In Vitro Multiplication, Antioxidant Activity, and Phytochemical Profiling of Wild and In Vitro-Cultured Plants of Kaempferia larsenii Sirirugsa—A Rare Plant Species in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tissue Culture Regeneration
2.2. Effect of Explant Division by Cutting and Culturing on Different Medium Types for Plant Regeneration
2.3. Transplantation and Acclimatization
2.4. Phytochemical Profiling and Antioxidant Activity of K. larsenii
2.5. Quantitative HPLC Analysis of Phenolic Compounds and Flavonoid Compounds of Kaempferia larsenii
2.6. FTIR Analysis of the Functional Groups from Different Parts of Kaempferia larsenii
2.7. Statistical Analysis
3. Results
3.1. In Vitro Propagation of Kaempferia larsenii
3.1.1. The Effect of PGR Combinations at Different Concentrations on Shoot and Root Induction of Kaempferia larsenii Cultured on Solid MS Medium
3.1.2. The Effect of PGR Combinations at Different Concentrations on Shoot and Root Induction of Kaempferia larsenii Cultured on Liquid MS Medium
3.2. Effect of Explant Division by Cutting and Culturing on Different Medium Types for Plant Regeneration
3.3. Acclimatization and Transplantation of In Vitro-Cultured Kaempferia larsenii
3.4. Phytochemical Profiling and Antioxidant Activity of Kaempferia larsenii
3.4.1. Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
3.4.2. Antioxidant Activity
3.5. Quantitative Analysis of Phenolic Acid and Flavonoid Compounds Determined by HPLC Analysis
3.6. Functional Group Screening of Kaempferia larsenii Determined by FTIR Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Y.; Liu, H.; He, M.; Wang, R.; Zeng, Q.; Wang, Y.; Ye, W.; Zhang, Q. A review of the botany, phytochemical, and pharmacological properties of galangal. In Handbook of Food Bioengineering, Natural and Artificial Flavoring Agents and Food Dyes; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; Volume 7, pp. 351–396. [Google Scholar] [CrossRef]
- Newman, M.F.; Barfod, A.S.; Esser, H.J.; Simpson, D.; Parnell, J.A.N. Flora of Thailand Volume 16 Part 2; The Forest Herbarium, Department of National Parks, Wildlife and Plant Conservation: Bangkok, Thailand, 2023; pp. 333–747. [Google Scholar]
- Saensouk, P.; Saensouk, S.; Boonma, T.; Techa, C.; Rakarcha, S.; Ragsasilp, A.; Nguyen, D.D. Cornukaempferia puangpeniae sp. nov. and C. aurantiiflora var. vespera var. nov. (Zingiberaceae) from Northern Thailand. Heliyon 2025, 11, e41603. [Google Scholar] [CrossRef]
- POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. 2024. Available online: https://powo.science.kew.org/ (accessed on 16 December 2024).
- Picheansoonthon, C.; Koonterm, S. Note on the genus Kaempferia L. (Zingiberaceae) in Thailand. J. Thai Trad. Alt. Med. 2008, 6, 73–83. [Google Scholar]
- Wattanathorn, J.; Tong–Un, T.; Thukham–Mee, W.; Weerapreeyakul, N. A functional drink containing Kaempferia parviflora extract increases cardiorespiratory fitness and physical flexibility in adult volunteers. Foods 2023, 12, 3411. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Singh, N.; Singh, S.; Srivastava, R.P.; Singh, L.; Verma, P.C.; Devkota, H.P.; Rahman, L.; Rajak, K.B.; Singh, A.; et al. The industrially important genus Kaempferia: An ethnopharmacological review. Front. Pharmacol. 2023, 14, 1099523. [Google Scholar] [CrossRef]
- Nopporncharoenkul, N.; Sukseansri, W.; Nopun, P.; Meewasana, J.; Jenjittikul, T.; Chuenboonngarm, N.; Viboonjun, U.; Umpunjun, P. Cytotaxonomy of Kaempferia subg. Protanthium (Zingiberaceae) supports a new limestone species endemic to Thailand. Willdenowia 2024, 54, 121–149. [Google Scholar] [CrossRef]
- Sirirugsa, P. The genus Kaempferia (Zingiberaceae) in Thailand. Nord. J. Bot. 1989, 9, 257–260. [Google Scholar] [CrossRef]
- Saensouk, P.; Saensouk, S.; Boonma, T.; Rakarcha, S.; Srisuk, P.; Imieje, V.O. Kaempferia sakolchaii sp. nov. and K. phuphanensis var. viridans var. nov. (Zingiberaceae), two new taxa from Northeastern Thailand. Horticulturae 2024, 10, 430. [Google Scholar] [CrossRef]
- Saensouk, S. Endermic and rare plant of ginger family in Thailand. KKU Res. J. 2011, 16, 308–330. [Google Scholar]
- Preetha, T.S.; Hemanthakumar, A.S.; Krishnan, P.N. A comprehensive review of Kaempferia galanga L. (Zingiberaceae): A high sought medicinal plant in Tropical Asia. J. Med. Plants Stud. 2016, 4, 270–276. [Google Scholar]
- Subramanian, M.; Koh, K.S.; Gantait, S.; Sinniah, U.R. Advances on in vitro regeneration and microrhizome production in Zingiberaceae family. In Vitro Cell Dev. Biol. Plant 2024, 60, 601–619. [Google Scholar] [CrossRef]
- Saensouk, S.; Yaowachai, W.; Chumroenphat, T.; Nonthalee, S.; Saensouk, P. In vitro regeneration, transplantation and phytochemical profiles of Kaempferia angustifolia Roscoe. Not. Bot. Horti. Agrobo. 2023, 51, 13190. [Google Scholar] [CrossRef]
- Vincent, K.A.; Mathew, K.M.; Hariharan, M. Micropropagation of Kaempferia galanga L.—A medicinal plant. Plant Cell Tiss. Organ Cult. 1992, 28, 229–230. [Google Scholar] [CrossRef]
- Swapna, T.S.; Binitha, M.; Manju, T.S. In vitro multiplication in Kaempferia galanga Linn. Appl. Biochem. Biotechnol. 2004, 118, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Chirangini, P.; Sinha, S.; Sharma, G. In vitro propagation and microrhizome induction in Kaempferia galanga Linn. and K. rotunda Linn. Indian J. Biotechnol. 2005, 4, 404–408. [Google Scholar]
- Nonthalee, S.; Saensouk, S.; Maneechai, S.; Souladeth, P.; Saensouk, P. A tissue culture technique for rapid clonal propagation, microrhizome induction, and RAPD analysis of Kaempferia grandifolia Saensouk & Jenjittikul—A rare plant species in Thailand. Horticulturae 2025, 11, 6. [Google Scholar] [CrossRef]
- Saliwan, S.; Saensouk, S.; Saensouk, P. In vitro propagation of Kaempferia koratensis Picheans., an endemic plant of Thailand. Koch Cha Sarn J. Sci. 2022, 44, 1–13. [Google Scholar]
- Pudpong, J.; Saensouk, S.; Saensouk, P. In vitro propagation of Kaempferia larsenii Sirirugsa for conservation of rare plant species in Thailand. KKU Sci. J. 2015, 43, 673–678. [Google Scholar]
- Saensouk, P.; Muangsan, N.; Saensouk, S.; Sirinajun, P. In vitro propagation of Kaempferia marginata Carey ex Roscoe, a native plant species to Thailand. J. Anim. Plant Sci. 2016, 26, 1405–1410. [Google Scholar]
- Labrooy, C.; Abdullah, T.L.; Stanslas, J. Influence of N6–benzyladenine and sucrose on in vitro direct regeneration and microrhizome induction of Kaempferia parviflora Wall. ex Baker, an important ethnomedicinal herb of Asia. Trop. Life Sci. Res. 2020, 31, 123–139. [Google Scholar] [CrossRef]
- Park, H.Y.; Kim, K.S.; Ak, G.; Zengin, G.; Cziáky, Z.; Jekő, J.; Adaikalam, K.; Song, K.; Kim, D.H.; Sivanesan, I. Establishment of a rapid micropropagation system for Kaempferia parviflora Wall. ex Baker: Phytochemical analysis of leaf extracts and evaluation of biological activities. Plants 2021, 10, 698. [Google Scholar] [CrossRef]
- Sahoo, S.; Lenka, J.; Kar, B.; Nayak, S. Clonal fidelity and phytochemical analysis of in vitro propagated Kaempferia rotunda Linn.—An endangered medicinal plant. In Vitro Cell. Dev. Biol.-Plant 2023, 59, 329–339. [Google Scholar] [CrossRef]
- Nonthalee, S.; Saensouk, S.; Maneechai, S.; Saensouk, P. In vitro propagation, microrhizome induction, and evaluation of genetic variation by RAPD markers of Kaempferia siamensis Sirirugsa. Propag. Ornam. Plants 2022, 22, 11–22. [Google Scholar]
- Thungjan, R.; Saensouk, S.; Saensouk, P. Effect of different concentration of plant growth regulators on in vitro culture of Kaempferia sisaketensis Picheans. & Koonterm. Burapha Sci. J. 2024, 29, 74–98. [Google Scholar]
- Theanphong, O.; Palanuvej, C.; Ruangrungsi, N.; Rungsihirunrat, K.; Thanakijcharoenpath, W. Essential oil compositions of Kaempferia larsenii Sirirugsa and Kaempferia marginata Carey rhizomes from Thailand. In Proceedings of the Pure and Applied Chemistry International Conference (PACCON2014), Khon Kaen, Thailand, 8–9 January 2014; Available online: https://www.researchgate.net/publication/301894384_Essential_oil_Compositions_of_Kaempferia_larsenii_Sirirugsa_and_Kaempferia_marginata_Carey_Rhizomes_from_Thailand (accessed on 20 December 2024).
- Theanphong, O.; Mingvanish, W.; Jenjittikul, T. Antimicrobial and radical scavenging activities of essential oils from Kaempferia larsenii Sirirugsa. Trends Sci. 2023, 20, 5212. [Google Scholar] [CrossRef]
- Theanphong, O.; Somwong, P. Radical scavenging activities of Kaempferia larsenii Sirirugsa extract and prominent flavonoids in its rhizomes. Plant Sci. Today 2023, 10, 179–184. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassay tobacco tissue culture. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Chumroenphat, T.; Sombonwatthanakul, I.; Saensouk, S.; Siriamornpun, S. The diversity of biologically active compounds in the rhizomes of recently discovered Zingiberaceae plants native to Northeastern Thailand. Pharmacogn. J. 2019, 11, 1014–1022. [Google Scholar] [CrossRef]
- Siriamornpun, S.; Kaewseejan, N. Quality, bioactive compounds and antioxidant capacity of selected climacteric fruits with relation to their maturity. Sci. Hortic. 2017, 221, 33–42. [Google Scholar] [CrossRef]
- Al-Duais, M.; Müller, L.; Böhm, V.; Jetschke, G. Antioxidant capacity and total phenolics of Cyphostemma digitatum before and after processing: Use of different assays. Eur. Food Res. Technol. 2009, 228, 813–821. [Google Scholar] [CrossRef]
- Kubola, J.; Siriamornpun, S. Phytochemicals and antioxidant activity of different fruit fractions (peel, pulp, aril and seed) of Thai gac (Momordica cochinchinensis Spreng). Food Chem. 2011, 127, 1138–1145. [Google Scholar] [CrossRef]
- Jia, Z.; Tang, M.; Wu, J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Bakar, M.F.A.; Mohamed, M.; Rahmat, A.; Fry, J. Phytochemicals and antioxidant activity of different parts of bambangan (Mangifera pajang) and tarap (Artocarpus odoratissimus). Food Chem. 2009, 113, 479–483. [Google Scholar] [CrossRef]
- Rivero-Pérez, M.D.; Muñiz, P.; Gonzalez-Sanjosé, M.L. Antioxidant profile of red wines evaluated by total antioxidant capacity, scavenger activity, and biomarkers of oxidative stress methodologies. J. Agric. Food Chem. 2007, 55, 5476–5483. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzy. Mol. 1999, 299, 15–27. [Google Scholar] [CrossRef]
- Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar] [CrossRef]
- Chumroenphat, T.; Somboonwatthanakul, I.; Saensouk, S.; Siriamornpun, S. Changes in curcuminoids and chemical components of turmeric (Curcuma longa L.) under freeze–drying and low–temperature drying methods. Food Chem. 2021, 339, 128121. [Google Scholar] [CrossRef]
- Mabasa, X.E.; Mathomu, L.M.; Madala, N.E.; Musie, E.M.; Sigidi, M.T. Molecular spectroscopic (FTIR and UV-Vis) and hyphenated chromatographic (UHPLC-qTOF-MS) analysis and in vitro bioactivities of the Momordica balsamina leaf extract. Biochem. Res. Int. 2021, 2021, 2854217. [Google Scholar] [CrossRef]
- Kainat, S.; Gilani, S.R.; Asad, F.; Khalid, M.Z.; Khalid, W.; Ranjha, M.M.A.N.; Bangar, S.P.; Lorenzo, J.M. Determination and comparison of phytochemicals, phenolics, and flavonoids in Solanum lycopersicum using FTIR spectroscopy. Food Anal. Methods 2022, 15, 2931–2939. [Google Scholar] [CrossRef]
- Singh, P.K.; Singh, J.; Medhi, T.; Kumar, A. Phytochemical screening, quantification, FT-IR analysis, and in silico characterization of potential bio–active compounds identified in HR-LC/MS analysis of the polyherbal formulation from Northeast India. ACS Omega 2022, 7, 33067–33078. [Google Scholar] [CrossRef]
- Collier, W.E.; Schultz, T.P.; Kalasinsky, V.F. Infrared study of lignin: Reexamination of aryl-alkyl ether C–O stretching peak assignments. Holzforschung 1992, 46, 523–528. [Google Scholar] [CrossRef]
- Woodward, A.W.; Bartel, B. Auxin: Regulation, action, and interaction. Ann. Bot. 2005, 95, 707–735. [Google Scholar] [CrossRef] [PubMed]
- Teale, W.D.; Paponov, I.A.; Palme, K. Auxin in action: Signaling, transport, and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 2006, 7, 847–859. [Google Scholar] [CrossRef]
- Mockaitis, K.; Estelle, M. Auxin receptors and plant development: A new signaling paradigm. Annu. Rev. Cell Dev. Biol. 2008, 24, 55–80. [Google Scholar] [CrossRef]
- Aoyama, T.; Oka, A. Cytokinin signal transduction in plant cells. J. Plant Res. 2003, 116, 221–231. [Google Scholar] [CrossRef]
- Kieber, J.; Schaller, G.E. Cytokinin signaling in plant development. Development 2018, 145, dev149344. [Google Scholar] [CrossRef]
- Rahman, Z.A.; Othman, A.N.; Ghazalli, M.N.; Adlan, N.A.S.; Rahman, Z.A.; Othman, A.N.; Ghazalli, M.N.; Adlan, N.A.S. Micropropagation of Kaempferia angustifolia Roscoe via direct regeneration. Am. J. Plant Sci. 2022, 13, 734–743. [Google Scholar] [CrossRef]
- Koh, K.S.; Ismail, M.F.; Naharudin, N.S.; Gantait, S.; Sinniah, U.R. Harnessing the potential of transverse thin cell layer culture for high−frequency micropropagation of Thai ginseng (Kaempferia parviflora Wall. ex Baker). Ind. Crops Prod. 2024, 213, 118375. [Google Scholar] [CrossRef]
- Rajashree, P.; Reena, P. Influence of Thidiazuron on in vitro regeneration potential of Kaempferia parviflora Wall. ex Baker from Eastern India. Res. J. Biotechnol. 2023, 18, 18–22. [Google Scholar] [CrossRef]
- Haque, S.M.; Ghosh, B. Micropropagation of Kaempferia angustifolia Roscoe—An aromatic, essential oil yielding, underutilized medicinal plant of Zingiberaceae family. J. Crop Sci. Biotechnol. 2018, 21, 147–153. [Google Scholar] [CrossRef]
- Anbazhagan, M.; Balachandran, B.; Sudharson, S.; Arumugam, K. In vitro propagation of Kaempferia galanga (L.)—An endangered medicinal plant. Int. J. Curr. Sci. 2015, 5, 63–69. [Google Scholar]
- Senarath, R.M.U.S.; Karunarathna, B.M.A.C.; Senarath, W.T.P.S.K.; Jimmy, G.C. In vitro propagation of Kaempferia galanga (Zingiberaceae) and comparison of larvicidal activity and phytochemical identities of rhizomes of tissue cultured and naturally grown plants. J. Appl. Biotechnol. Bioeng. 2017, 2, 157–162. [Google Scholar] [CrossRef]
- Rezali, N.I.; Jaafar Sidik, N.; Saleh, A.; Osman, N.I.; Mohd Adam, N.A. The effects of different strength of MS media in solid and liquid media on in vitro growth of Typhonium flagelliforme. Asian Pac. J. Trop. Biomed. 2017, 7, 151–156. [Google Scholar] [CrossRef]
- Hamirah, M.N.; Sani, H.B.; Boyce, P.C.; Sim, S.L. Micropropagation of red ginger (Zingiber montanum Koenig), a medicinal plant. AsPac. J. Mol. Biol. Biotechnol. 2010, 18, 125–128. [Google Scholar]
- Sathyagowri, S.; Seran, T.H. In vitro plant regeneration of ginger (Zingiber officinale Rosc.) with emphasis on initial culture establishment. Int. J. Med. Arom. Plants 2011, 1, 195–202. [Google Scholar]
- Salvi, N.D.; George, L.; Eapen, S. Micropropagation and field evaluation of micropropagated plants of turmeric. Plant Cell Tiss. Organ Cult. 2002, 68, 143–151. [Google Scholar] [CrossRef]
- Jala, A. Effects of NAA BA and sucrose on shoot induction and rapid micropropagation by trimming shoot of Curcuma longa L. Sci. Technol. Asia 2012, 17, 54–60. [Google Scholar]
- Saensouk, S.; Phookabhin, B.; Muangsan, N.; Chumroenphat, T.; Saensouk, P. In vitro propagation of Curcuma sparganiifolia Gagnep., a rare plant species from Thailand. J. Anim. Plant Sci. 2023, 33, 367–377. [Google Scholar] [CrossRef]
- Daungban, S.; Paweena, P.; Topoonyanont, N.; Poonnoy, P. Effects of explants division by cutting, concentrations of TDZ and number of sub–culture cycles on propagation of ‘Kluai Hom Thong’ banana in a temporary immersion bioreactor system. Thai J. Sci. Technol. 2017, 6, 89–99. [Google Scholar] [CrossRef]
- Saensouk, S.; Benjamin, S.; Chumroenphat, T.; Saensouk, P. In vitro propagation, evaluation of antioxidant activities, and phytochemical profiling of wild and in vitro–cultured plants of Curcuma larsenii Maknoi & Jenjitikul—A rare plant species in Thailand. Horticulturae 2024, 10, 1181. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Lim, Y.Y.; Lim, T.Y. Total phenolic content and antioxidant activity of leaves and rhizomes of some ginger species in Peninsular Malaysia. Gard. Bull. Singap. 2007, 59, 47–56. [Google Scholar]
- Mabini, J.M.A.; Barbosa, G.B. Antioxidant activity and phenolic content of the leaves and rhizomes of Etlingera philippinensis (Zingiberaceae). Bull. Env. Pharmacol. Life Sci. 2018, 7, 39–44. [Google Scholar]
- Nonthalee, S.; Maneechai, S.; Saensouk, S.; Saensouk, P. Comparative phytochemical profiling (GC–MS and HPLC) and evaluation of antioxidant activities of wild, in vitro cultured and greenhouse plants of Kaempferia grandifolia Saensouk and Jenjitt. and Kaempferia siamensis Sirirugsa; Rare plant species in Thailand. Pharmacogn. Mag. 2023, 19, 156–167. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Lim, Y.Y.; Wong, S.K. Antioxidant properties of ginger leaves: An overview. Free Rad. Antiox. 2011, 1, 6–11. [Google Scholar] [CrossRef]
- Yaowachai, W.; Saensouk, S.; Saensouk, P. In vitro propagation and determination of total phenolic compounds, flavonoid contents, and antioxidative activity of Globba globulifera Gagnep. Pharmacogn. J. 2020, 12, 1740–1747. [Google Scholar] [CrossRef]
- Kumar, S.; Yadav, M.; Yadav, A.; Yadav, J.P. Impact of spatial and climatic conditions on phytochemical diversity and in vitro antioxidant activity of Indian Aloe vera (L.) Burm.f. S. Afr. J. Bot. 2017, 111, 50–59. [Google Scholar] [CrossRef]
- Gatabazi, A.; Marais, D.; Steyn, M.; Araya, H.; Du Plooy, C.; Ncube, B.; Mokgehle, S. Effect of water regimes and harvest times on yield and phytochemical accumulation of two ginger species. Sci. Hortic. 2022, 304, 111353. [Google Scholar] [CrossRef]
- Usman, H.; Jan, H.; Zaman, G.; Khanum, M.; Drouet, S.; Garros, L.; Tungmunnithum, D.; Hano, C.; Abbasi, B.H. Comparative analysis of various plant–growth–regulator treatments on biomass accumulation, bioactive phytochemical production, and biological activity of Solanum virginianum L. callus culture extracts. Cosmetics 2022, 9, 71. [Google Scholar] [CrossRef]
- Karalija, E.; Parić, A. The effect of BA and IBA on the secondary metabolite production by shoot culture of Thymus vulgaris L. Biol. Nyssana 2011, 2, 29–35. [Google Scholar]
- Akula, R.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
- Pavarini, D.P.; Pavarini, S.P.; Niehues, M.; Lopes, N.P. Exogenous influences on plant secondary metabolite levels. Anim. Feed Sci. Technol. 2012, 176, 5–16. [Google Scholar] [CrossRef]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef]
- Chavan, J.J.; Gaikwad, N.B.; Kshirsagar, P.R.; Dixit, G.B. Total phenolics, flavonoids and antioxidant properties of three Ceropegia species from Western Ghats of India. S. Afr. J. Bot. 2013, 88, 273–277. [Google Scholar] [CrossRef]
- Tamuly, C.; Saikia, B.; Hazarika, M.; Bora, J.; Bordoloi, M.J.; Sahu, O.P. Correlation between phenolic, flavonoid, and mineral contents with antioxidant activity of underutilized vegetables. Int. J. Veg. Sci. 2013, 19, 34–44. [Google Scholar] [CrossRef]
- Wanyo, P.; Chomnawang, C.; Huaisan, K.; Chamsai, T. Comprehensive analysis of antioxidant and phenolic profiles of Thai medicinal plants for functional food and pharmaceutical development. Plant Foods Hum. Nutr. 2024, 79, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, R.A.; Hamid, A.A.; Mohamed, S.; Bakar, F.A. Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants. J. Food Sci. 2010, 75, 28–35. [Google Scholar] [CrossRef]
- Pant, P.; Pandey, S.; Dall’Acqua, S. The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review. Chem. Biodivers. 2021, 18, e2100345. [Google Scholar] [CrossRef]
Medium Formulation (Solid) | PGRs (mg/L) | |
| BA | 0, 1, 2, 3, 4, 5, 6 |
NAA | 0, 0.1, 0.5 | |
| kinetin | 0, 1, 2, 3, 4, 5, 6 |
NAA | 0, 0.1, 0.5 | |
| TDZ | 0, 0.1, 0.5, 1, 2, 3, 4, 5 |
IAA | 0, 0.5 | |
| BA | 0, 1, 2, 3 |
kinetin | 0, 2, 4 | |
NAA | 0, 0.2 | |
| BA | 0, 1, 2, 3 |
TDZ | 0, 1, 3 | |
NAA | 0, 0.2 | |
Medium Formulation (Liquid) | PGRs (mg/L) | |
Combination of BA, kinetin, IAA, and NAA (6 treatments) | BA | 0, 1, 2, 3 |
kinetin | 0, 2, 4 | |
IAA | 0, 0.5 | |
NAA | 0, 1 |
BA (mg/L) | NAA (mg/L) | No. of Shoots/Explant | Shoot Height (cm) | No. of Roots/Explant | Root Length (cm) |
---|---|---|---|---|---|
0 | 0 | 2.33 ± 0.76 c | 3.72 ± 1.28 a | 5.89 ± 1.33 b | 3.45 ± 1.20 a |
1 | 0.1 | 3.10 ± 0.73 bc | 3.69 ± 0.85 a | 7.90 ± 3.26 a | 2.78 ± 0.76 b |
2 | 0.1 | 3.70 ± 0.95 b | 3.28 ± 0.33 ab | 8.40 ± 2.06 a | 2.74 ± 0.66 b |
3 | 0.1 | 4.10 ± 0.98 a | 2.86 ± 1.04 b | 8.30 ± 2.15 a | 2.80 ± 0.70 b |
4 | 0.1 | 2.60 ± 1.08 c | 2.72 ± 0.35 b | 3.60 ± 2.85 d | 1.76 ± 0.85 c |
5 | 0.1 | 4.00 ± 1.17 a | 3.07 ± 1.01 ab | 8.00 ± 2.06 a | 3.15 ± 1.01 a |
6 | 0.1 | 3.71 ± 1.64 b | 2.29 ± 0.29 c | 7.14 ± 3.54 a | 2.67 ± 1.77 b |
1 | 0.5 | 3.13 ± 1.23 bc | 3.58 ± 1.33 a | 8.25 ± 3.10 a | 2.72 ± 1.27 b |
2 | 0.5 | 3.75 ± 1.96 b | 3.11 ± 0.73 ab | 7.25 ± 3.48 a | 2.51 ± 0.85 b |
3 | 0.5 | 4.13 ± 1.27 a | 2.90 ± 1.11 b | 5.00 ± 3.04 b | 1.78 ± 0.60 c |
4 | 0.5 | 4.50 ± 1.58 a | 3.27 ± 1.01 ab | 4.75 ± 2.85 c | 1.38 ± 0.82 c |
5 | 0.5 | 3.88 ± 1.52 b | 3.52 ± 0.98 a | 7.00 ± 1.68 a | 2.40 + 0.73 b |
6 | 0.5 | 4.63 ± 1.90 a | 2.52 ± 0.44 bc | 4.38 ± 1.58 c | 1.91 ± 0.73 c |
Kinetin (mg/L) | NAA (mg/L) | No. of Shoots/Explant | Shoot Height (cm) | No. of Roots/Explant | Root Length (cm) |
---|---|---|---|---|---|
0 | 0 | 2.57 ± 1.36 b | 3.85 ± 1.08 b | 7.43 ± 5.57 c | 3.87 ± 1.77 b |
1 | 0.1 | 2.71 ± 0.91 b | 2.78 ± 1.40 c | 9.86 ± 3.73 b | 3.68 ± 1.33 b |
2 | 0.1 | 3.38 ± 1.33 ab | 5.00 ± 2.09 a | 9.88 ± 4.71 b | 4.30 ± 2.47 ab |
3 | 0.1 | 3.40 ± 1.08 ab | 4.52 ± 1.27 ab | 9.20 ± 4.30 b | 3.14 ± 0.82 b |
4 | 0.1 | 2.89 ± 0.98 b | 3.89 ± 1.42 b | 5.56 ± 3.22 d | 5.36 ± 1.40 a |
5 | 0.1 | 3.40 ± 0.85 ab | 3.55 ± 0.80 b | 8.60 ± 2.56 c | 3.05 ± 0.95 b |
6 | 0.1 | 4.10 ± 1.51 a | 4.46 ± 1.52 ab | 10.90 ± 3.04 a | 3.31 ± 0.63 b |
1 | 0.5 | 3.14 ± 1.08 ab | 4.67 ± 1.96 ab | 11.14 ± 4.11 a | 4.09 ± 1.33 ab |
2 | 0.5 | 3.14 ± 1.08 ab | 4.75 ± 1.40 ab | 12.00 ± 7.23 a | 5.15 ± 1.61 a |
3 | 0.5 | 3.29 ± 0.92 ab | 3.67 ± 1.52 b | 10.86 ± 1.61 a | 3.72 ± 1.08 b |
4 | 0.5 | 3.38 ± 1.20 ab | 4.62 ± 0.57 ab | 11.75 ± 1.68 a | 3.91 ± 0.67 ab |
5 | 0.5 | 2.71 ± 0.92 b | 2.81 ± 0.85 c | 7.14 ± 3.48 c | 3.26 ± 1.49 b |
6 | 0.5 | 3.57 ± 1.17 ab | 3.25 ± 1.46 b | 9.43 ± 5.38 b | 3.40 ± 1.80 b |
Plant Growth Regulators (mg/L) | No. of Shoots/Explant | Shoot Height (cm) | No. of Roots/Explant | Root Length (cm) | |
---|---|---|---|---|---|
TDZ | IAA | ||||
0 | 0 | 2.41 ± 1.17 b | 5.14 ± 1.64 ab | 7.25 ± 1.65 a | 2.23 ± 0.51 ab |
0.1 | 0.5 | 3.57 ± 1.64 ab | 4.49 ± 1.42 b | 5.20 ± 8.13 b | 2.65 ± 1.20 a |
0.5 | 0.5 | 4.00 ± 1.55 a | 5.49 ± 0.85 ab | 7.09 ± 2.85 a | 2.68 ± 0.47 a |
1 | 0.5 | 2.41 ± 0.98 b | 6.21 ± 0.54 a | 5.58 ± 2.69 b | 2.78 ± 0.82 a |
2 | 0.5 | 3.28 ± 1.47 ab | 4.83 ± 1.90 b | 5.83 ± 4.17 b | 2.89 ± 0.60 a |
3 | 0.5 | 3.30 ± 2.25 ab | 5.11 ± 1.27 ab | 7.80 ± 2.44 a | 2.57 ± 0.66 a |
4 | 0.5 | 2.91 ± 0.80 ab | 4.25 ± 0.70 b | 5.87 ± 3.73 b | 1.67 ± 0.47 b |
Plant Growth Regulators (mg/L) | No. of Shoots/Explant | Shoot Height (cm) | No. of Roots/Explant | Root Length (cm) | ||
---|---|---|---|---|---|---|
BA | Kinetin | NAA | ||||
0 | 0 | 0 | 1.90 ± 0.89 d | 3.64 ± 0.32 bc | 8.30 ± 2.91 c | 3.75 ± 0.32 a |
1 | 2 | 0.2 | 3.10 ± 0.32 c | 3.80 ± 0.22 ab | 11.30 ± 1.33 b | 3.40 ± 0.25 bc |
2 | 2 | 0.2 | 3.60 ± 0.70 c | 3.70 ± 0.32 bc | 10.60 ± 1.71 b | 3.19 ± 0.25 c |
3 | 2 | 0.2 | 11.00 ± 2.40 a | 3.76 ± 0.41ab | 9.90 ± 2.12 bc | 2.87 ± 0.35 d |
1 | 4 | 0.2 | 5.40 ± 2.03 b | 3.99 ± 0.29 a | 14.50 ± 2.03 a | 3.51 ± 0.22 b |
2 | 4 | 0.2 | 9.00 ± 2.31 a | 3.58 ± 0.20 bc | 14.70 ± 0.64 a | 3.21 ± 0.25 c |
3 | 4 | 0.2 | 6.40 ± 1.71 b | 3.44 ± 0.16 c | 13.50 ± 2.28 a | 3.31 ± 0.13 bc |
Plant Growth Regulators (mg/L) | No. of Shoots/Explant | Shoot Height (cm) | No. of Roots/Explant | Root Length (cm) | ||
---|---|---|---|---|---|---|
BA | TDZ | NAA | ||||
0 | 0 | 0 | 1.80 ± 0.79 d | 3.34 ± 0.17 a | 5.30 ± 1.49 b | 3.47 ± 0.15 a |
1 | 1 | 0.2 | 9.80 ± 2.10 b | 3.02 ± 0.41 b | 10.10 ± 2.28 a | 3.50 ± 0.23 a |
2 | 1 | 0.2 | 6.60 ± 2.17 c | 2.88 ± 0.25 bc | 11.00 ± 1.76 a | 3.28 ± 0.19 ab |
3 | 1 | 0.2 | 11.70 ± 2.11 a | 2.65 ± 0.25 c | 6.50 ± 1.27 b | 2.77 ± 0.38 d |
1 | 3 | 0.2 | 9.40 ± 1.51 b | 2.22 ± 0.41 d | 3.20 ± 1.14 c | 2.42 ± 0.33 e |
2 | 3 | 0.2 | 13.10 ± 1.20 a | 1.97 ± 0.22 d | 2.30 ± 0.48 c | 3.15 ± 0.34 bc |
3 | 3 | 0.2 | 12.00 ± 2.67 a | 2.02 ± 0.24 d | 2.60 ± 1.43 c | 2.89 ± 0.54 cd |
Plant Growth Regulators (mg/L) | No. of Shoots/Explant | Shoot Height (cm) | No. of Roots/Explant | Root Length (cm) | |||
---|---|---|---|---|---|---|---|
BA | Kinetin | IAA | NAA | ||||
0 | 0 | 0 | 0 | 4.00 ± 0.67 a | 8.93 ± 0.43 c | 10.90 ± 1.29 b | 1.90 ± 0.13 d |
1 | 0 | 0.5 | 0 | 4.70 ± 0.82 a | 11.33 ± 1.16 ab | 16.40 ± 1.78 a | 3.45 ± 0.33 a |
0 | 2 | 0 | 1 | 4.20 ± 0.63 a | 10.92 ± 1.09 b | 15.60 ± 1.84 a | 2.63 ± 0.33 c |
2 | 2 | 0 | 1 | 4.50 ± 0.53 a | 10.98 ± 0.46 b | 16.90 ± 0.99 a | 2.74 ± 0.34 c |
3 | 0 | 0 | 0 | 4.20 ± 0.42 a | 11.16 ± 0.75 ab | 16.20 ± 2.04 a | 3.02 ± 0.17 b |
3 | 4 | 0 | 0 | 4.60 ± 0.52 a | 11.82 ± 0.63 a | 10.60 ± 1.07 b | 3.16 ± 0.33 b |
Microshoots | Types of MS Medium | Plant Growth Regulators (mg/L) | No. of Shoots/Explant | Shoot Height (cm) | No. of Roots/Explant | Root Length (cm) | |
---|---|---|---|---|---|---|---|
TDZ | IAA | ||||||
Non-cutting | Solid | 0 | 0 | 3.10 ± 0.85 cd | 4.08 ± 1.01 b–d | 6.30 ± 1.68 a–d | 2.95 ± 0.66 a |
1 | 0.5 | 5.00 ± 3.16 b–d | 2.70 ± 1.36 e–g | 9.20 ± 6.39 ab | 2.47 ± 0.92 ab | ||
Liquid | 0 | 0 | 5.75 ± 6.10 b–d | 5.64 ± 2.75 a | 6.00 ± 6.83 a–d | 2.43 ± 0.95 a–c | |
1 | 0.5 | 9.60 ± 6.77 a | 5.12 ± 1.20 ab | 10.50 ± 1.58 a | 3.05 ± 2.69 a | ||
Solid + Liquid | 0 | 0 | 5.12 ± 1.23 b–d | 5.17 ± 1.20 ab | 6.25 ± 4.36 a–d | 2.74 ± 0.66 ab | |
1 | 0.5 | 7.40 ± 4.84 ab | 4.78 ± 1.20 bc | 8.30 ± 1.14 a–c | 2.52 ± 0.95 ab | ||
Cutting | Solid | 0 | 0 | 5.00 ± 2.06 b–d | 4.00 ± 0.98 b–d | 4.40 ± 3.38 b–d | 2.04 ± 0.66 a–c |
1 | 0.5 | 5.00 ± 3.23 b–d | 2.81 ± 0.63 e–g | 7.17 ± 6.80 a–d | 3.13 ± 1.11 a | ||
Liquid | 0 | 0 | 3.25 ± 1.55 cd | 5.08 ± 0.82 ab | 7.17 ± 5.79 a–d | 1.15 ± 0.73 c | |
1 | 0.5 | 5.16 ± 2.50 b–d | 5.63 ± 3.23 a | 7.42 ± 1.93 a–c | 2.10 ± 1.49 a–c | ||
Solid + Liquid | 0 | 0 | 1.30 ± 0.47 d | 3.22 ± 1.74 cd | 2.00 ± 1.80 d | 1.50 ± 2.40 bc | |
1 | 0.5 | 2.00 ± 1.17 cd | 2.19 ± 0.25 g | 3.33 ± 2.34 cd | 2.42 ± 1.30 ab |
Planting Material | Survival Rate (%) | No. of Shoots/Plant | Shoot Height (cm) | No. of Leaves/Plant |
---|---|---|---|---|
Loamy soil | 41.67 | 2.00 ± 2.37 ab | 7.26 ± 1.90 b | 3.33 ± 1.61 a |
Sandy soil | 100.00 | 1.50 ± 3.48 ab | 6.70 ± 1.52 b | 2.17 ± 0.44 ab |
Compost | 0.00 | 0.00 c | 0.00 d | 0.00 c |
Burned rice husk | 8.30 | 1.00 ± 0.00 b | 13.0 ± 0.00 a | 3.00 ± 0.00 ab |
Loamy soil + sandy soil | 58.33 | 1.42 ± 2.94 ab | 7.60 ± 2.00 b | 2.00 ± 1.23 b |
Loamy soil + compost | 16.67 | 1.00 ± 0.00 b | 3.35 ± 2.69 c | 2.50 ± 1.58 ab |
Sandy soil + compost | 50.00 | 2.17 ± 4.33 ab | 5.01 ± 0.98 bc | 2.80 ± 0.38 ab |
Loamy soil + sandy soil + compost | 50.00 | 2.50 ± 4.40 a | 5.41 ± 3.80 bc | 2.45 ± 0.70 ab |
Condition | Plant Parts | TPC (mg GAE/g DW) | TFC (mg QE/g DW) | DPPH (mg TE/g DW) | DPPH (% Inhibition) | FRAP (mg FeSO4/g DW) | |
---|---|---|---|---|---|---|---|
Mother plant | Leaves | 716.03 ± 5.08 a | 47.89 ± 0.80 a | 121.34 ± 1.42 a | 59.04 ± 0.62 a | 134.35 ± 2.67 a | |
Pseudostem | 203.33 ± 3.31 b | 30.97 ± 0.54 b | 24.73 ± 0.31 b | 49.20 ± 0.55 b | 17.44 ± 1.47 b | ||
Rhizomes and Storage roots | 201.88 ± 2.32 b | 7.01 ± 0.35 d | 22.58 ± 1.46 c | 45.43 ± 2.55 c | 14.97 ± 0.55 c | ||
In Vitro | MS | Leaves | 157.88 ± 2.88 e | 6.28 ± 0.49 d | 14.24 ± 1.50 f | 30.77 ± 2.62 f | 11.27 ± 1.11 de |
Pseudostems | 114.76 ± 2.18 f | 4.43 ± 0.38 e | 11.47 ± 1.26 g | 25.91 ± 2.22 g | 7.77 ± 0.31 f | ||
Roots | 168.13 ± 1.18 d | 6.40 ± 0.21 d | 16.64 ± 1.04 e | 34.99 ± 1.82 e | 12.12 ± 0.66 d | ||
PGRs | Leaves | 192.84 ± 3.15 c | 11.47 ± 0.43 c | 19.76 ± 1.65 d | 40.47 ± 2.90 d | 16.48 ± 1.04 bc | |
Pseudostems | 117.59 ± 1.16 f | 4.46 ± 0.43 e | 14.33 ± 0.52 f | 30.94 ± 0.90 f | 9.78 ± 0.40 e | ||
Roots | 155.32 ± 3.76 e | 10.67 ± 0.33 c | 18.04 ± 0.31 de | 37.45 ± 0.54 de | 17.15 ± 0.71 b |
TPC | TFC | DPPH | % Inhibition (DPPH) | FRAP | |
---|---|---|---|---|---|
TPC | 1 | 0.881 ** | 0.996 ** | 0.800 ** | 0.993 ** |
TFC | 1 | 0.878 ** | 0.867 ** | 0.864 ** | |
DPPH | 1 | 0.782 ** | 0.998 ** | ||
% inhibition (DPPH) | 1 | 0.749 ** | |||
FRAP | 1 |
Condition | Explant | Phenolic Acid Compound Contents (µg/g DW) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GA | PCA | HBA | CGA | CA | CMA | FA | SA | CNA | Total | |||
Mother plants | Leaves | 3.05 ± 0.09 f | 5.01 ± 0.12 e | ND | ND | 7.88 ± 0.35 d | 28.98 ± 0.36 c | 35.22 ± 0.17 b | 47.21 ± 0.26 a | ND | 127.36 ± 0.05 | |
Pseudo stems | 1.16 ± 0.07 f | 1.67 ± 0.09 e | ND | ND | 3.28 ± 0.10 c | 2.17 ± 0.14 d | 4.52 ± 0.35 b | 5.86 ± 0.12 a | ND | 18.66 ± 0.01 | ||
Rhizomes + Storage roots | 4.06 ± 0.05 c | 2.77 ± 0.05 d | ND | ND | 1.67 ± 0.07 e | 4.07 ± 0.26 c | 4.96 ± 0.42 b | 6.27 ± 0.29 a | ND | 23.81 ± 0.04 | ||
In Vitro | MS | Leaves | 25.30 ± 1.28 e | ND | 61.95 ± 0.50 d | ND | ND | 14.00 ± 0.26 f | 202.97 ± 4.38 b | 114.40 ± 0.40 c | 489.35 ± 15.68 a | 904.81 ± 1.34 |
Pseudo stems | 44.79 ± 1.21 d | ND | 65.00 ± 0.23 c | ND | ND | 6.18 ± 0.16 e | 114.77 ± 3.00 b | ND | 236.09 ± 4.39 a | 466.83 ± 0.70 | ||
Roots | 13.29 ± 0.68 c | ND | ND | ND | ND | ND | 48.40 ± 0.43 b | ND | 882.52 ± 11.83 a | 944.21 ± 1.77 | ||
2 BA + 0.1 NAA (mg/L) | Leaves | 6.80 ± 0.24 e | ND | 60.45 ± 0.68 d | ND | ND | 8.90 ± 0.16 e | 253.15 ± 2.44 b | 114.40 ± 0.40 c | 515.87 ± 7.86 a | 959.57 ± 0.68 | |
Pseudo stems | 44.10 ± 1.58 d | ND | 62.10 ± 0.35 c | ND | ND | 6.53 ± 0.50 e | 149.75 ± 2.94 b | ND | 237.99 ± 15.36 a | 500.48 ± 1.57 | ||
Roots | 63.48 ± 1.39 b | ND | ND | ND | ND | ND | 50.03 ± 0.35 c | ND | 437.46 ± 4.78 a | 550.98 ± 0.40 |
Condition | Explant | Flavonoid Compound Contents (µg/g DW) | |||||
---|---|---|---|---|---|---|---|
Rutin | Quercetin | Myricetin | Apigenin | Total | |||
Mother plants | Leaves | 1987.73 ± 2.74 a | 259.90± 1.85 d | 1937.71 ± 3.12 b | 334.45 ± 2.69 c | 4519.79 ± 0.27 | |
Pseudostems | 105.04 ± 1.94 b | 21.96 ± 0.80 d | 483.20 ± 2.46 a | 86.15 ± 2.44 c | 696.34 ± 0.39 | ||
Rhizomes + Storage roots | 4.61 ± 0.07 d | 23.10 ± 0.76 c | 665.77 ± 2.32 a | 112.08 ± 3.40 b | 805.55 ± 0.75 | ||
In Vitro | MS | Leaves | ND | ND | 1798.64 ± 3.57 | 1181.68 ± 6.34 | 2980.31 ± 0.98 |
Pseudostems | ND | 152.74 ± 2.34 c | 833.82 ± 8.02 b | 866.74 ± 3.33 a | 1853.30 ± 1.52 | ||
Roots | 1.46 ± 0.12 c | ND | 818.25 ± 2.01 b | 1531.14 ± 9.77 a | 2350.85 ± 2.57 | ||
2 BA + 0.1 NAA (mg/L) | Leaves | ND | ND | 1283.81 ± 5.23 | 957.85 ± 6.11 | 2241.66 ± 0.31 | |
Pseudostems | 1.00 ± 0.07 d | 146.00 ± 3.95 c | 588.53 ± 8.92 b | 911.79 ± 5.61 a | 1647.31 ± 1.84 | ||
Roots | 1.59 ± 0.02 d | 180.89 ± 1.68 c | 649.08 ± 2.36 b | 1791.27 ± 8.05 a | 2622.83 ± 1.75 |
Wavenumber (cm−1) | Vibrational Bond | Functional Group | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mother Plant | MS | PGRs (2 BA + 0.1 NAA) | ||||||||
Ls | Ps | Rs | Ls | Ps | R | Ls | Ps | R | ||
3282 | 3282 | 3285 | 3274 | 3275 | 3284 | 3276 | 3274 | 3282 | O–H (Stretching) | Alcohols Phenols |
2917 | 2920 | 2921 | 2918 | 2918 | 2919 | 2918 | 2918 | 2920 | C–H (Stretching) | Alkane |
2849 | – | – | 2850 | 2850 | – | 2847 | 2850 | – | C–H (Stretching) | Alkane |
1731 | 1729 | 1719 | 1736 | 1735 | 1735 | 1735 | 1735 | 1730 | C=O (Stretching) | Aldehyde |
1633 | 1627 | 1634 | 1622 | 1623 | 1628 | 1629 | – | 1629 | C=C (Stretching) | Alkene |
1310 | 1308 | – | – | – | – | – | – | – | C–O (Stretching) | Aromatic ester |
– | – | 1318 | – | – | – | – | – | – | C–N (Stretching) | Aromatic amine |
– | – | – | 1357 | 1362 | 1363 | 1359 | 1359 | 1357 | O–H bending | Alcohols |
1241 | 1242 | 1247 | 1232 | 1232 | 1233 | 1232 | 1233 | 1233 | C–O (Stretching) | Alkyl aryl ether |
1032 | 1031 | 1024 | 1028 | 1030 | 1031 | 1030 | 1028 | 1030 | C–O (Stretching) | Alkyl aryl ether |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saensouk, S.; Sonthongphithak, P.; Chumroenphat, T.; Muangsan, N.; Souladeth, P.; Saensouk, P. In Vitro Multiplication, Antioxidant Activity, and Phytochemical Profiling of Wild and In Vitro-Cultured Plants of Kaempferia larsenii Sirirugsa—A Rare Plant Species in Thailand. Horticulturae 2025, 11, 281. https://doi.org/10.3390/horticulturae11030281
Saensouk S, Sonthongphithak P, Chumroenphat T, Muangsan N, Souladeth P, Saensouk P. In Vitro Multiplication, Antioxidant Activity, and Phytochemical Profiling of Wild and In Vitro-Cultured Plants of Kaempferia larsenii Sirirugsa—A Rare Plant Species in Thailand. Horticulturae. 2025; 11(3):281. https://doi.org/10.3390/horticulturae11030281
Chicago/Turabian StyleSaensouk, Surapon, Phiphat Sonthongphithak, Theeraphan Chumroenphat, Nooduan Muangsan, Phetlasy Souladeth, and Piyaporn Saensouk. 2025. "In Vitro Multiplication, Antioxidant Activity, and Phytochemical Profiling of Wild and In Vitro-Cultured Plants of Kaempferia larsenii Sirirugsa—A Rare Plant Species in Thailand" Horticulturae 11, no. 3: 281. https://doi.org/10.3390/horticulturae11030281
APA StyleSaensouk, S., Sonthongphithak, P., Chumroenphat, T., Muangsan, N., Souladeth, P., & Saensouk, P. (2025). In Vitro Multiplication, Antioxidant Activity, and Phytochemical Profiling of Wild and In Vitro-Cultured Plants of Kaempferia larsenii Sirirugsa—A Rare Plant Species in Thailand. Horticulturae, 11(3), 281. https://doi.org/10.3390/horticulturae11030281