 11(4), 346. https://doi.org/10.3390/horticulturae11040346