Shoots Regeneration in Brigitta and Duke Blueberry Cultivars from Different Encapsulated Vegetative Propagules
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. In Vitro Culture Conditions
2.3. Encapsulating Procedure and Growing Conditions
2.4. Data Collection
- -
- Viability (%): incidence of green propagules without browning or necrosis;
- -
- Regrowth (%): incidence of propagules that sprouted or rooted;
- -
- Conversion (%): incidence of propagules that sprouted and rooted at the same time);
- -
- Shoots produced (n) and shoot length (mm): average number of shoots produced per vital explant and their length;
- -
- Roots produced (n) and root length (mm): average roots produced per vital explant and their length;
- -
- Callus (%) and callus fresh weight (mg): incidence of propagules with callus and callus fresh weight;
- -
- Green fresh weight (mg): average fresh weight of vegetative organs (leaves, stems, buds) per vital explant;
- -
- Total dry weight per explant (mg) obtained by keeping the plant material in an oven for three days at 105 °C.
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, G.-Q. Blueberry (Vaccinium corymbosum L.). In Agrobacterium Protocols: Volume 2; Springer: New York, NY, USA, 2015; pp. 121–131. [Google Scholar]
- Ehlenfeldt, M. The Delightful Domesticated American Blueberry: Some Research Challenges for Its Next 100 Years. Agric. Res. 2011, 59, 2. [Google Scholar]
- Yu, X.; Yuan, H.; Jin, Y.; Xia, C.; Zhu, J.; Che, J.; Yang, J.; Wang, X.; Zheng, B.; Yang, S.; et al. Establishment of a Breeding Approach Combined with Gamma Ray Irradiation and Tissue Regeneration for Highbush Blueberry. Agronomy 2025, 15, 217. [Google Scholar] [CrossRef]
- Cui, F.; Ye, X.; Li, X.; Yang, Y.; Hu, Z.; Overmyer, K.; Brosché, M.; Yu, H.; Salojärvi, J. Chromosome-Level Genome Assembly of the Diploid Blueberry Vaccinium Darrowii Provides Insights into Its Subtropical Adaptation and Cuticle Synthesis. Plant Commun. 2022, 3, 100307. [Google Scholar] [CrossRef]
- Edger, P.P.; Iorizzo, M.; Bassil, N.V.; Benevenuto, J.; Ferrão, L.F.V.; Giongo, L.; Hummer, K.; Lawas, L.M.F.; Leisner, C.P.; Zalapa, J.; et al. There and back again; historical perspective and future directions for Vaccinium breeding and research studies. Hortic. Res. 2022, 9, uhac083. [Google Scholar]
- Brevis, P.A.; Bassil, N.V.; Ballington, J.R.; Hancock, J.F. Impact of Wide Hybridization on Highbush Blueberry Breeding. J. Am. Soc. Hortic. Sci. 2008, 133, 427–437. [Google Scholar] [CrossRef]
- Ashique, S.; Mukherjee, T.; Mohanty, S.; Garg, A.; Mishra, N.; Kaushik, M.; Bhowmick, M.; Chattaraj, B.; Mohanto, S.; Srivastava, S.; et al. Blueberries in Focus: Exploring the Phytochemical Potentials and Therapeutic Applications. J. Agric. Food Res. 2024, 18, 101300. [Google Scholar] [CrossRef]
- Lobos, G.A.; Hancock, J.F. Breeding Blueberries for a Changing Global Environment: A Review. Front. Plant Sci. 2015, 6, 782. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 17 January 2025).
- Mazurek, M.; Siekierzyńska, A.; Piechowiak, T.; Spinardi, A.; Litwińczuk, W. Comprehensive Analysis of Highbush Blueberry Plants Propagated In Vitro and Conventionally. Int. J. Mol. Sci. 2024, 25, 544. [Google Scholar] [CrossRef]
- Mohamed, G.R.A.; Khusnetdinova, L.Z.; Timofeeva, O.A. Elaboration of micropropagation protocol for Vaccinium corymbosum cv.” Sunt Blue Giant. Asian J. Plant Sci. Res. 2018, 8, 1–11. [Google Scholar]
- Correia, S.; Matos, M.; Leal, F. Advances in Blueberry (Vaccinium spp.) In Vitro Culture: A Review. Horticulturae 2024, 10, 533. [Google Scholar] [CrossRef]
- Regni, L.; Micheli, M.; Del Pino, A.M.; Palmerini, C.A.; D’Amato, R.; Facchin, S.L.; Famiani, F.; Peruzzi, A.; Mairech, H.; Proietti, P. The First Evidence of the Beneficial Effects of Se-Supplementation on In Vitro Cultivated Olive Tree Explants. Plants 2021, 10, 1630. [Google Scholar] [CrossRef]
- Dobránszki, J.; da Silva, J.A.T. Micropropagation of Apple—A Review. Biotechnol. Adv. 2010, 28, 462–488. [Google Scholar] [CrossRef]
- Kavand, S.; Kermani, M.J.; Haghnazari, A.; Khosravi, P.; Azimi, M.R. Micropropagation and Medium-Term Conservation of Rosa Pulverulenta. Acta Sci. Agron. 2011, 33, 297–301. [Google Scholar] [CrossRef]
- Regni, L.; Micheli, M.; Pino, A.M.D.; Facchin, S.L.; Rabica, E.; Camilloni, L.; Cesarini, A.; Proietti, P. Blackberry Synthetic Seeds Storage: Effects of Temperature, Time, and Sowing Substrate. Plant Cell Tissue Organ Cult. 2024, 158, 17. [Google Scholar] [CrossRef]
- Rihan, H.Z.; Kareem, F.; El-Mahrouk, M.E.; Fuller, M.P. Artificial Seeds (Principle, Aspects and Applications). Agronomy 2017, 7, 71. [Google Scholar] [CrossRef]
- Standardi, A.; Micheli, M. Encapsulation of in Vitro-Derived Explants: An Innovative Tool for Nurseries. Methods Mol. Biol. 2013, 11013, 397–418. [Google Scholar] [CrossRef]
- Ahmad, N.; Shahid, A.; Javed, S.B.; Khan, M.I.; Anis, M. Micropropagation of Vitex spp. through in Vitro Manipulation: Current Status and Future Prospectives. J. Appl. Res. Med. Aromat. Plants 2015, 2, 114–123. [Google Scholar] [CrossRef]
- Asmah, N.H.; Hasnida, N.H.; Zaimah, N.A.N.; Noraliza, A.; Salmi, N.N. Synthetic Seed Technology for Encapsulation and Regrowth of in Vitro-Derived Acacia Hyrid Shoot and Axillary Buds. Afr. J. Biotechnol. 2011, 10, 7820–7824. [Google Scholar] [CrossRef]
- Rai, M.K.; Asthana, P.; Singh, S.K.; Jaiswal, V.S.; Jaiswal, U. The Encapsulation Technology in Fruit Plants—A Review. Biotechnol. Adv. 2009, 27, 671–679. [Google Scholar] [CrossRef]
- Magray, M.M.; Wani, K.P.; Chatto, M.A.; Ummyiah, H.M. Synthetic Seed Technology. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 662–674. [Google Scholar] [CrossRef]
- Regni, L.; Micheli, M.; Facchin, S.L.; Del Pino, A.M.; Silvestri, C.; Proietti, P. The Influence of the Explant’s Type on the Performance of Synthetic Seeds of Blackberry (Rubus spp.). Plants 2024, 13, 32. [Google Scholar] [CrossRef]
- Lloyd, G.; McCown, B.H. Commercially-Feasible Micropropagation of Mountain Laurel, Kalmia Latifolia, by Use of Shoot-Tip Culture. Comb. Proc.-Int. Plant Propagator’s Soc. 1980, 30, 421–427. [Google Scholar]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Plant Physiol. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Piccioni, E.; Standardi, A. Encapsulation of Micropropagated Buds of Six Woody Species. Plant Cell Tissue Organ Cult. 1995, 42, 221–226. [Google Scholar] [CrossRef]
- Sharma, S.; Shahzad, A.; Teixeira da Silva, J.A. Synseed Technology—A Complete Synthesis. Biotechnol. Adv. 2013, 31, 186–207. [Google Scholar] [CrossRef]
- Benelli, C. Encapsulation of Shoot Tips and Nodal Segments for in Vitro Storage of ‘Kober 5BB’ Grapevine Rootstock. Horticulturae 2016, 2, 10. [Google Scholar] [CrossRef]
- Micheli, M.; Standardi, A.; Fernandes da Silva, D. Encapsulation and Synthetic Seeds of Olive (Olea europaea L.): Experiences and Overview. In Synthetic Seeds: Germplasm Regeneration, Preservation and Prospects; Faisal, M., Alatar, A.A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 347–361. ISBN 978-3-030-24631-0. [Google Scholar]
- Ballester, A.; Janeiro, L.V.; Vieitez, A.M. Cold Storage of Shoot Cultures and Alginate Encapsulation of Shoot Tips of Camellia japonica L. and Camellia reticulata Lindley. Sci. Hortic. 1997, 71, 67–78. [Google Scholar] [CrossRef]
- Cao, H.; Trueman, S. Alginate Encapsulation of Shoot Tips and Nodal Segments for Short-Term Storage and Distribution of the Eucalypt Corymbia torelliana × C. citriodora. Acta Physiol. Plant. 2012, 34, 117–128. [Google Scholar] [CrossRef]
- Kikowska, M.; Thiem, B. Alginate-Encapsulated Shoot Tips and Nodal Segments in Mictopropagation of Medicinal Plands. A Review. Herba Pol. 2011, 57, 45–57. [Google Scholar]
- Dönmez, D. Regeneration of Plants from Alginate-Encapsulated Shoot Tips of Myrtle (Myrtus communis L.). Erwerbs-Obstbau 2022, 64, 307–314. [Google Scholar] [CrossRef]
- Barraco, G.; Sylvestre, I.; Engelmann, F. Comparing Encapsulation-Dehydration and Droplet-Vitrification for Cryopreservation of Sugarcane (Saccharum spp.) shoot tips. Sci. Hortic. 2011, 130, 320–324. [Google Scholar] [CrossRef]
- Coelho, N.; Gonçalves, S.; Romano, A. Endemic Plant Species Conservation: Biotechnological Approaches. Plants 2020, 9, 345. [Google Scholar] [CrossRef] [PubMed]
Explant’s Type | Vitality | Regrowth | Shoot Number | Shoot Length | Shoots with Basal Callus | Callus Weight | Shoot Fresh Weight | Total Dry Weight |
---|---|---|---|---|---|---|---|---|
(%) | (%) | (n) | (mm) | (%) | (mg) | (mg) | (mg) | |
Shoot tips | 85 ± 5 a | 85 ± 5 a | 1.1 ± 0.05 a | 11.66 ± 1.03 a | 85 ± 5 a | 9.28 ± 2.03 a | 5.89 ± 0.42 a | 4.44 ± 0.62 a |
Medium node | 30 ± 6 b | 30 ± 6 b | 1.1± 0.1 a | 5.28 ± 1.10 b | 27 ± 6 b | 9.25 ± 2.50 a | 2.49 ± 0.68 b | 2.44 ± 0.87 a |
Basal node | 40 ± 9 b | 40 ± 9 b | 1.2 ±0.1 a | 5.15 ± 0.68 b | 40 ± 9 b | 9.98 ± 2.67 a | 2.64 ± 0.42 b | 2.93 ± 0.46 a |
Explant’s Type | Vitality | Regrowth | Shoot Number | Shoot Length | Shoots with Basal Callus | Callus Fresh Weight | Shoot Fresh Weight | Total Dry Weight |
---|---|---|---|---|---|---|---|---|
(%) | (%) | (n) | (mm) | (%) | (mg) | (mg) | (mg) | |
Shoot tips | 85 ± 3 a | 85 ± 3 a | 1.0 a | 6.73 ± 0.60 a | 82 ± 6 a | 6.08 ± 1.72 a | 5.33 ± 0.91 a | 2.72 ± 0.62 a |
Medium node | 38 ± 10 b | 38 ± 10 b | 1.0 a | 2.13 ± 0.31 b | 15 ± 8 b | 1.09 ± 0.29 b | 2.25 ± 0.47 b | 0.84 ± 0.17 b |
Basal node | 12 ± 3 c | 12 ± 3 c | 1.2 ± 0.17 a | 2.50 ± 0.29 b | 0 c | 0 c | 3.83 ± 0.50 ab | 1.23 ± 0.11 b |
Vitality (%) | Regrowth (%) | Shoot Number (n) | Shoot Length (mm) | Callus (%) | Callus FW (mg) | Green FW (mg) | Total DW (mg) | |
---|---|---|---|---|---|---|---|---|
Propagule type (A) | ** | ** | ns | ** | ** | * | ** | * |
Cultivar (B) | ns | ns | ns | ** | ** | * | ns | ** |
A × B | ns | ns | ns | ns | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regni, L.; Cesarini, A.; Calisti, S.; Proietti, P.; Micheli, M. Shoots Regeneration in Brigitta and Duke Blueberry Cultivars from Different Encapsulated Vegetative Propagules. Horticulturae 2025, 11, 259. https://doi.org/10.3390/horticulturae11030259
Regni L, Cesarini A, Calisti S, Proietti P, Micheli M. Shoots Regeneration in Brigitta and Duke Blueberry Cultivars from Different Encapsulated Vegetative Propagules. Horticulturae. 2025; 11(3):259. https://doi.org/10.3390/horticulturae11030259
Chicago/Turabian StyleRegni, Luca, Arianna Cesarini, Silvia Calisti, Primo Proietti, and Maurizio Micheli. 2025. "Shoots Regeneration in Brigitta and Duke Blueberry Cultivars from Different Encapsulated Vegetative Propagules" Horticulturae 11, no. 3: 259. https://doi.org/10.3390/horticulturae11030259
APA StyleRegni, L., Cesarini, A., Calisti, S., Proietti, P., & Micheli, M. (2025). Shoots Regeneration in Brigitta and Duke Blueberry Cultivars from Different Encapsulated Vegetative Propagules. Horticulturae, 11(3), 259. https://doi.org/10.3390/horticulturae11030259